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1 Unsupervised learning

Training procedure For the setting without pretrained weights for the image
network, we use a fixed learning rate = 0.0001, with batchsize = 8 and epochs =
50. When we use pretrained weights for the image network, we use batchsize =
8, epochs = 25 and learning rate = 0.00001 for the image network, and learning
rate = 0.0001 for the others. For all experiments, we use an Adam [1] optimizer.

Architecture details For the image network, we use VGG-11, implemented
in pytorch [2]. We show the architecture of the image network in Table 1. For
the sound network, we use a VGG-like architecture. Table 2 shows the architec-
ture of the sound network.

For more details of our unsupervised model, refer to our code included in the
supplementary materials.

2 Supervised learning

For the supervised training, we train an U-Net [3] with a fixed learning rate =
0.0001, batchsize = 8, epochs = 100, and the Adam optimizer. The encoder of
the U-Net is ResNet-34 [4]. For More details of the architecture, refer to our
code.

3 Saliency map

We use the output of Grad-CAM [6], which can be regarded as a class-specific
saliency map. To obtain the saliency map for top-N classes, we use the max value
for each pixel along N saliency maps, as follows.

SN
i,j = max

k
Sk,i,j , (1)
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Table 1. The architecture of the image network. “conv” indicates a 2-dimensional
convolutional layer, “size” is the size of the filters, and “n filters” is the number of the
filters.

Layer Layer information

conv1 (n filters = 64, size = 3, stride = 1, padding = 1), ReLU
maxpool1 (size = 2, stride = 2, padding = 0)

conv2 (n filters = 128, size = 3, stride = 1, padding = 1), ReLU
maxpool2 (size = 2, stride = 2, padding = 0)

conv3 (n filters = 256, size = 3, stride = 1, padding = 1), ReLU
conv4 (n filters = 256, size = 3, stride = 1, padding = 1), ReLU

maxpool3 (size = 2, stride = 2, padding = 0)
conv5 (n filters = 512, size = 3, stride = 1, padding = 1), ReLU
conv6 (n filters = 512, size = 3, stride = 1, padding = 1), ReLU

maxpool4 (size = 2, stride = 2, padding = 0)

Table 2. The architecture of the sound network. “BatchNorm” means Batch Normal-
ization [5].

Layer Layer information

conv1 (n filters = 32, size = 3, stride = 1, padding = 1), BatchNorm, ReLU
conv2 (n filters = 32, size = 3, stride = 1, padding = 1), BatchNorm, ReLU

maxpool1 (size = 2, stride = 2, padding = 0)
conv3 (n filters = 64, size = 3, stride = 1, padding = 1), BatchNorm, ReLU
conv4 (n filters = 64, size = 3, stride = 1, padding = 1), BatchNorm, ReLU

maxpool2 (size = 2, stride = 2, padding = 0)
conv5 (n filters = 128, size = 3, stride = 1, padding = 1), BatchNorm, ReLU
conv6 (n filters = 128, size = 3, stride = 1, padding = 1), BatchNorm, ReLU

maxpool3 (size = 2, stride = 2, padding = 0)
conv7 (n filters = 128, size = 3, stride = 1, padding = 1), BatchNorm, ReLU
conv8 (n filters = 128, size = 3, stride = 1, padding = 1), BatchNorm, ReLU

maxpool4 (size = 2, stride = 2, padding = 0)
conv9 (n filters = 128, size = 3, stride = 1, padding = 1), BatchNorm, ReLU
conv10 (n filters = 128, size = 3, stride = 1, padding = 1), BatchNorm, ReLU

where SN
i,j is the saliency map for top-N classes and Sk,i,j is the saliency map

for the k-th predicted class.
We test the performances of the saliency maps for top-N classes, for N =

1, 10, 20, 50, 100, 200, 500, 1000 and find N = 100 works best; thus we report
the result of N = 100 in the original paper. Table 3 shows the performances of
saliency maps using different N.

4 Additional comparison with other methods

Though our main focus is to analyze the contribution of image/sound modalities,
we made further comparisons with other various methods [8–10]. The results in
4 show that our method achieves the best performance. Scores for localization
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Table 3. Evaluation of saliency maps for top N classes for varying N. cIoU score with
threshold 0.5 and AUC score are reported.

N

saliency
map

for top-N
classes

cIoU AUC

1 45.7 41.1
10 51.5 45.1
20 52.1 45.7
50 52.6 46.2
100 52.7 46.3
200 52.5 46.1
500 52.4 46.0
1000 51.8 45.5

Table 4. Additional comparison with other methods. Scores for localization maps ob-
tained using models trained in an unsupervised setting with 10k samples are reported.

Method cIoU AUC

Ours 56.8 50.7
Senocak et al. [7] (reported) 43.6 44.9

DMC [8] (reported) 41.6 45.2
CAVL [9] (reported) 50.0 49.2

Two-stage [10] (reported) 52.2 49.6

maps obtained using models trained in an unsupervised setting with 10k sam-
ples are reported. As the original paper of DMC [8] only report scores for models
trained with 400k samples, we use the scores of DMC trained on 10k samples
reported in CAVL [9].

5 Ablation Study

We conducted ablation study to further analyze our proposed model. Specifically,
we trained our model without the potential localization network and the selection
module, and compared their performances. The altered model is obtained by
fixing the potential localization map to be a constant (Pi,j = const.), which is
inherently the same as Senocak et al. [7]. The quantitative results are shown
in Table 5. As a result, the models without the potential localization network
and the selection module worked as good as Senocak et al. [7], but worse than
our proposed method, which means the potential localization network and the
selection module gives a positive effect on the performance of the localization
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Table 5. Evaluation of localization maps. cIoU score with threshold 0.5 and AUC score
are reported. “PLN, SM” denotes the potential localization network and the selection
module. All the experiments are conducted in an unsupervised setting.

# of
training
samples

[7]
(reported)

pretrained
pretrained &

without
PLN, SM

de novo
de novo &
without

PLN, SM
cIoU AUC cIoU AUC cIoU AUC cIoU AUC cIoU AUC

1k — — 48.7 46.4 44.4 40.6 36.5 34.1 35.7 33.0
2.5k — — 50.3 47.7 48.7 45.8 40.7 37.3 38.6 36.6
10k 43.6 44.9 56.8 50.7 56.4 49.2 48.4 45.3 47.6 44.3
144k 66.0 55.8 68.4 57.0 66.8 55.7 66.7 56.3 65.8 55.3

Random
cIoU AUC
34.1 32.3

Original Loc. map Loc. map Original Loc. map Loc. map
Image with without Image with without

PLN, SM PLN, SM PLN, SM PLN, SM

Fig. 1. Visualization of localization maps for the models with/without the potential
localization network (PLN) and the selection module (SM). The model without PLN
and SM, which is inherently same as Senocak et al. [7], responds to objects that can not
produce sound (e.g. signboard), while the model with PLN and SM does not. For the
visualization, we used the models trained with 144k samples and pretrained weights.

map. This result suggests that the potential localization network allows efficient
training as the potential localization map Pi,j predetermines the possible sound
sources (i.e. only responds to objects that can produce sound).
Why does Pi,j only respond to objects that can produce sound?
Though our models does not have any constraints that prevents the potential
localization map from being a constant, the potential localization map Pi,j only
responds to objects that can produce sound. We believe this is because of the
way the localization map is obtained (Eq. (3)). If Pi,j = const., the model can
only use Ai,j to locate the sound source. However, if Pi,j functions like a prior
distribution and predetermines the possible sound sources (i.e. eliminates the
objects that can not produce sound), the workload of Ai,j is reduced, allowing
the model to be trained more easily. This mechanism motivates Pi,j to not be
a constant, but rather the possible sound sources. As seen in Fig. 1, the altered
model responds to objects that can not produce sound, while our model does
not.
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Potential Potential Ground truth Potential Potential Ground truth
Loc. map Loc. map Loc. map Loc. map

(Unsupervised) (Supervised) (Unsupervised) (Supervised)

Fig. 2. Visualization of potential localization maps for our unsupervised model and
supervised model. For the unsupervised setting, we used the model trained with 144k
samples and pretrained weights.

6 Comparison between our unsupervised model and
supervised model

Visualization of potential localization maps for our unsupervised model and su-
pervised model is shown in Fig. 2. It can be noted that for some samples, the
potential localization map of the unsupervised model only responds to a small
part of the observed object, whereas the supervised model mostly encompasess
the entire object. This can be attributed to the fact that, as with existing un-
supervised methods, our unsupervised model does not have any contraints that
force the localization map and potential map to exhibit this trait. The model is
only trained to minimize the similarity loss which does not necessarily require
the model to respond to the entire object.

7 Annotation Details

The annotation process of the dataset used to analyze the performance gap in Ta-
ble 4 in the original paper is as follows. First, we randomly obtained 4K samples
from Flickr-SoundNet [11] excluding the samples contained in the benchmark
dataset [7]. Then, we searched Type-B samples (there are several objects capa-
ble of producing sound in the image, but of which only one object is actually
producing sound), by manually checking each image-sound pair. It should be
noted that we had to listen to the sound in the annotation process to decide



6 T. Oya et al.

whether the samples are Type-A or Type-B, as their distinction is dependent
on the accompanying sound as stated above. As a result, we found 30 Type-B
samples in this process. We obtained the same number of Type-A samples to
match the number of each sample. Finally, we annotated sound source for each
sample using bounding boxes. In Fig. 3 and Fig. 4, we show the examples of
Type-A and Type-B images, and sound source annotations for them.

8 Video

The supplementary materials contain “video.mp4”. This video shows 3 cases
where the localization map and the potential localization map are different. For
instrument and machine sound, we use a 5-second clip from the original audio.
For human sound, we use a 5-second clip from another video’s sound that only
contains human sound. For the visualization, we use the model trained with 144k
samples and pretrained weights.

9 Code

The supplementary materials contain a jupyter notebook file “code/code.ipynb”
and a html file “code/code.html”. The contents of these files are the same,
but “code/code.html” does not require an environment for jupyter notebook.
These files contain main parts of our code, including the network architectures
and how we obtain the saliency maps. We also include “code/requirements.txt”,
which shows the list of libraries we use.
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Original Image Ground truth Potential Loc. map Original Image Ground truth Potential Loc. map
Loc. map Loc. map

Fig. 3. Visualization of potential localization maps and localization maps of Type A
along with the ground truth. For the visualization, we used the model trained with
144k samples and pretrained weights.

Original Image Ground truth Potential Loc. map Original Image Ground truth Potential Loc. map
Loc. map Loc. map

Fig. 4. Visualization of potential localization maps and localization maps of Type B
along with the ground truth. For the visualization, we used the model trained with
144k samples and pretrained weights.
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