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1 Overview

Earlier works [1] have shown the usefulness of both Aleatoric and Epistemic Un-
certainty estimates for various Computer Vision tasks. In the main paper, we
presented our CTN architecture for estimating aleatoric uncertainty pertaining
to crowd density prediction. In Sec. 2 in the Supplementary, we present Monte
Carlo CTN(MC-CTN), our architecture for estimating epistemic uncertainty.
Subsequently in Sec. 3, we compare epistemic and aleatoric uncertainty esti-
mates, and show that aleatoric uncertainty is more correlated with the prediction
error. In the main paper, we focused on using aleatoric uncertainty estimates for
sample selection since our preliminary experiments showed Aleatoric uncertainty
to be more effective at sample selection compared with epistemic uncertainty.

In the main paper, we pointed out that our sampling strategy can be used
for picking out images from a large pool of unlabeled images, and it can also be
used to pick out informative crops from an image. Depending on the annotation
budget, it might be useful to get partial annotations for an image by picking
out informative crops from an image and getting human annotations for the
informative crops rather than annotating the entire image. The experiments on
image level sample selection are discussed in the main paper. In Sec. 4 of the
supplementary material, we present experiments pertaining to selecting most
informative crops from an image for human annotation.

Finally, for image level sample selection, in addition to experiments per-
formed on Shanghaitech Part A [2] and NWPU [3] datasets as shown in the
main paper, we present more experiments on Shanghaitech Part B in Sec. 5.

2 Epistemic Uncertainty Estimation

The CTN architecture described in the main paper captures the aleatoric un-
certainty, i.e., the uncertainty inherent in the input data. In this section, we
present a variant of CTN which can capture the model uncertainty, which is
also known as Epistemic Uncertainty and arises due to the use of finite training
data. Epistemic uncertainty, can be captured by Bayesian Neural Networks [4].
Such networks assume a prior distribution P(6) over the parameters of the net-
work, and find the posterior probability P(6|{X,Y}) conditioned on the train-
ing data {X,Y}. However, it is computationally expensive to perform inference
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Fig. 1: The sparsification plots for aleatoric (left) and epistemic (right) uncer-
tainty estimation on the test set of Shanghaitech Part A. The closer the uncer-
tainty curve to the oracle, the higher the correlation between the uncertainty and
prediction error. The area between the uncertainty curve and the oracle curve
for the two cases is 0.07 and 0.25. The aleatoric uncertainty is more correlated
with the prediction error.

with Bayesian Neural Networks with large number of parameters. To address
this issue, [5] present a variational approximation which corresponds to adding
a dropout [6] layer before every weight layer. The uncertainty in such a network
can be obtained by doing multiple forward passes of the input image through the
network, and computing the sample mean as the prediction output. The sample
variance is the epistemic uncertainty of the prediction. This approach requires
running the network multiple times with different dropout instantiations, so we
will refer to it as Monte Carlo Uncertainty.

We will refer to a counting network where Predictive Uncertainty is replaced
by Monte Carlo Uncertainty as Monte Carlo CTN (MC-CTN). MC-CTN is
similar to CTN presented in the main paper with two major differences: 1) we
remove the Predictive Uncertainty Estimation branch, and 2) we add a dropout
layer before every convolution layer except for the ones in density prediction
branch.

Performance of MC-CTN on Crowd Counting MC-CTN led to MAE/RMSE
of 102/180 on UCF-QNRF dataset. CTN, as reported in the main paper, out-
performs MC-CTN and results in MAE/RMSE of 86/146.

3 Comparing Aleatoric and Epistemic Uncertainties

Sparsification plots provide a way to ascertain whether the uncertainty estimate
is correlated with the prediction error [7]. Such plots are obtained by removing
pixels with the highest uncertainty and measuring the error for the remaining
pixels. If the predicted uncertainty is correlated with the error, the overall error
should monotonically decrease as we remove more uncertainty pixels. We show
the sparsification plots for the Aleatoric and Epistemic uncertainty estimates
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Shtech Part A

Selection approach #Crops MAE RMSE
None (Pretrained) NA 69.2 113.5
Random lof16 68.6 113.5
Count lof16 68.2 113.9
Aleatoric Uncertainty lof 16 65.7 103.5
Density based Ensemble Disagre. lof16 664 1124
KL-Ensemble Disagreement lof16 66.4 109.7

Full dataset (previous best method) full image 62.8 99.4
Full dataset (CTN) full image 61.5 103.4

Table 1: Comparing different strategies for selecting informative crops
from an image for annotation. We train the network on the UCF-QNRF
dataset, and use it to select informative crops Shanghaitech Part A train data
for acquiring annotation. The selected crops are used to adapt the network to
the target domain. We compare the random selection and Count based sample
selection baselines with the proposed uncertainty-guided selection strategies. For
the experiment, each image is divided into 16 crops and a single crop from each
image is chosen for annotation. We compute the informativeness score for all 16
crops, and pick out the crop with the highest score. For the random baseline,
we pick out a crop at random from each image. For the count baseline, we pick
out the crop with the highest count. Our proposed sample selection strategies
outperforms the random selection and count based selection baselines.

in Fig. 1. The optimal uncertainty estimate, would be perfectly correlated with
the error, and the characteristic curve for the best possible uncertainty estimate
can be obtained by dropping pixels with the highest errors first. We refer to
this curve as Oracle in Fig. 1, and the closer the uncertainty sparsification curve
to the Oracle curve, the better. The area between the sparsification curve and
the oracle curve for the Aleatoric and Epistemic uncertainty estimations are 0.07
and 0.25, respectively. This shows that the prediction error has higher correlation
with the aleatoric uncertainty estimation than the epistemic uncertainty estima-
tion. Similar evaluation strategies have been used for evaluating the uncertainty
estimates pertaining to optical flow estimation [7].

4 Crop-level Sample Selection

In the main paper, we pointed out that our sampling strategy can be used for
picking out images from a large pool of unlabeled images, and it can also be
used to pick out informative crops from an image. Depending on the annotation
budget, it might be useful to get partial annotations for an image by picking
out informative crops from an image and getting human annotations for the
informative crops rather than annotating the entire image. The experiments on
image level sample selection are discussed in the main paper. In Tab. 1, we
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present experiments pertaining to selecting informative crops from an image
for human annotation. For the experiment, each image is divided into 16 non-
overlapping crops and a single crop from each image is chosen for annotation. We
compute the informativeness score for all 16 crops, and pick out the crop with
the highest score. The informativeness score of crops are computed using the
three sample selection strategies proposed in the main paper. We compare our
proposed approach with two baselines: random crop selection and count based
crop selection. For the random baseline, we pick out a crop at random from
each image. For the count baseline, we pick out the crop with the highest count.
Our proposed sample selection strategies outperforms the random selection and
count selection baselines.

5 Image-level Sample Selection on Shanghaitech Part B

In the main paper, we presented image level sample selection experiments on
Shanghaitech Part A [2] and NWPU [3] datasets. In Tab. 2, we present image
level sample selection experiments on Shanghaitech Part B.

Shtech Part B

Selection approach #Train MAE RMSE
None (Pretrained) NA 132 21.7
Random 50 9.4 16.6
Count 50 8.9 15.1
Aleatoric Uncertainty 50 8.7 143
Density based Ensemble Disagr. 50 8.5 13.6
KL-Ensemble Disagreement 50 8.8 154
Random 100 9.1 151
Count 100 8.0 135
Aleatoric Uncertainty 100 8.8 15.0
Density based Ensemble Disagreement 100 8.5 145
KL-Ensemble Disagreement 100 8.5 13.7
Full dataset (previous best method) [8] 400 7.6 11.8
Full dataset (CTN) 400 7.5 119

Table 2: Comparing different strategies for selecting images for anno-
tation on Shanghaitech Part B dataset We train the network on the UCF-
QNRF dataset, and use it to select images from the Shanghaitech Part B train
data for acquiring annotation. We compare the random selection baseline with
the proposed uncertainty-guided selection strategy. Our sample selection strate-
gies outperform the two baselines when 50 images are sampled, and outperforms
the random baseline when sampling 100 images.
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