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A Mathematical Proof

In the following, we provide a detailed version of the mathematical proof dis-
cussed in Section 4.1. The goal is to find smoothed step functions hf and hb that
ensure that the likelihood follows a Gaussian distribution. For this, we first state
our assumptions and simplify the likelihood function. The first-order derivative
of the log-likelihood is then calculated to eliminate constant scaling terms and
find a concise expression. Finally, we enforce that the first-order derivative of
the logarithm of the likelihood has to be equal to that of a normal distribution.
As a result, we obtain the required smoothed step functions and the proof that
with those functions the likelihood follows a Gaussian distribution.

For the proof, we start from the likelihood function that was derived in
Section 4.1 and that was defined as follows

p(DDDi|θθθ) ∝
∏
r∈Ri

(
hf(r −∆c+i )pfi(r) + hb(r −∆c+i )pbi(r)

)
, (1)

with DDDi the data specific to a single correspondence line, Ri a set of distances r
from the line center to pixel centers that ensures that every pixel along the line
appears exactly once, hf and hb the smoothed step functions for foreground and
background, pfi and pbi the pixel-wise posteriors for foreground and background,
and ∆c+i the projected difference from the correspondence line center ccci to the
variated model point CXXX

+
i .

For pixel-wise posteriors, perfect segmentation and a contour at the corre-
spondence line center are assumed. This results in the following step functions

pfi(r) =

{
1 if r ≤ 0

0 else
, pbi(r) =

{
0 if r ≤ 0

1 else
. (2)

Also, we restrict the smoothed step functions hf and hb to sum to one and to be
symmetric. Consequently, the following expressions can be defined

hf(x) = 0.5− f(x), hb(x) = 0.5 + f(x), (3)
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where f(x) is an odd function that lies within the interval [−0.5, 0.5] and that
fulfills lim

x→∞
f(x) = 0.5 and lim

x→−∞
f(x) = −0.5. Finally, infinitesimally small

pixels are assumed to write the likelihood from Eq. (1) in continuous form

p(DDDi|θθθ) ∝
∞∏

r=−∞

(
hf(r −∆c+i )pfi(r) + hb(r −∆c+i )pbi(r)

)dr
. (4)

Having stated all assumptions, we start by simplifying Eq. (4). For this, the
product integral is first converted to the classical Riemann integral

p(DDDi|θθθ) ∝ exp

(∫ ∞
r=−∞

ln
(
hf(r −∆c+i )pfi(r) + hb(r −∆c+i )pbi(r)

)
dr

)
. (5)

The integral is then split at r = 0 and the definitions from Eq. (2) are used

p(DDDi|θθθ) ∝ exp

(∫ 0

r=−∞
ln
(
hf(r −∆c+i )

)
dr +

∫ ∞
r=0

ln
(
hb(r −∆c+i )

)
dr

)
. (6)

Finally, x = r −∆c+i is substituted to write the following simplified expression

p(DDDi|θθθ) ∝ exp

(∫ −∆c+i
x=−∞

ln
(
hf(x)

)
dx+

∫ ∞
x=−∆c+i

ln
(
hb(x)

)
dx

)
. (7)

To eliminate both constant scaling factors and the integral, we first apply
the logarithm and then use Leibniz’s rule for differentiation under the integral
to calculate the first-order derivative with respect to ∆c+i

∂ ln
(
p(DDDi|θθθ)

)
∂∆c+i

= − ln
(
hf(−∆c+i )

)
+ ln

(
hb(−∆c+i )

)
. (8)

Note that definitions for the smoothed step functions were used to ensure that
lim

x→−∞
ln(hf(x)) = 0 and lim

x→∞
ln(hb(x)) = 0. Introducing Eq. (3), one gets the

following equation that only depends on a single unknown function

∂ ln
(
p(DDDi|θθθ)

)
∂∆c+i

= − ln
(
0.5− f(−∆c+i )

)
+ ln

(
0.5 + f(−∆c+i )

)
(9)

= − ln
(
1− 2f(−∆c+i )

)
+ ln

(
1 + 2f(−∆c+i )

)
. (10)

The definition of the inverse hyperbolic tangent

2 tanh−1(z) = − ln(1− z) + ln(1 + z), (11)

is then used to obtain a concise expression

∂ ln
(
p(DDDi|θθθ)

)
∂∆c+i

= 2 tanh−1
(
2f(−∆c+i )

)
. (12)
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In the following, we want to enforce that our likelihood function follows a
normal distribution. We thus start with the definition of a normal distribution

N (∆c+i |0, sh) ∝ exp
(
− 1

2sh
(∆c+i )2

)
, (13)

where sh describes the variance of the normal distribution. To achieve our goal,
the first-order derivative of the log-likelihood in Eq. (12) is set equal to the
first-order derivative of the logarithm of the normal distribution

∂ ln
(
p(DDDi|θθθ)

)
∂∆c+i

=
∂ ln

(
N (∆c+i |0, sh)

)
∂∆c+i

(14)

2 tanh−1
(
2f(−∆c+i )

)
= −∆c

+
i

sh
. (15)

Solving for f , one obtains the following expression

f(x) =
1

2
tanh

( x

2sh

)
. (16)

Introducing Eq. (16) into the original definitions from Eq. (3), the final ex-
pressions for our smoothed step functions can be written as follows

hf(x) =
1

2
− 1

2
tanh

( x

2sh

)
, hb(x) =

1

2
+

1

2
tanh

( x

2sh

)
. (17)

Notice that the variance of the designed likelihood function sh turned into a slope
parameter. The used equality constrained between the first-order derivative of
the log-likelihood and the first-order derivative of the logarithm of the normal
distribution ensures that the original functions can only differ by a constant
scaling factor. We are thus able to write

p(DDDi|θθθ) ∝ N (∆c+i |0, sh). (18)

This shows that, for the derived smoothed step functions with the slope pa-
rameter sh, one obtains a likelihood function that is proportional to a normal
distribution with the variance sh.

B Ablation Study

In the following, we present an ablation study that assesses the importance of
individual components of our approach. The conducted experiments form the
basis for our remarks on the algorithm’s performance in Section 6.3. The evalu-
ation is conducted on the noise sequence of the RBOT dataset, which features
dynamic lighting, Gaussian noise, and simulated motion blur. The experiments,
as well as the calculation of the success rate, are performed in the exact same
manner as described in Section 6.1. For the final result, the average success rate
over all 18 objects of the RBOT dataset is calculated.
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In our study, we compare the original tracker to three experiments that
feature different tracker configurations. In Experiment 1, we set λr = 0 and
λt = 0 to evaluate the tracker without Tikhonov regularization. Experiment 2
features linear smoothed step functions hf and hb, where hf linearly decreases
from hf(−4.5) = 1 to hf(4.5) = 0 and hb linearly increases from hb(−4.5) = 0
to hb(4.5) = 1. While an infinite number of functions would be possible, the ex-
periment qualitatively evaluates the importance of the smoothed step functions
to the final result. Finally, for Experiment 3, the threshold for the normalized
values of p(DDDi|∆c̃+si) and p(DDDi|∆c̃−si) is set to zero and we use a constant standard
deviation of σ∆c̃si =

√
sh instead of estimating it from p(DDDi|∆c̃si). Consequently,

this disables the global approximation of first- and second-order partial deriva-
tives of the log-likelihood and we are able to assess the performance using only
local estimates for first-order partial derivatives.

The average success rates for the three experiments as well as for the unmod-
ified tracker are given in Table 1. The final result highlights the importance of

Table 1. Average success rate for three experiments that feature different tracker
configurations and for the default tracker. The evaluation is conducted on the noise se-
quence of the RBOT dataset, considering all 18 objects. Experiment 1 shows the tracker
without Tikhonov regularization, in Experiment 2 a linear smoothed step function is
used, for Experiment 3 the approximation of first- and second-order partial derivatives
was disabled, and results for the unmodified tracker are shown in the default column.

Experiment 1 2 3 default

Success Rate 46.8 59.7 65.1 71.5

each of the three tracker components that are evaluated in the ablation study.
The low success rate of Experiment 1 shows that the used Tikhonov regulariza-
tion, which constrains the Newton optimization relative to the previous pose, is
essential for the functioning of the tracker. Similarly, the results of Experiment 2
provide a great example of the algorithm’s bad performance if the smoothed
step function is not designed to ensure Gaussian properties. Finally, while the
results for Experiment 3 are above the current state of the art, which achieves
a success rate of 63.6, the experiment demonstrates that the tracker performs
significantly better if global approximations for both the first- and second-order
derivatives are used.


