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A Appendix Introduction

The following sections present supporting material for the main paper. We first
list all our notations for easy referencing in Appendix A.1. We then present proofs
for the mathematical results in the paper in Appendix B. Next, we describe the
experimental setup in Appendix C and go on to provide an runtime analysis in
Appendix D and additional results on TSN in Appendix E.

A.1 Notation Reference

Variable Definition Description

X (xi)
n
i=1 An ordered sequence comprised of n elements.

In our experiments xi is a frame and X is a
video.

xi xi ∈ X An element of our sequence X.
X ′ X ′ ⊆ X A subsequence of X, at times this is constrained

to be a proper subset (X ′ ⊂ X). Check sur-
rounding context for constraints.

f(X) - A model that operates on a sequence X and
produces a vector of class scores.

fc(X) - The score for class c produced when the model
f is evaluated on the sequence X.

fc(∅) - The score for class c when there is no input, we
choose the empirical class distribution over the
training set to represent this.

fgt(X) - The ground truth class score.
fpt(X) - The predicted class score.
fcc(X) fgt(X)− fpt(X) The difference between ground truth and pre-

dicted class score.
fs(X) fs : Rs×D → RC A single-scale model mapping from a sequence

of length s where each element has dimension
D to a set of class scores.

fms(X) Es

[
EX′|s[fs(X ′)]

]
A multi-scale model built from a set of single
scale models.

∆c
i (X

′) fc(X
′ ∪ {xi})− fc(X ′) The marginal contribution of xi on the subse-

quence X ′ with the condition that xi 6∈ X ′.
φc
i

∑
X′⊆X\{xi} w(X ′)∆c

i (X
′) The Element Shapley Value for xi with respect

to class c.

w(X ′) (|X|−|X′|−1)!|X′|!
|X|! The weighting factor used in the Element Shap-

ley Value definition.

φ̂c
i - Approximated Element Shapley Value com-

puted via Algorithm 1.

δi φgt
i − φ

pt
i The difference in Element Shapley Value com-

puted w.r.t the ground truth and predicted
class.
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B Proofs

B.1 Shapley Value Expectation Forms

Single Expectation Form. The Shapley value for an element xi from a se-
quence X can be interpreted as the expected marginal contribution of xi on a
random coalition X ′ ⊆ X \ {xi}, where X ′ maintains the order of elements in X.

Proof. The Shapley value is originally defined [1] as

φi =
∑

X′⊆X\{xi}

(|X| − |X ′| − 1)!|X ′|!
|X ′|!

[f(X ′ ∪ {xi})− f(X)] . (11)

We define a random variable X ′ whose probability mass function (pmf) is

p(X ′) =
(|X| − |X ′| − 1)!|X ′|!

|X|!
. (12)

p(X ′) is a valid pmf, given all values are non-negative and its sum is equal to
one by direct proof.∑

X′⊆X\{xi}

p(X ′) =
∑

X′⊆X\{xi}

(|X| − |X ′| − 1)!|X ′|!
|X|!

(13)

=

|X|−1∑
s=0

∑
X′⊆X\{xi}
|X′|=s

(|X| − |X ′| − 1)!|X ′|!
|X|!

(14)

=

|X|−1∑
s=0

(|X| − s− 1)!s!

|X|!
∑

X′⊆X\{xi}
|X′|=s

1 (15)

=

|X|−1∑
s=0

1

|X|

(
|X| − 1

s

)−1 ∑
X′⊆X\{xi}
|X′|=s

1 (16)

=
1

|X|

|X|−1∑
s=0

(
|X| − 1

s

)−1 ∑
X′⊆X\{xi}
|X′|=s

1 (17)

=
1

|X|

|X|−1∑
s=0

(
|X| − 1

s

)−1(|X| − 1

s

)
(18)

=
1

|X|

|X|−1∑
s=0

1 (19)

= 1 . (20)

Consequently, we can see that

φi = E
X′

[f(X ′ ∪ {xi})− f(X ′)] (21)
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Conditional Expectation Form. The Shapley value can also be formulated
as the expectation over the conditional expectation of the marginal contribution
of an element on a coalition of size s where all values of s are equally probable.

E
X′

[f(X ′ ∪ {xi})− f(X ′)] = E
s

[
E

X′|s
[f(X ′ ∪ {xi})− f(X ′)]

]
(22)

This is a consequence of the law of total expectation, as we split the sample space
into |X| non-empty and non-overlapping partitions, each containing subsets of
size s ∈ {0 .. |X| − 1}.

Proof. We show the equivalence by direct proof. Since there are
(|X|−1

s

)
instances

of X ′ of size s the conditional probability of X ′ given s is

p(X ′|s) =

(
|X| − 1

s

)−1

(23)

Expanding out the RHS of Eq. (22) we get

|X|−1∑
s=0

p(s)
∑

X′⊆X\{xi}
|X′|=s

p(X ′|s)[f(X ′ ∪ {xi})− f(X ′)] (24)

=

|X|−1∑
s=0

1

|X|
∑

X′⊆X\{xi}
|X′|=s

(
|X| − 1

s

)−1

[f(X ′ ∪ {xi})− f(X ′)] (25)

=
∑

X′⊆X\{xi}

1

|X|

(
|X| − 1

|X ′|

)−1

[f(X ′ ∪ {xi})− f(X ′)] (26)

= E
X′

[f(X ′ ∪ {xi})− f(X ′)] (27)

B.2 Recursive Definition of Variable-Length Input Model

We define our multi-scale model f (note this is the same as fms, but we drop
the superscript in this proof for notational simplicity) as a combination of the
results from a set of single scale models {fs}nmax

s=1

f(X) = E
s

[
E

X′|s
[fs(X ′)]

]
. (8 revisited)

To improve efficiency when computing Shapley values, it is desirable to formulate
this in a recursive fashion, which we denote f̌ . This enables the computation of
f(X) in terms of the expected result of f̌(X̌) where X̌ is a random variable over
subsequences of X with one element less (all equally probable).

f̌(X) =


f1(X) |X| = 1

|X|−1
[
f |X|(X) + (|X| − 1)EX̌

[
f̌(X̌)

]]
|X| ≤ nmax

EX̌

[
f̌(X̌)

]
|X| > nmax

(28)
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Proof. We prove the equivalence between f and f̌ by induction on |X|.

Base case: When |X| = 1, observe that p(s = 1) = 1 and the sample space
Ω(X ′|s = 1) = {X} therefore f(X) = f1(X) from Eq. (8).

Inductive step: We split the inductive step into two parts, one where |X| ≤ nmax

and one where |X| > nmax . For both parts of the proof, we start by assuming
f(X̌) = f̌(X̌), which we have proven for the base case s = 1. For |X| ≤ nmax , we
start from f̌(X), expanding out the definition according to clause 2 in Eq. (28)

f̌(X) = |X|−1

[
f |X|(X) + (|X| − 1) Ě

X

[
f̌(X̌)

]]
. (29)

Our strategy will be to expand the expectation in Eq. (29), and show that
substituting the expanded form back into Eq. (29) recovers Eq. (8). Focusing on
the expectation and substituting our assumption, f(X̌) = f̌(X̌), yields

Ě
X

[
f̌(X̌)

]
= Ě

X

[
f(X̌)

]
(30)

= Ě
X

[
E
s

[
Ě

X′|s
[fs(X ′)]

]]
(31)

It is important to note the definitions of the random variables here: X̌ ′ ⊆ X̌ and
s ∈ {1 .. |X̌|}. We then expand out the expectations

Ě
X

[
f̌(X̌)

]
=

∑
X̌⊂X

|X̌|=|X|−1

1

|X|

|X̌|∑
s=1

1

|X̌|

∑
X̌′⊆X̌
|X̌′|=s

(
|X̌|
s

)−1

fs(X̌ ′) , (32)

reordering the summations, and replacing |X̌| with |X| − 1 yields

Ě
X

[
f̌(X̌)

]
=

1

|X|

|X|−1∑
s=1

1

|X| − 1

∑
X̌⊂X

|X̌|=|X|−1

∑
X̌′⊆X̌
|X̌′|=s

(
|X| − 1

s

)−1

fs(X̌ ′) . (33)

As {X̌ ⊂ X : |X̌| = |X| − 1} is all subsequences of X excluding a single element,
we can substitute this set with {xi ∈ X} and replace X̌ with X \ {xi},

Ě
X

[
f̌(X̌)

]
=

1

|X|

|X|−1∑
s=1

1

|X| − 1

∑
xi∈X

∑
X′⊆X\{xi}
|X′|=s

(
|X| − 1

s

)−1

fs(X ′) . (34)

Next, we show that

1

|X|
∑
xi∈X

∑
X′⊆X\{xi}
|X′|=s

(
|X| − 1

s

)−1

=
∑

X′⊆X
|X′|=s

(
|X|
s

)−1

(35)
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To get from the LHS to the RHS, we need to consider how many times we will
repeatedly count X ′ due to the outer summation. If we consider a fixed X ′, then
there will be |X| − |X ′| times where it will be drawn in the inner summation.
Hence we can replace the outer summation with the number of occurrences

1

|X|
∑
xi∈X

∑
X′⊆X\{xi}
|X′|=s

(
|X| − 1

s

)−1

(36)

=
1

|X|
∑

X′⊆X\{xi}
|X′|=s

(|X| − s)
(
|X| − 1

s

)−1

(37)

=
∑

X′⊆X\{xi}
|X′|=s

(|X| − s)
|X|

(|X| − 1− s)!s!
(|X| − 1)!

(38)

=
∑

X′⊆X\{xi}
|X′|=s

(|X| − s)!s!
(|X|)!

(39)

=
∑

X′⊆X\{xi}
|X′|=s

(
|X|
s

)−1

. (40)

Having proven Eq. (35), we can simplify Eq. (34) to

Ě
X

[
f̌(X̌)

]
=

1

|X| − 1

|X|−1∑
s=1

∑
X′⊆X
|X′|=s

(
|X|
s

)−1

fs(X ′) . (41)

Substituting this form back into Eq. (29) we get

f̌(X) = |X|−1

|X|−1∑
s=1

∑
X′⊆X
|X′|=s

[(
|X|
s

)−1

fs(X ′)

]
+ f |X|(X)

 . (42)

Now f |X|(X) can be merged into the summation over s by increasing its bound
from |X| − 1 to |X|

f̌(X) =

|X|∑
s=1

1

|X|
∑

X′⊆X
|X′|=s

(
|X|
s

)−1

fs(X ′) . (43)

Which is the expansion of the expectations of f(X). The proof for the equivalence
between f̌(X) and f(X) for |X| > nmax is very similar to the above and has
been omitted for brevity.
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B.3 Linearity of Shapley Values

The Shapley value φw1c1+w2c2
i for a model fw1c1+w2c2(X) = w1fc1(X)+w2fc2(X)

where w1, w2 ∈ R is w1φ
c1
i + w2φ

c2
i .

Proof.

φw1c1+w2c2 =
∑

X′⊆X\{xi}

w(X ′)fw1c1+w2c2(X ′) (44)

=
∑

X′⊆X\{xi}

w(X ′) [w1fc1(X ′) + w2fc2(X ′)] (45)

= w1

∑
X′⊆X\{xi}

w(X ′)fc1(X ′) + w2

∑
X′⊆X\{xi}

w(X ′)fc2(X ′) (46)

= w1φ
c1
i + w2φ

c2
i (47)

C Detailed Experimental Setup

TRN. We extract 256D features for every frame in Something-something v2
using the publicly available 8 frame multi-scale TRN1 (this uses a BN-Inception [2]
backbone). We then train a set of MLP classifiers {fs}nmax =8

s=1 with one hidden
layer of 256 units, dropout of 0.1 on the input features, and ReLU activation.
Each MLP fs takes in the concatenation of s frame features and produces class
scores. This is the same as the multi-scale variant of TRN, however, rather than
training the classifiers jointly, we train them separately and then combine their
results at inference time through Eq. (8). We tried training these classifiers jointly,
producing a final class score by Eq. (8), however the individual classifiers perform
very poorly when tested in isolation, and the overall performance was improved
by training them separately. We train for 30 epochs with a batch-size of 512 and
learning rate of 1e-3 using Adam to optimise parameters.

TSN. We train TSN [3] with a ResNet-50 backbone [4]. We introduce a bottleneck
FC layer mapping from the 2048D features from the GAP layer to 256D, we
then add a FC layer atop of this for classification. The Element Shapley Values
for TSN can be obtained since the model is inherently capable of operating
on variable length sequences. This means we can directly evaluate fc(X

′) for
all subsequences X ′. When scaling up to a large number of frames, we use the
approximation technique as specified in Algorithm 1 but lines 7-12 are replaced
with

Fs
j ← fc(X s

j ) . (48)

This adaptation to the algorithm is the same for any other model already
supporting a variable length input.

The accuracy of both models on the validation set is shown in Fig. 10 across
a range of different sequence lengths where frames are uniformly sampled from
the video.

1 https://github.com/zhoubolei/TRN-pytorch

https://github.com/zhoubolei/TRN-pytorch
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Fig. 10. TRN and TSN validation accuracy by number of frames input to the model.

D Computational Cost

The computational cost of the Element Shapley Value without approximation
is O(2|X|) in the number of forward passes. When we apply our approximation
method presented in Algorithm 1 we reduce that complexity to O(mi|X|) where
m is the maximum number of sequences sampled per scale and i is the number of
iterations of the approximation. Practically speaking, we can compute Element
Shapley Values for both TSN and TRN exactly in reasonable time (under
10s/example) thanks to an optimised batched GPU implementation for up to 16
frames. Beyond this, the exponential scaling results in prohibitively long runtimes.
Our approximation enables us to scale to more than 16 frames. We present a
runtime analysis on a single NVIDIA 1080Ti in Appendix D.

Table 1. Runtime analysis of exact and approximate ESV on sequences of varying
length. When applying our approximation algorithm (Algorithm 1) we have to choose
m (max number of subsequences/scale) and i (number of approximation iterations).

Model No. of frames Configuration Time (s)

TRN
8 Exact .080± 0.0001
16 Exact 6.79± 0.01
16 m = 1024, i = 1 .122± 0.005

TSN

8 Exact .0043± 0.0007
16 Exact .035± 0.0001
20 Exact .614± 0.006
20 m = 1024, i = 1 .116± 0.0005
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E Additional Analysis for Shapley Values using TSN

In this section we present analogous results for TSN, compared to the TRN coun-
terparts in the main paper. Figure 11a reports the average marginal contribution
at each scale (cf. Fig. 6a). The trends seen here are much the same as for TRN:
as the scale increases, the average marginal contribution decreases. Figure 11b
shows the number of supporting frames vs. number of frames input to the model
(cf. Fig. 6b). Whilst the trend is similar to that for TRN, the proportion of
supporting frames for TSN is much lower. Figure 11c shows the results of the
frame shifting experiment for TSN (cf. Figure 6c) also demonstrating temporal
smoothness.
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Fig. 11. TSN: (a) Box-plot of marginal contributions at each scale. (b) Increasing
the number of frames fed to the model decreases the percentage of supporting frames.
(c) Change in ESV when compared to neighbouring frames. Larger shifts result in larger
differences in ESV indicating temporal smoothness. (cf. Fig. 6 for TRN).

We conduct the same experiment on frame discarding for TSN as shown for
TRN in Fig. 3, presenting results in Fig. 12. Since both GC and IG produce
similar attribution values to ESV for TSN, we see less of a performance gap when
discarding frames by the attribution ranks in descending order. However, ESV
still produces a larger performance gain than GC and IG when removing frames
in ascending order of attributions.

Finally, in Figs. 13 and 14, we present heatmaps showing the percentage of
videos where φci > φci for both TSN and TRN. Figure 13 shows classes where the
distributions are similar and Figure 14 where they are different.
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