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1 Introduction

This document contains additional results of the ACCV2020 publication Bridg-
ing Adversarial and Statistical Domain Transfer via Spectral Adaptation Net-
works not included in the main document due to space issues. This document
consists of the following content:

— Sec. 2 analyzes the subspace similarity of our ASAN and related methods.

— Sec. 3 presents the ablation study showing the need for combing Spectral
Normalization and our Relevance Spectral Loss.

— Sec. 4 evaluates the influence of the Hyperparameter k& on the performance
of ASAN.

— Sec. 5 presents additional performance results on the Visda [1] dataset.

— Sec. 6 presents additional results of the convergence and spectral analysis.

— Sec. 7 contains additional results of the feature analysis.

— Sec. 8 shows example images taken from the benchmark datasets used in the
experiments.

Note that the techniques used for the analysis in Sec. 6 and 7 are the same as
the techniques used to obtain the results in the original manuscript. However,
they are applied to different datasets to emphasize the usefulness and efficiency
of the approach beyond the experiments shown in the main document.

2 Additional Results of Subspace Analysis

The transferability of features from source to target domain associated with
the singular values o; and ¢; is measurable by the cosine angle of associated
singular vectors v; and r;. While a high angle represents good transferability, this
characteristic is associated with the most significant singular values in DANN
[2]-type networks. This leads to devastating signals from mid-size singular values,
containing necessary discriminative information for a classification task [3].

We follow the suggestion of [3] and analyze the cosine angle of the trained
DANN [2], CDAN [4], and our proposed ASAN to measure the transferability.
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The results are presented in Fig. 1 and show the cosine angle in rad of the
singular vectors of the associated singular values between the source and target
data in descending order with respect to the magnitude of the singular values.
The data is obtained using A—W images from Office-31 [5] dataset. The plot
indicates that DANN [2], as already stated in [3], has a too high focus on easily
transferable features due to the high cosine similarity of the singular vector of the
largest singular vectors compared to the rest of the spectrum. This makes DANN
[2] vulnerable to neglect discriminative features [3]. The CDAN [4] model is more
prone to this problem, showing a low angle on the first singular vectors. However,
the ASAN model has a better overall distribution of cosine angles and distributes
transferability better over the spectrums analyzed range. The red line shows the
mean value, which is very similar in all three architectures, supporting the claim
that our ASAN distributes transferability over the spectrum more successfully
than compared approaches. Following the interpretation of [3], the ASAN model
should, therefore, better express discriminative features over two domains. This
finding reflects the main papers results by observing a better mean accuracy
presented in the results section.

(a) Rad. of DANN [2] (b) Rad. of CDAN [4] (¢) Rad. of ASAN
Bottleneck-Feature = Sub- Bottleneck-Feature  Sub- Bottleneck-Feature  Sub-
space space space

Fig.1: Cosine angle in rad of singular vectors associated to the first 100 largest
singular values between the source and target bottleneck feature output of the
trained DANN [2], CDAN [4], and our ASAN. The data is obtained using A—W
images from the Office-31 [5] dataset. The red line shows the mean rad. The
plot indicates a better distribution of subspace similarities between the singular
vectors of associated large and mid-size singular values of ASAN features. Best
viewed on a computer display.

3 Ablation Study

In this section, we present the ablation study results to verify the effectiveness of
our approach shown in Tab. 1. The building block of our ASAN network is the
CDAN base network. The Spectral-Normalization is integrated into the discrim-
inator network, and our proposed Relevance Spectral Loss is learned based on
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bottleneck features. All parts are evaluated separately on the Office-31 dataset
with the same experimental setup as in the main paper (see Sec. 4 in main paper
for details).

The results show that the CDAN as base-networks has the worst performance,
due to no additional adaptation techniques besides the inherent adaptation of
CDAN. Integrating SN into CDAN helps to stabilize the discriminator gradients,
and thereby, CDAN learns a better invariant representation. Learning our RSL
with CDAN (CDAN+RSL), we can report that the result is marginally better
as CDAN+SN. While not stabilizing the gradients, the RSL aligns the spectra
of the source and target and therefore has increased performance compared to
CDAN. Finally, combining RSL, SN, and CDAN (named as ASAN) leads to the
best results because it combines the advantages of the just discussed techniques:
the feature extractor receives stable gradients from the discriminator while the
spectra are aligned.

Table 1: Result of the Ablation study as mean prediction accuracy with stan-
dard deviation on the Office-31 dataset over three random runs.

Dataset | AW  D-W WD A-D DSA WA [Avg,
CDAN 93.1£0.2 98.240.2 10040 89.8+0.3 70.1+0.4 68.0+0.4[86.6
CDAN + SN 95.340.2 98.940.1  100+0 94.7+0.3 72.6+0.2 71.7+0.2|88.9
CDAN + RSL 95.14£0.0 99.140.0 100.0+0.0 93.0+0.0 73.8+0.0 73.2+0.0|89.0

ASAN (CDAN+RSL+SN)|95.6+0.4 98.840.2 100+0 94.4+0.9 74.74+0.3 74.0+0.9/90.0

4 Hyperparameter Tuning and Behavior

The influence in the prediction performance of ASANs only hyperparameter k
over four datasets is shown in Fig. 2.

As already introduced in the main paper, k specifies the smallest source
singular values group size, which are shrunk during learning. Again, because we
inspect the smallest part of the source spectrum, the tuning of this parameter
is different from common hyperparameter tuning: First, we define a range of
spectral indices that we define as small, e.g., the smallest 20 singular values. Next,
the hyperparameter is optimized via random search [6] in the domain adaptation
setting [7], and finally, based on the best result, k is chosen accordingly. Note
that all results in the main and supplementary paper are based on the tuning
on the Office-31 dataset A—B.

We can report that the best value is k = 11, and as the plot indicates,
minimizing the smallest parts of the spectra almost every time leads to better
results. At Art vs Clipart the effect is significant, with a performance boost of
over 20%. Our results confirm the results of [3] that the smallest part of the
source spectrum contains domain-specific information and is at risk of harming
the adaptation process.
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Fig.2: Influence of the Hyperparameter k£ on the prediction performance of
ASAN in accuracy with the best mean performance at k& = 11. Best viewed
on a computer display.

5 Additional Experimental Results on VisDa

This section introduces the VisDa dataset [1] and discusses the performance
results of ASAN compared to other networks.

The VisDa [1] dataset is one of the largest domain adaptation benchmark
datasets with over 280k images divided into the three subcategories training,
validation and testing. The task is to train on 152,397 synthetic images and
validate the obtained network on 55,388 real images. Both training and validation
datasets consist of twelve classes with a minimum of approximately 6k examples
and a maximum of approximately 16k class examples in the training domain.
Some selected sample images are shown in Tab. 6 in Sec. 8.

The shown results are obtained using the same experimental setup as in the
main paper (see Sec. 4 in main paper for details) and shown in Tab. 2. While

Table 2: Mean prediction accuracy with standard deviation on the VisDa
dataset over three random runs. Results separated by baseline network ResNet-
50 and ResNet-101 .

Method Dataset Method Dataset
(ResNet-50)  Synthetic — Real|(ResNet-101) Synthetic — Real
CDAN [8] 70.0 CDAN [8] 73.7
TAT [9] 71.9 BSP [3] 75.9
TransNorm [10] 71.6 SAFN [11] 76.1

ASAN 74.0 ASAN 4.7
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using the ResNet-50 baseline, we can obtain very competitive results and very
good performance improvement to the CDAN-baseline.

However, using ResNet-101, we are not able to report such an improvement in
performance. There are two main reasons for this: first, the shrinkage parameter
k is optimized using real images and discards domain specific information given
on rich, detailed images. However, this richness is not present in synthetic images
and leads to a drastic reduction of domain-specific information. Second, the
parameter is optimized on the ResNet-50 bottleneck space while used in ResNet-
101 with a different bottleneck space composition. Therefore, the occurrence
of domain-specific in the source spectrum is different, which leads to a wrong
application of the shrinkage mechanism. In future work, the k& parameter will be
optimized on the ResNet-101 network.

6 Additional Results of Convergence and Spectral
Analysis

This sections present an additional analysis of convergence and spectral prop-
erties of the ASAN network against related methods. The data is obtained by
learning and evaluating on P—1I from the Image-Clef dataset.

The plot in Fig. 3a shows the performance of the proposed Relevance Spectral
Loss (RSL) against BSP [3]. As in the main paper, we rely on the A-Distance
[12,13] for the quality analysis of the invariant representation. The A-Distance
is defined as A = 2(2 — 1¢), where ¢ is the error of the trained domain classifier.
The results confirm the results presented in the main proposal: the A-Distance
trend of ASAN (brown) is overall lower in value as the trend of BSP [3] (pur-
ple), allowing the statement that ASAN learns a better invariant representation
faster than BSP [3]. The fluctuation around both trend lines, green for ASAN
and orange for BSP [3], confirms this statement by having a spread generally
oriented to lower A-Distance values compared to BSP [3]. Additionally, the RSL
is effectively reduced by ASAN during learning. This confirms that the similarity
of spectra of both domains in the bottleneck space F are aligned, which is the
reason for a better invariant representation of ASAN. Note that by the defini-
tion of the A-Distance, negative values are possible [12,13], indicating that the
domain classifier has a lower performance than random guessing favorable for
domain adaptation, because the source and target domain data are completely
indistinguishable for the domain classifier.

The stability properties of the proposed ASAN in the main paper are also
confirmed given different datasets. The plot is presented in Fig. 3b and shows
that ASAN has the best overall accuracy. Further, the plots show that ASANs
crucial advantage, besides the performance, is the convergence in an optimum,
providing higher performance in accuracy than others. Once achieved, the op-
timum does not change afterward, while BSP [3], CDAN [4], and DANN [2]
are fluctuating during the continuous learning process and, in the worse case,
descend in performance.
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The plot in Fig. 3c shows that our proposed RSL transfer-loss is substantially
responsible for achieving high accuracy. Simultaneously, Spectral Normalization
[14] supports the adaptation process via stability during training as the ASAN
and ASAN w/o (without Spectral Normalization [14]) showing similar overall
learning. The ASAN w/o achieves similar accuracy from an early stopping per-
spective. However, the Spectral Normalization [14] process within ASAN stabi-
lizes the network in a high optimum. The combination is leading to the overall
best prediction performance. The latter can again be confirmed by comparing
the accuracy of Fig. 3b and Fig. 3c and in the experiments section of the main
paper, where ASAN performs considerably better than SDAN [15]. SDAN con-
sists of the same base-network and Spectral Normalization [14] without further
spectral alignments necessary for rich domain adaptation, as presented with our
ASAN model.

12 Spread RSL 0.92 r
) —— Trend RSL 0.8
1.0 Spread A-Dist. BSP 0.90
08 —— Trend A-Dist. BSP 06 ~— ASAN w/o SN Test Acc.
Spread A-Dist. ASAN — ASAN Test Acc
06 —— Trend A-Dist. AsaN | 0-88 Spread ASAN w/o SN train loss
04 | 04 —— Trend ASAN w/o SN train loss
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0.2 [ —— CDAN —=— Trend ASAN train loss
0.0 0.84 DANN | 02
—— BSP
0.2 0821 | —— ASAN | o0 w
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No. Iterations No. Iterations No. Iterations
(a) A-Distance & RSL (b) Target Acc. (c) Source loss & Test Acc.

Fig. 3: Learning process of our ASAN compared to related networks over time
given P—T images from Image-Clef dataset. Best viewed on computer display.

7 Additional Results of Feature Analysis

This sections presents an additional analysis of feature properties of the ASAN
network against related methods. The data is obtain by learning and evaluating
on P—I from the Image-Clef dataset.

The result is presented in Fig. 4 and is split into two parts: the top row
(Fig. 4a - 4c) is a scatter plot of the bottleneck features of trained DANN [2],
CDAN [4], and our ASAN colored with ground truth domain labels. Blue shows
the source, and red shows the target domain. ASAN shows the superiority of
creating a domain invariant representation by learning more compact clusters
and observable separates the obtained clusters better compared to DANN [2]
and CDAN [4]. The bottom row (Fig. 4d - 4f) shows the same representation
but with classification labels. Due to dense and separated clusters, the obtained
representation is easily classified by a neural network. However, again, the main
proposals limitation also takes part in the plot, but is the same for DANN [2]
and CDAN [4]. The limitation is the lack of approximating the joint distribution



Supplementary Material: Adversarial Spectral Adaptation Networks 7

of labels and features, leading to some samples assigned to the wrong cluster.
See the main manuscript for a detailed discussion. Nevertheless, this effect is
much weaker with ASAN than with CDAN [4] and DANN [2].

(d) DANN, (e) CDAN, (f) ASAN,

Fig.4: T-SNE [16] of bottleneck features of selected networks given P—1I images
from the Image-Clef dataset. <Name>; and <Name>. show the outputs with
ground truth domain and classification labels respectively. For the first row, blue
shows the source, and red shows the target domain. Best viewed in color.

8 Examples from Benchmark Datasets

To provide an overview of the dataset characteristics and their differences among
each other, we present some selected examples of the datasets Office-31 [5] in
Tab. 3, Image-Clef in Tab. 4, Office-Home [17] in Tab. 5 and VisDa [1] in Tab.
6. With this, the focus of the sampling process lies in showing the difficulties
between the dataset domains.

Intuitively, it is easy to see that the Office-31 [5] dataset is the easiest one
among all four datasets. This is also confirmed in the experiments section of
the main proposal. While Office-31 [5] contains objects from different angles
and light settings, it is still observable that these images belong to the same
class. The Image-Clef dataset is more complicated. However, the algorithms still
show a consistently good performance. We assume that the main reason for the
good performance is that the photographs are still made in some sense in the
real world. However, when it comes to Office-Home [17], we observe that some
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Table 3: Example images from the Office-31 [5] datasets. The objects shown
capture the domain shift via difficult examples. Row caption is class name and

column caption is domain name.
dadaeps
Back Pack
- D ’ - 3 "N .
... soabso il N
Bikes

Desk Lamp 7 £

Amazon (A) DSLR (D)

Table 4: Example images from the Image-Clef datasets. The objects shown cap-
ture the domain shift via difficult examples. Row caption is class name and

column caption is domain name.
Airplanes '
; A w . i

A i, - ~ ¢ e
Birds “

Caltech-256 (C) | PAS-CALVOC2012 (P) [ImageNet ILSVRC2012 (T)

domains like Art show drastic changes in the appearances (style and presenta-
tion) of the images to the domain Real-World. Also, in comparison to Product,
there are partially some broad domain shifts, which is the overall reason why
all tested algorithms have worse performance on Office-Home [17] in compari-
son to Office-31 [5] and Image-Clef. On the other hand, the VisDa [1] dataset
creates an entirely different scenario because the objects in the train images are
entirely synthetic, while the validation dataset contains real images with partly
non-trivial representations of an object. However, due to the small class size and
large sample size, the networks are usually better on VisDa [1] as on Office-Home
[17].
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Table 5: Example images from the Office-Home [17] datasets. The objects shown
capture the domain shift via difficult examples. Row caption is class name and
column caption is domain name.
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Table 6: Example images from the VisDa [1] datasets. The objects shown capture
the domain shift via difficult examples. Row caption is class name and column

caption is domain name.
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