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A Derivation of the Loss Function and its Gradients
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Plugging Eq.5 into Eq.4
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2λ2

)
(6)
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2λ2

)

= πλ2
∑
i

p̂i exp

(
−
(x̂i − x̂k)2 + (ŷi − ŷk)2

2λ2

)

− πλ2
∑
j

exp

(
−
(x̂k − xj)2 + (ŷk − yj)2
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Derivative by x̂k
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B Importance of Counting Regularization

In this section, we introduce a few examples that further illustrate the usefulness
of counting regularization.

B.1 Prediction Sparsity

Let us consider a unique object in 1-dimension at location (x) and two point
predictions (x, p̂0) and (x, p̂1).

Without Regularization In this scenario,

LHM(Pθ,L) ∝ 1 + 2p̂0p̂1 + p̂2
0 + p̂2

1 − 2p̂0 − 2p̂1

= (p̂0 + p̂1 − 1)2.
(9)

Thus, the loss function is minimized when

p̂0 + p̂1 = 1. (10)

This result is trivial when considering that the loss is the integrated squared
difference between sums of Gaussians. However, it confirms that all combinations
of p̂0 and p̂1 that satisfy this condition are stable solutions to the optimization
problem.



Learning Multi-Instance Sub-pixel Point Localization 5

0.0 0.2 0.4 0.6 0.8 1.0
p1

0.0

0.2

0.4

0.6

0.8

1.0

p 2

Without regularization

0.0 0.2 0.4 0.6 0.8 1.0
p1

0.0

0.2

0.4

0.6

0.8

1.0

p 2

With regularization

Fig. 1: Gradients of the loss with respect to probability estimates when we consider
a unique object at location (x) and two point predictions (x, p̂0) and (x, p̂1).

With Regularization In contrast, when adding the counting regularization
the loss function is proportional to

L ∝ (p̂0 + p̂1 − 1)2 − β log (p̂0(1− p̂1) + p̂1(1− p̂0))︸ ︷︷ ︸
LMC

.
(11)

Fig. 1 shows the value of the gradients of the loss function (with and without
regularization) with respect to probability estimates p̂0 and p̂1. This confirms that,
without regularization, the optimization problem can have as a stable solution any
combination of p̂0 and p̂1 which satisfies p̂0 + p̂1 = 1. In contrast, with counting
regularization, it can be observed that—depending on the starting point—the
only two stable solutions to the optimization problem are (p̂0, p̂1) = (1, 0) and
(p̂0, p̂1) = (0, 1). While there is a saddle point at (p̂0, p̂1) = (1/2, 1/2), this
solution is highly unstable and any deviation from that middle point will cause
the predictions to converge towards one of the true minima.

While the situation becomes increasingly more complex as the number of
predictions increases, the main ideas and results remain identical. Overall, the
counting regularization acts as a means to achieve prediction sparsity—a useful
feature in practical applications as it alleviates the need for additional heuristics
to obtain precise point localization.

B.2 Faster Location Convergence

In this section, let us once again consider a unique object in 1-dimension at
location (x), but this time the two point predictions are (x̂1 = x−∆, p̂) and
(x̂2 = x+∆, p̂).

Without Regularization In this case, the optimal probability estimate p̂ is
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With Regularization Similarly, the optimal probability estimate p̂ is
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The location gradient, assuming p̂ = p̂opt, is

∂

∂x̂2
LHM(Pθ,L) = p̂optπ exp

(
− ∆

2

2λ2

)
(∆)− p̂2

optπ exp

(
−4∆2

2λ2
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(2∆) . (14)
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Fig. 2: Location gradient

Fig. 2 displays the location gradient
as a function of ∆ for λ = 1, assum-
ing that p̂ is set optimally. It can be
observed that the gradient gets larger
as the counting regularization is in-
creased. Thus, in this scenario, the reg-
ularization acts as a means for faster
convergence of the location predictions
towards the true object location.

While this effect is hard to quan-
tify in higher dimensions (i.e., more
than two point predictions), the count-
ing regularization is still expected to
improve location convergence in more
complex settings.



Learning Multi-Instance Sub-pixel Point Localization 7

Table 1: Single molecule localization microscopy λ-sensitivity analysis based on
the experiment proposed in [8]. The Jaccard index [and F1 score] are computed
with the software from [10]. The setting λ = 0.2 is the one reported—without
any hyperparameter optimization—as Ours in the main text (see →→).

.

Method

Deep-Storm [8]
Upsampling
Refinement

Ours (λ = 0.1)
Ours (λ = 0.2)
Ours (λ = 0.3)
Ours (λ = 0.4)
Ours (λ = 0.5)
Ours (λ = 0.6)
Ours (λ = 0.7)
Ours (λ = 0.8)

Jaccard Index [F1]

τ = 25nm τ = 50nm

0.153 [0.266] 0.416 [0.588]

0.171 [0.292] 0.448 [0.618]

0.195 [0.326] 0.448 [0.619]

0.219 [0.359] 0.464 [0.634]

0.234 [0.379] 0.517 [0.681]

0.233 [0.378] 0.519 [0.678]

0.229 [0.373] 0.519 [0.684]

0.226 [0.368] 0.524 [0.687]

0.234 [0.379] 0.531 [0.694]
0.235 [0.381] 0.528 [0.691]

0.234 [0.379] 0.526 [0.690]

C Molecule Localization Microscopy Experiment

The architectures used for the experiments are depicted in Fig. 3.

C.1 Results Sensitivity to Smoothing Parameter λ

In order to assess the sensitivity of the results to changes in the model softness
parameter λ, we replicate the single molecule localization microscopy experi-
ments with a wide array of potential λ values. The results—reported in Ta-
ble 1—highlight the remarkable robustness of the model to changes in this key
hyperparameter. Indeed, the model achieves extremely consistent results with
near constant performance metrics for λ between 0.2 and 0.8. Thus, the model’s
success is almost independent of the value of this hyperparameter.

→→

D Checkerboard Corner Detection Experiment

D.1 Additional Results

Additional experiments have been conducted for the checkerboard corner local-
ization experiment.
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Fig. 3: Model Architecture for the Molecule Localization Microscopy Experiments.
Since our approach can directly operate on the original image resolution, its model
architecture does not need to include any downsampling—nor upsampling—layer
to learn meaningful representations—-in contrast to Nehme et al. [8] and the
Upsampling benchmark.
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Table 2: Corner localization performance on our synthetic test set. The mean-
absolute deviation (MAD) from ground-truth (in units of original pixel size) as
well as precision, recall, and F1-scores (with a tolerance of 3 pixels) are reported.

Methods

C
la

ss
ic OCamCalib [11]

Rochade [9]
OpenCV [2]
MATLAB [5]

L
ea

rn
. DL-Heatmap (sim. [4, 3])

+ Refinement (sim. [6])

OURS

MAD (px)

0.362
0.147
0.137
0.086

0.488
0.130

0.105

Recall Precision F1

97.0 99.8 98.4
59.1 99.9 74.3
45.6 89.5 60.4
65.8 96.4 78.2

98.1 99.7 98.9
98.1 99.7 98.9

99.3 99.9 99.6

Experiment: sub-pixel accuracy on synthetic test data To evaluate the
absolute sub-pixel accuracy of our method, we test it on a synthetic test dataset
generated analogously to the training dataset described in the main text. (Ap-
pendix D.3 illustrates the variety of the data generated.) The exact ground-truth
corner locations are thus known by construction. For all benchmarks, 1000 syn-
thetic images are used for testing. The results are summarized in Table 2. Overall,
our method consistently outperforms state-of-the-art algorithms both in terms
of absolute spatial precision — with typical errors in the order of ≈1/10th of
a pixel — as well as in terms of detection rates. Especially noteworthy is the
fact that the excellent spatial precision of our approach is not a result of a low
recall rate. In contrast, the lower recall values achieved by other methods, show
that they often fail to detect challenging corners (due to distortions, noise, low
contrast), and hence only the most easily detectable ones are taken into account
when computing the spatial error for these methods. For instance, the remarkable
mean absolute error of 0.086 pixels achieved by MATLAB [5] results from only
65.8% of the corners it was able to detect in the first place. Finally, our method
does not require additional information about the grid structure of the calibration
board and its size—in contrast to [2, 9, 11] which leverage this information to
refine the predictions.

Further, we note that the above state-of-the-art methods, with the exception
of deep learning-based ones, rely on traditional image processing techniques that
have been hand-crafted specifically for this task. Hence, they do not generalize
well to other applications. In contrast, we hypothesize that our approach can be
straightforwardly applied to any sub-pixel localization task, such as the accurate
analysis of medical images.

Finally, in terms of inference efficiency, our point prediction approach is
significantly faster (3.43 images/second on a 4.3 GHz CPU, and 100+ with an
NVidia TitanXp GPU) than OpenCV (2.04 images/s), the saddle point-based
ROCHADE (1.10 images/s), and the heatmap-based approach (1.15 images/s)
which is slowed down by the corner-refinement step and the lack of spatial
downsampling.
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Table 3: Full results of localization performance in low-resolution settings on
the GoPro dataset [9]. Consistency: mean-absolute displacement (and the 90th
quantile) between predictions on high and low-resolution images downsampled
by δ. Reprojection Error: corresponding errors in corner reprojection [and the
number of fully detected boards]. In units of original pixel size.

.

Methods

C
la

ss
ic OCamCalib [11]

Rochade [9]
OpenCV [2]
MATLAB [5]

L
ea

rn
. DL-Heatmap (sim. [4, 3])

+ Refinement (sim. [6])

OURS

Consistency

δ = 2 4 6

0.660 (1.12) 1.389 (2.50) 1.989 (3.61)

0.380 (0.67) 0.467 (0.81) 1.125 (2.07)

0.111 (0.20) 0.179 (0.31) 0.336 (0.50)

0.129 (0.20) 0.198 (0.32) 0.314 (0.50)

0.900 (1.41) 1.629 (2.24) 2.395 (3.61)

0.153 (0.28) 0.279 (0.50) 0.428 (0.76)

0.133 (0.24) 0.244 (0.43) 0.378 (0.66)

.

Methods

C
la

ss
ic OCamCalib [11]

Rochade [9]
OpenCV [2]
MATLAB [5]

L
ea

rn
. DL-Heatmap (sim. [4, 3])

+ Refinement (sim. [6])

OURS

Reprojection Error

δ = 2 4 6

0.107 [100] 0.390 [73] [18]

0.085 [100] 0.321 [100] 1.716 [71]

0.045 [100] 0.256 [98] 0.994 [73]

0.045 [99] 0.205 [100] 0.325 [100]

0.146 [100] 0.363 [100] 0.797 [77]

0.054 [100] 0.336 [100] 0.531 [100]

0.046 [100] 0.198 [82] 0.417 [100]

Additional Results for experiments in main text In the main text, only
the lowest downsampling factors δ have been presented. Therefore, for the sake
of completeness, Table 4 and Table 3 show the results of the corner detection
experiments for several other downsampling factors δ (i.e., higher resolution
inputs).

Our method displays strong overall results for all downsampling levels and
outperforms the other deep learning benchmarks on almost all measures. More
precisely, on the GoPro dataset, it achieves state-of-the-art reprojection errors
on lower-resolution settings, while being competitive on higher-resolution inputs.
In terms of detection consistency across resolutions, our approach is only outper-
formed by the OpenCV [2] and MATLAB [5] implementation. However, while
OpenCV performs slightly better on the consistency measure, its relatively high
number of false positives and false negatives have a clear impact on its camera
calibration performance (i.e., reprojection error). Overall, our approach appears
to be extremely suitable for high precision calibration in low-resolution settings.
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Table 4: Full results of localization performance in low-resolution settings on
the uEye dataset [9]. Consistency: mean-absolute displacement (and the 90th
quantile) between predictions on high and low-resolution images downsampled
by δ. Reprojection Error: corresponding errors in corner reprojection [and the
number of fully detected boards]. In units of original pixel size

.

Methods

C
la

ss
ic OCamCalib [11]

Rochade [9]
OpenCV [2]
MATLAB [5]

L
ea

rn
. DL-Heatmap (sim. [4, 3])

+ Refinement (sim. [6])

OURS

Consistency

δ = 2 4

0.783 (1.58) 1.447 (2.92)

0.176 (0.29) 0.587 (1.05)

0.126 (0.21) 0.889 (2.66)

0.090 (0.15) 0.174 (0.29)

0.955 (1.41) 1.666 (2.24)

0.077 (0.14) 0.562 (1.20)

0.134 (0.23) 0.348 (0.64)

Reprojection Error

δ = 2 4

0.129 [200] 0.197 [114]

0.057 [206] 0.107 [197]

0.057 [197] [0]

0.048 [206] 0.059 [204]

0.126 [206] 0.230 [175]

0.052 [206] 0.086 [162]

0.055 [200] 0.073 [187]

D.2 Regularization Ablation Study

As done in the main text for the single molecule localization microscopy experi-
ment, we perform an ablation study to measure the impact of the counting-based
regularization on the performance of the checkerboard corner detection model.
The results—summarized in Tables 5 and 6—are in line with the findings of the
single molecule localization microscopy experiment. Indeed, adding the counting
loss as a regularizer to the soft localization learning loss consistently improves the
performance of the trained model. For instance, there is only one metric on which
the approach without regularization outperforms its regularized counterpart
(i.e., reprojection error on the GoPro dataset with downsampling factor δ = 4).
However, this unique favourable outcome for the approach without regularization

Table 5: Regularization ablation study for the experiment on the GoPro dataset [9].
Consistency: mean-absolute displacement (and the 90th quantile) between predic-
tions on high and low-resolution images downsampled by δ. Reprojection Error:
corresponding errors in corner reprojection [and the number of fully detected
boards]. In units of original pixel size

.

Methods

Without Count Regularization
With Count Regularization

Consistency

δ = 2 4 6

0.199 (0.37) 0.369 (0.66) 0.562 (0.99)

0.133 (0.24) 0.244 (0.43) 0.378 (0.66)

.

Methods

Without Count Regularization
With Count Regularization

Reprojection Error

δ = 2 4 6

0.052 [100] 0.172 [48] 0.460 [100]

0.046 [100] 0.198 [82] 0.417 [100]
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is merely due to the much lower recall it reports; indeed, the metric is thus com-
puted on the easiest samples only which positively biases the outcome. Overall,
counting-based regularization undoubtedly improves the learning of sub-pixel
point localization.

Table 6: Regularization ablation study for the the uEye dataset [9]. Consistency:
mean-absolute displacement (and the 90th quantile) between predictions on high
and low-resolution images downsampled by δ. Reprojection Error: corresponding
errors in corner reprojection [and the number of fully detected boards]. In units
of original pixel size.

.

Methods

Without Count Regularization
With Count Regularization

Consistency

δ = 2 4

0.192 (0.36) 0.501 (0.90)

0.134 (0.23) 0.348 (0.64)

Reprojection Error

δ = 2 4

0.059 [148] 0.085 [137]

0.055 [200] 0.073 [187]

D.3 Synthetic Dataset

The codes for the generation of the synthetic checkerboard dataset are provided1

(c.f. create_dataset.py).

(6x6) board (6x5) board (3x3) board

Fig. 5: Initial checkerboard of various size, shape and coloration

Overall, initial checkerboards are first generated by randomly sampling their
size, shape, and coloration (see Fig. 5). Then, some of these checkerboards are
projected onto textures such as wood, paper, and stone (see the first row of
Fig. 4). Finally, between one and eight (sampled uniformly at random) of the
following eight transformations are applied to these checkerboards: blurring,
lighting, sharpening, contrast change, scaling, distortion, perspective transform,
1 https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization
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Stone Texture Wood Texture Paper Texture

Distortion Perspective Rotation

Fig. 4: Examples of transformations applied to the initial checkerboard images

and rotation (see Fig. 4 for examples). All of these transformations have hyper-
parameters that are also sampled at random, such as the level of distortion or
the angle of the rotation.

While this process allows for a rich variety of checkerboards to be generated
(see Fig. 6), most importantly it allows to track the location of the corners
with high levels of precision. Indeed, spatial transformations (e.g., rotation and
perspective transform) can be applied to both checkerboard images and corner
locations without any significant approximation. Thus, we are able to leverage
these precise labels as the ground truth to train our sub-pixel precision model.
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Fig. 6: Example checkerboard training images from our synthetic dataset

E Golf Swing Event Localization Experiment

E.1 Ablation Study

Table 7 reveals that the counting regularization consistently improves the detec-
tion performance of our model on the golf swing event sequencing experiment.
Indeed, training with this regularizer yields at least a 1% improvement in accuracy
on all decimation levels, when compared to the results obtained when training
with LHM alone.

E.2 Additional Results

Table 5 (in the main text) reports the mean golf swing event detection accuracy
over all event classes, i.e. address (A), toe-up (TU), mid-backswing (MB), top (T),
mid-downswing (MD), impact (I), mid-follow-through (MFT), and finish (F) [7].
However, each of these classes differs drastically from one another, especially in
terms of temporal ambiguity and detection difficulty. Therefore, in order to assess
whether the performance improvement achieved by our model can be attributed
to a few event classes only or whether the improvement is consistent across all
classes, we provide a detailed report of per class detection accuracy in Table 8.

Overall, our method displays consistent improvement on most event classes
and decimation rates. (Given the relatively moderate size of the testing splits and

Table 7: Ablation study. Golf swing event detection accuracy (within a ±1 frame
tolerance) as a function of decimation factor δ. Averages and standard deviations
(in brackets) are reported over 4 folds. The architecture is from [7]

Loss

Ours (LHM+LMC)
Ours (LHM only)

Diff.

δ = 1 frame 2 frames 4 frames 8 frames 16 frames

70.9 (1.4) 70.4 (1.2) 70.7 (1.3) 69.8 (1.4) 60.6 (1.6)

69.7 (1.9) 69.3 (1.8) 69.7 (1.0) 68.0 (1.6) 59.3 (0.8)

+1.2 +1.1 +1.0 +1.8 +1.6
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the stochastic nature of the learning process, a few outliers are to be expected.)
Our approach not only improves the detection accuracy of temporally ambiguous
events (e.g., A and F) but also pushes further the detection capabilities on more
easily detectable classes (e.g., MD and MFT).

Table 8: Golf swing event detection accuracy (within a ±1 frame tolerance) per
class as a function of decimation factor δ. Averages are reported over 4 folds. The
architecture is from [7]

Loss

A

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

TU

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

MB

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

T

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

MD

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

I

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

MFT

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

F

Naïve upsampling
Frame interpolation [1]
Dense classification

Ours

δ = 1 frame 2 frames 4 frames 8 frames 16 frames

18.2 18.4 20.9 22.1 20.5
" 19.4 23.1 19.0 15.6
" 19.7 22.9 21.3 21.2

23.9 24.6 23.4 25.1 22.4

79.0 80.5 68.7 47.7 28.1
" 73.3 71.2 60.2 42.5
" 81.8 78.8 75.6 63.1

80.1 77.9 79.0 76.5 69.6

81.3 83.7 68.9 46.6 30.4
" 82.3 78.6 66.3 44.2
" 82.9 84.4 78.6 63.6

86.6 86.4 84.3 81.9 68.8

62.3 62.8 60.6 43.1 25.1
" 64.5 64.6 62.4 45.3
" 69.4 72.8 69.3 67.4

70.4 70.5 75.7 78.0 70.5

95.7 95.3 83.9 52.0 30.3
" 95.1 94.0 85.8 58.6
" 96.3 94.9 89.1 77.8

96.2 92.9 95.0 90.4 75.7

94.7 94.6 80.4 57.8 14.1
" 94.7 93.5 88.8 60.2
" 96.3 94.6 91.2 79.3

95.3 96.1 94.6 92.1 80.4

94.4 94.6 80.6 71.5 31.6
" 92.9 92.0 84.6 55.4
" 94.8 92.9 87.2 75.8

94.9 94.3 93.3 91.3 77.7

15.9 17.8 15.9 15.8 10.8
" 17.1 20.1 16.9 13.8
" 15.8 18.1 18.4 14.4

20.0 20.2 20.4 20.9 21.5
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