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This supplementary material provides details and additional visual results
that could not be included in the paper submission due to space limitation. In
Sec. 1, we first provide more implementation details, such as model architecture
and the loss functions we use to train the networks. Then, we illustrate the uses
of bidirectional pyramid network (in Sec. 2 in the paper) and unary attention
and pairwise attention (in Sec. 3 in the paper) by visualizing feature maps of an
example. Sec. 4 provides more experimental details for prostate MRI segmenta-
tion. Sec. 5 discuss additional state-of-the-art works. In Sec. 6, we show more
visual results on Cityscapes, CamVid, PASCAL Context.

1 More Implementation Details

1.1 Architecture Details

Our network starts from a a stem that consists of one strided 3 x 3 convolution
and a pooling layer to decrease the resolution to 1/4 of the input image. Then,
the first step upward contains 1 residual module in the subsampling pathway
(i.e., feature level in L1), with a bottleneck of width C, one strided 3 x 3 convo-
lution to achieve larger receptive field (lower resolution, i.e., 1.2). The 2nd, 3rd,
4th steps behave the same way as the 1st step, as shown in Fig.1 in the paper.
The widths (number of channels) of the convolutions of the five resolutions are
C, 2C, 4C, 8C and 16C, respectively. In the highest layer (i.e., L5, with lowest
resolution), we apply a pyramid pooling module to gain even larger receptive
fields. The bidirectional information flow is implemented by bilinear interpo-
lation (for upsampling) and the AMA fusion strategy. To save computational
cost, we reduce the resolution of the context aggregation module to 1/2 (or 1/4)
and all operations of unary-pairwise attention module is working on this lower
resolution. The APNB module follows exactly the same design in [1].

1.2 Loss Functions for Training

Ohem loss [2] is widely used to train semantic segmentation networks because of
its ability to handle hard samples. Dice loss [3] is often adopted as a segmentation
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loss function to solve the category imbalance issues. We use both ohem loss and
Dice loss to train our segmentation network, as shown in Eq. 1.

LHyb = Lohem + ALDice (1)

where A is a non-negative weighting coefficient, and it is set to 1.6 in all our
experiments.

Besides, We utilize auxiliary loss functions to supervise the training of our
proposed method. We use the principal loss function (OHEM loss and Dice loss,
jointly) to supervise the output of the whole BPNet. Moreover, we add two
(or three, for BPNet-S4) auxiliary loss functions to supervise the output of the
intermediate stages at the lowest layer (similar to deep supervision [4].

2 Exploration of Bidirectional Pyramid Structure

The bidirectional pyramid network is the core of our work. We have quanti-
tatively demonstrate the effectiveness of our proposed structure in the paper.
Top-down and bottom-up information flows are shown to both provide perfor-
mance gains. Here we show a qualitative analysis how the information flows help
the segmentation task.

S2,L1 S2,L2 S3,L1

Fig. 1. Visualization of a top-down information flow. “S2,1.1” is the 2nd stage feature
map at feature level 1, which contains many fine details (e.g., edges) and some unrelated
noises; “S2,1.2”7 is the 2nd stage feature map at feature level 2, which captures the
semantic shape of the cars. Fusing these two information sources, “S3,L1” retains the
necessary fine details but is more semantically meaningful.

We visualize an example of top-down information flow in Fig. 1. From the
example, we can see that top-down information flow enhances the later-stage
feature maps to capture more semantically meaningful cues while retaining fine
details. With such (bidirectional) information flow going in every step of the net-
work processing, the representation for the input image is both rich in semantic
cues and in high-resolution details, as shown in Fig. 2.
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Fig. 2. Visualization of feature maps in different stages (i.e., from S1 to S4) at feature
level 1. The necessary detailed information is always maintained via this high-resolution
branch, and the semantic information is largely enhanced by the bidirectional informa-
tion flow in the pyramid.

3 Exploration of Unary-Pairwise Attention

We conduct quantitative ablation studies to understand the impact of unary-
pairwise attention. As indicated in the main paper, the unary-pairwise attention
can work better than either unary attention or pairwise attention by themselves.
Here we further explore what unary-pairwise attention learns, and why it works
better than individual attention mechanisms.

unary pairwise unary-pairwise

Fig. 3. Visualization of the unary-pairwise attention maps. Unary attention maps can
preserve thin structures, and the pairwise attention maps can help capture the con-
cept of large objects. With parallel pairwise-attention mechanism, we can boost the
segmentation for both fine details and large objects.
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In Fig. 3, we visualize the feature map from the unary-attention block, pair-
wise attention block and unary-pairwise attention block , respectively. It can be
observed that uanry attention contributes more to edges or details, while pair-
wise attention focuses more on large objects. With a parallel combination (which
works better than sequential combination), we can gain the advantages of both
attention mechanism.

4 Details of Experiments on Medical Image Data:
Prostate Segmentation

The detailed comparison results on prostate MRI dataset are shown in Table 1.

Table 1. Semantic segmentation results on prostate MRI.

Dataset training time test time mloU
3D-UNet [5] 3d 27s 82.1
3DVNet [3] 3d 29s 84.6

3DUNet++ [6] 3d 31s 87.2
nnUNet [7] 5d 45s 92.3
BPNet-54 17h 1s 91.1

We also visualize the segmentations of the prostate for two typical subjects
with their 3D renderings in Fig. 4.

GT Ours

/

Fig. 4. Qualitative visualizations of our BPNet-S4 on the prostate MRI val set. The
first row shows segmentation results of two typical subjects by experts’ manual seg-
mentation (GT) and automatic segmentation (Our BPNet-S4). The second row shows
the corresponding 3D renderings of the segmentation results.
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5 Additional Discussion on Related Work

5.1 State-of-the-art real-time segmentation methods

As shown in the main paper, our BPNet-S3-W32 network can achieve test mloU
76.3 with 5.1M parameters and 36 fps (on Nvidia 2080 Ti) on the Cityscapes test
set. Compared with many recent state-of-the-art real-time segmentation meth-
ods [8-14], our BPNet-S3-W32 achieves the best accuracy with a comparable or
smaller model size. The inference speed of our network is also high, comparable
to BiseNet [11]. We believe that our BPNet-S3-W32 provides a competitive and
general solution to real-time semantic segmentation.

It is worth noting the design strategy of our real-time BPNet-S3-W32 is dif-
ferent from many existing real-time segmentation methods, which often down-
sample feature maps by a large factor at the beginning stage, in order to save
computational cost. Our BPNet-S3-W32 keeps a high-resolution pathway all the
way at the bottom of the pyramid, so that we can capture detailed features. To
reduce computational cost, comapre to our heavyweight networks, we reduces
the number of channels overall the networks and shorten the stages from four to
three. The systematic information communication in the bidirectional pyramid
network and the unary-pairwise attention mechanism could remedy the loss of
feature representation ability due to the shrinkage of the networks.

5.2 State-of-the-art segmentation methods with external training

In the main paper, we have compared to many state-of-the-art segmentation
methods in terms of accuracy. Most of these compared methods use the Im-
agenet dataset to pretrain a strong backbone, but typically not use other ex-
ternal datasets, for instance, Cityscapes coarse set and Mapillary dataset. We
note that some proposed segmentation methods do use external datasets to
achieve state-of-the-art performance on Cityscapes [15-21]. In Gated-SCNN [20],
a shape branch is constructed to support the segmentation branch achieving bet-
ter boundary accuracy. The Gated-SCNN can achieve 80.8% mIoU on Cityscapes
val set with multi-scale inference (Our BPNet-S4 can achieve 81.2% with multi-
scale inference on the Cityscapes val set). Using extra Mapillary data, they
achieve a 82.8% mloU on Cityscapes test set. Our BPNet-S4 achieves a 81.9%
on the test set without using any external dataset (Imagenet or Cityscapes coarse
set). By using even more external data in training, better performance can be
obtained. Zhu et al. [21] proposes an algorithm to use more data to train the
segmentation network on Cityscapes. Besides ImageNet and Cityscapes coarse
set, their network also uses Cityscapes video set to help train the segmentation
network, their final accuracy is 83.5% on Cityscapes test set. It is conceivable
that our method can also benefit from using extra training data. For example,
using Cityscapes train set only, our model can achieve 81.0% on the test set with
multi-scale inference; using train+val set for training, 81.9% is achieved on the
test set. Thus, we believe our method can further improve performance if using
external training data, such as Cityscapes coarse set and Mapillary data.
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5.3 Details about Difference from HRNet.

We elaborate the details of difference from HRNet [22]. HRNet as an example
to explain the difference. (1) Feature fusion design is different. HRNet aims for
high-resolution representation and accuracy. In each stage, features of all scales
are fully connected and fused with ‘+’ op, followed by a heavy translation block
(4 RBs). In contrast, BPNet aims for a balance between scales and the efficiency
of information flow, using AMA to fuse features in a pyramidal scheme. Note,
in BPNet, each fusion just involves two information flow, with one providing
the resolution and the other sharing the semantics. (2) As a result, BPNet is
much more efficient for both the lightweight and heavy variants, 2x to 3x more
efficient than HRNet. Testing on 2080 Ti, BPNet-S3-W32 has mloU 77.2 at 36.5
fps, while HRNet-v2-small-v2 (released model) has mIoU 76.2 at 19.9 fps. Our
heavier model BPNet-S4 is at 14.8 fps, while HRNet-v2-W48 is at 5.1 fps. (3)
Moreover, BPNet does not use pretraining, which increases its flexibility. HRNet
is trained with ImageNet pretraining.

6 More Visual Results

Here we show additinoal visual results on Cityscapes, CamVid, PASCAL-Context
and prostate MRI, to help illustrate the reuslts of our method.

As shown in Fig. 5, our BPNet-S4 is able to perform accurate prediction on
challenging urban scenes, producing results very similar to the ground-truth.

GT Ours

Fig. 5. Qualitative visualization of our BPNet-S4 on the Cityscapes val set. Best viewed
in color.
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We also show visual results of our BPNet-S4 on CamVid and PASCAL-
Context in Fig. 6 and Fig. 7, respectively. In those examples, our BPNet-S4
achieves accurate results, which are close to the ground-truth.

GT Ours

Fig. 6. Qualitative visualizations of our BPNet-S3 on the CamVid val set. Best viewed
in color.
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viewed in color.
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