
Towards Robust Fine-grained Recognition by
Maximal Separation of Discriminative Features

Supplementary Material

Krishna Kanth Nakka1[0000−0002−2381−6593] and
Mathieu Salzmann1,2[0000−0002−8347−8637]

1 CVLab, EPFL, Switzerland
2 ClearSpace, Switzerland

{krishna.nakka, mathieu.salzmann}@epfl.ch

1 Training Details

We implemented our approach using the PyTorch library, and ran our experi-
ments on a single 32GB Tesla GPU. We set the mini-batch size B to 75 during
training. Similarly to [3], we initialize the last layer of the prototype branch with
+1 for positive and -0.5 for negative connection between prototype and class la-
bel. We set c = {5, 10} prototypes per class, λ1 to {10, 100} and λ2 = 0.08
depending on the dataset and architecture. We first fine-tune the attention and
feature regularization modules, except for the classification layer of the latter,
for 5 epochs with a learning rate of 0.0003, keeping the backbone network fixed.
We then jointly train all the layers, except the feature regularization classifier,
to minimize the objective of Eq. 3 for 25 epochs, with an initial learning rate of
0.003 and a decay rate of 0.1 applied every 10 epochs. After 30 epochs, we project
the prototypes to the nearest training image patch of the same class and optimize
the classification layer of the feature regularization module for 15 epochs. We use
Adam [4] with the default momentum values for all our experiments. For the
adversarial detection experiments, we initially remove the misclassified samples
from the test set. We then consider successfully attacked from this subset and
train a logistic detector with 20% of data and report results on remaining data.

2 Qualitative Results on CUB

In this section, we provide additional qualitative results on CUB200. In partic-
ular, we visualize the learned prototypes, and analyze the classification results
by computing the similarity of the samples with the learned prototypes.

Visualization of the learned prototypes. In Figure 1, we show the activation
heat maps of the prototypes on the source images to which they were projected
for our VGG-16 model. Our method yields fine-grained prototypes that either fo-
cus on a small discriminative region or activate the complete non-discriminative
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region.

Nearest samples of the learned prototypes. In Figure 2, we show the pro-
totypes and their nearest training images for CUB 200 with VGG-16. Similarly,
in Figure 3, we show the prototypes and their nearest test images for CUB 200
with VGG-16. In most cases, the discriminative prototypes activate the same
semantic part in all images corresponding to the same class.

Nearest prototypes for a clean image. In Figure 4, we show, for a given
clean test image, the top few highest activated prototypes with VGG-16. We
observe that the most activated prototypes focus on salient and discriminative
regions, with no influence from the background regions.

Nearest prototypes for an adversarial image. In Figure 5, we show the
top few highest activated codewords for unsuccessful adversarial samples that
retain the predicted label even after the attack. Note that, under attack, the
similarity scores of the top activated prototypes decrease, but, thanks to the
large separation between the prototypes, the discriminative features do not cross
over to other prototypes.

3 Results on Stanford Cars

In Table 1, we report the robustness of fast adversarial training [5] with our dis-
criminative feature separation approach. Our approach, Ours-FR∗, performs
better than the baseline ProtoPNet∗ [3] in all cases. Note that, for multi-step
iterative attacks, Ours-A∗ performs better than AP∗, while they achieve com-
parable performance for single-step attacks.

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network Steps,ε) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,8) (10,8)

V
G

G
-1

6 AP∗ [6] 86.2% 81.1% 63.6% 78.9% 53.8% 78.7% 50.8% 78.7% 55.1% 85.1% 85.9%
AP+PCL∗ [7] 87.4% 80.5% 59.4% 77.6% 48.5% 77.2% 44.9% 77.9% 50.2% 86.0% 87.1%
Ours-A∗ 84.8% 79.8% 63.3% 77.0% 54.6% 76.6% 51.1% 77.1% 55.8% 84.5% 85.6%

ProtoPNet∗ [3] 64.4% 53.7% 31.9% 48.9% 16.5% 48.2% 13.4% 49.2% 18.2% 63.8% 64.2%
Ours-FR∗ 83.7% 76.37% 62.8% 73.5% 55.0% 72.6% 51.9% 73.8% 55.4% 80.8% 82.0%

V
G

G
-1

9 AP∗ [6] 88.2% 82.4% 63.4% 79.9% 54.2% 79..6% 50.7% 80.0% 55.7% 86.9% 88.0%
AP+PCL∗ [7] 88.2% 82.7% 64.6% 80.2% 57.4% 79.6% 54.3% 80.3% 58.5% 87.2% 88.1%
Ours-A∗ 87.3% 80.29% 67.1% 78.4% 60.15% 78.2% 58.2% 78.6% 61.3% 86.5% 87.3%

ProtoPNet∗ [3] 30.0% 19.9% 15.7% 15.0% 16.3% 9.1% 3.00% 3.32% 2.28% 29.4% 29.7%
Ours-FR∗ 84.6% 79.6% 66.9% 77.7% 58.6% 76.5% 55.6% 77.8% 59.1% 83.7% 84.5%

Table 1. Classification accuracy of different robust networks with `∞ based attacks
on Cars196. The best result of each column and each backbone is shown in bold. The
last two columns correspond to black-box attacks.

Visualization of the learned prototypes. In Figure 6, we show the activation
heat maps of the prototypes on the source images to which they were projected
for our VGG-16 model. Our method yields fine-grained prototypes that either fo-
cus on a small discriminative region or activate the complete non-discriminative
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region.

Nearest samples of the learned prototypes. In Figure 7, we show the pro-
totypes and their nearest training images for Cars 196 with VGG-16. Similarly,
in Figure 8, we show the prototypes and their nearest test images for Cars 196
with VGG-16. In most cases, the discriminative prototypes activate the same
semantic part in all images corresponding to the same class.

Nearest prototypes for an adversarial image. In Figure 9, we show the
top few highest activated codewords for unsuccessful adversarial samples that
retain the predicted label even after the attack. Note that, under attack, the
similarity scores of the top activated prototypes decrease, but, thanks to the
large separation between the prototypes, the discriminative features do not cross
over to other prototypes.
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Fig. 1. Visualization of the prototypes learned with our approach on CUB.
Our formulation yields prototypes that are fine-grained and representative of the spe-
cific class in the images.
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Fig. 2. Visualization of the nearest train samples for each learned proto-
types with our approach on CUB with VGG-16. All prototypes activate se-
mantically meaningful parts and mostly from the images corresponding to their own
label.
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Fig. 3. Visualization of the nearest test samples for each learned prototypes
with our approach on CUB with VGG-16. All prototypes activate semantically
meaningful parts and mostly from the images corresponding to their own label.
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Fig. 4. Visualization of the top activated prototypes for a given test image
on CUB. The top prototypes activate semantically meaningful regions and discard
the background areas.
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Fig. 5. Visualization of the top activated prototypes for a given clean and
adversarial image pair from the CUB test data. The top prototypes corresponds
to the true label, even after attack. Moreover, we observe that the similarity score for
each prototype decreases, but the attack remains unsuccessful thanks to the large
separation between the discriminative prototypes.
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Fig. 6. Visualization of the prototypes learned with our approach on Cars-
196. Our formulation yields prototypes that are fine-grained and representative of the
specific class in the images.



10 K.K Nakka and M. Salzmann

Fig. 7. Visualization of the nearest train samples for each learned proto-
types with our approach on Cars-196 with VGG-16. All prototypes activate
semantically meaningful parts and mostly from the images corresponding to their own
label.
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Fig. 8. Visualization of the nearest test samples for each learned prototypes
with our approach on Cars 196 with VGG-16. All prototypes activate semanti-
cally meaningful parts and mostly from the images corresponding to their own label.
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Fig. 9. Visualization of the top activated prototypes for a given clean and
adversarial image pair from the Cars-196 test data. The top prototypes corre-
sponds to the true label, even after attack. Moreover, we observe that the similarity
score for each prototype decreases, but the attack remains unsuccessful thanks to the
large separation between the discriminative prototypes.
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