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1 Implementation Details of Competing Methods

In the Sec. 4.2 of the main paper, we compare our method with two state-of-
the-art methods, i.e., SDI [1] and WSSL [2]. As code is not available for these
methods we re-implement SDI [1] and WSSL [2] with Pytorch. We choose these
methods as their performance is still competitive with SOTA and they have
clear and explicit implementation details. In this section, we introduce how we
implement these two competing methods in detail.

Following the SDI paper [1], we implement the M ∩ G+ in their method,
M ∩G+ denotes the method which achieves the best result in their paper. First
we adopt MCG [3] to get object proposals from the 1822 2D images. Then we
use GrabCut [4] to obtain segment proposals from our labeled bounding boxes.
Finally, we mark as foreground where both MCG outputs and GrabCut outputs
agree, and use the foreground areas as segment proposals for training.

For WSSL [2], we adopt the Bbox-Seg, which achieves their best performance
of bounding box based results in their paper. In this method, we constrain the
center area of the bounding box mask (20% of the pixels within the box) to
be foreground, while constraining pixels outside the bounding box to be back-
ground. The cropped area within the bounding box is regarded as unknown area.
Then we feed constrained masks into a CRF to get segment proposal masks.

We still use the DeepLabV3+ [5] as backbone, follow exactly the same train-
ing procedure we introduced in the main paper to train a semantic segmentation
network supervised by the segment proposals above. The quantitative results
have been shown in Table. 1 of the main paper, our proposed method outper-
forms all competing box based semantic segmentation methods. More qualitative
results are shown in Figure 2.

2 Ablation: Source of Performances.

As introduced in the main paper, We propose a novel approach, where a small
number of images are labeled with bounding boxes and these images have their
corresponding 3D data. Our approach can extract segment proposals from bound-
ing boxes on labeled images and creates new segment proposals on unlabeled
images of the same object instance. Experimental results show that our method
outperforms all competing methods. In this ablation study, we analyze the source
of our good performances, and validate that the performances of our proposed
method come from two sources: 1) Better segment proposal quality. 2) available
segment proposals on more training data.
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Image Bbox masks Ours Ground-truth Image Bbox masks Ours Ground-truth

Fig. 1. Our segment proposals compared with labeled bounding box masks and ground-
truth. The last row shows some failure cases.

Method Training set amount mIoU

Bounding box 1822 1822 61.78

WSSL [2] 1822 1822 69.06

SDI [1] 1822 1822 69.11

Ours 1822 1822 69.76

Ours 1822 4028 72.27
Table 1. Experiments of source of performances. The amount of images with hand
annotations that were used in these settings are all 1822.

First, by labeling bounding boxes on 1822 images, we adopt our proposed
framework to obtain pixel-wise segment proposals on these 1822 images. Then
we regard these 1822 images as training set and train our semantic segmentation
network. As shown in Table 1, we achieve 69.76 which already outperforms all
competing bounding box based methods, demonstrating that our method can
generate segment proposals(pseudo labels) with better quality. Moreover, we
extend our method to generate pixel-wise segment proposals on more images
by projecting the generated point clouds to more unlabeled images. With the
training set that contains 4028 images, the performance is further improved to
72.27 which surpasses competing methods by a obvious margin.

3 Further Qualitative Results

Figure 1 shows original images, the bounding boxes, our segment proposals and
ground truth. Figure 2 shows our network predictions compared with competing
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Image Ground-truth Box supervised 
prediction 

Ours SDI WSSL

Fig. 2. Our network predictions compared with competing methods, i.e., box super-
vised predictions, SDI [1], and WSSL [2]. Fully connected CRF [6] is not used for results
refinement.
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Raw point cloud Our reconstructed point cloud

Fig. 3. Our reconstructed point cloud compared with the raw point cloud provided by
the 2D-3D-S [7]. We use different colours to display points of different classes. Green:
board, red: chair, blue: bookcase, white: sofa.

methods, It can be seen that our method gives substantially better fine-grained
segmentation in many cases.

The last row of Figure 1 shows some failure cases. In the probability infer-
ence step, we calculate the objectness score of every point based on detection
frequency across 2D images from different camera viewpoints. However, for some
points that are on objects, and are detected as such, we do not have enough 2D
images to reliably differentiate them from background due to the unbalanced
distribution of camera viewpoints. Consequently after back-projection, these ar-
eas with low objectness probability will be ignored in the refinement step and
which results in the object being incomplete or missing. This can be addressed by
ensuring that sufficient images are available of objects during segment proposal
generation.

4 Example Images of Reconstructed Point Clouds

We display example images of reconstructed point clouds in this section. In
the proposed method, when we reconstruct point clouds of objects, the class of
every point is determined by the class of the projecting bounding box, so the
reconstructed point clouds are semantically classified (as shown in Figure 3). In
this dataset, our 2D images are categorized by room, points in different rooms
are isolated by walls. So we reconstruct independent point cloud for every room
respectively, which achieves memory efficiency and boosts computational speed.
These point clouds of different rooms are in the same world coordinates and can
be combined together (as shown in Figure 4).

We can observe some noise in the point cloud, the reason is that the bounding
boxes contain not only objects but also background noise, so background regions
are also projected into 3D space as noise. Thus, we adopt probabilistic inference
to emphasize the correct points and weakens the irrelevant points (background
noise). Refer to the top right image of Figure 3 of the main paper to see the
results after the probabilistic inference.
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Fig. 4. Combination of point clouds of all rooms. All points are semantically labeled.
Some points may locate outside the rooms since the doors of the rooms are not closed.

Image Ground-
truth

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Fig. 5. Examples of the segment proposals generated with different ratios of available
annotated data. The numbers under the figures represent different percentages of avail-
able annotated data. More annotated data leads to more reliable and accurate segment
proposals.

5 Example Images of Segment Proposals of Different
Ratios of Available Annotated Data

In our method, we select different ratios of available annotated data and generate
segment proposals for training with our proposed pipeline. We evaluate network
performances when different percentages of available annotated data is provided.
More annotation data leads to manifest performance improvements which val-
idates effectiveness of our method. We visualize segment proposals generated
with different ratios of annotated data. As shown in Figure 5, more annotated
data provides more information from different camera viewpoints, and leads to
more reliable and accurate proposals.
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Algorithm 1 Segment Proposal Generation for 3DWSS

Input: collection of images Y = {Y1, ..., Yi, ..., YN};
camera parameters Mi = (Ri, C̃i, fi) and depth map Ydepth;
A subset of images labeled with bounding boxes Yb ⊂ Y .
Point Cloud Reconstruction from Bounding Boxes:
for each Yi ∈ Yb do

Get collection of pixels inside the bounding boxes of Yi: X
i

for each pixel xi
j ∈ Xi do

Project pixel into 3D space: P i
j = K−1

i [Ri | −RiC̃i]
−1 ∗ xi

j ∗ dij

where K−1
i =


1
fi − pix

fi

1
fi −

piy
fi

1


Include P i

j into point cloud P
end for

end for
Point Cloud Probabilistic Inference:
for each Pj ∈ P do

Use Oj to represent objectness score of Pj

for each Yi ∈ Yb do
Get bounding boxes Bi of image Yi

if back projected Pj is inside Bi then
Oj = Oj + 1

end if
end for

end for
Normalize objectness score: p(Oj) =

Oj

max(O)

Segment Proposal Generation by Point Cloud Back-projection:
for each Yi ∈ Y do

for each Pj ∈ P do
Project point back to 2D images: xi

j = Ki[Ri | −RiC̃i]Pj

where Ki =

fi pix
fi p

i
y

1


depth information at xi

j is dij , distance between Pj and camera is zj
if zj < dij then

xi
j position of image Yi is Oj(objectness score).

end if
end for

end for
Feed every image Yi into refinement step to get segment proposals.
Feed segment proposals into network as supervision signal.
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6 Error Propagation in Recursive Training

Question might be raised that what would happen if network predictions of the
first iteration are sub-optimal. First, refer to [8], suitable iterative technique can
refine both label quality and model accuracy. While weakly supervised semantic
segmentation methods [1, 2, 9] propose different iterative training methods to
refine results gradually.

Second, in our proposed method, the segment proposals become more reliable
and accurate when more annotation data is provided, since we have sufficient
object information from different views. Thus, our method ensures accurate seg-
ment proposals for training. In addition, we adopt bounding box masking to
remove irrelevant background regions, which also help improve stability of recur-
sive training. Refer to Table 4 of our main paper, the proposed method achieves
reasonably good result in the first iteration and can gradually refine the per-
formance. In future work we would like to achieve our method in a end-to-end
manner and explore more about recursive training in the weakly supervised se-
mantic segmentation task.

7 Discussion

Extensive experiments and qualitative results have shown that the proposed
method is effective, which helps achieve competitive results with less annotation
cost. To provide a comprehensive analysis of our method, we provide the pseudo
code of our proposed segment proposal generation pipeline above. Moreover, we
discuss some further questions in this section.

First, in our work the supervision information comes from bounding boxes on
1822 images. We compare our method with two state-of-the-art methods trained
with 1822 labeled images. Question might be raised that what will the results be
if we have bounding box labels on all 4028 training images. We expect obvious
performance improvement when more annotated data is provided. However, one
of the advantages of our method is, guided by 3D information, we only need
to label a small portion of the images and can transductively infer segment
proposals on all images, so annotation cost is saved. Refer to Figure 7 of the
main paper, When trained using only label 25% of training images, we achieve
70.03 mIoU which already outperforms competing methods (trained on 45%).

In the proposed method, we choose images of area 1 of the 2D-3D-S dataset
[7] . In the area 1, there are over 10000 images and the amount we use for training
and validation is over 5000, which can already effectively validate our proposed
method with four classes. If we put more effort to obtain more annotation data
in the future, our method can be easily scaled to more areas and scenes.

In addition, in our early version of method, we tried to use a pre-trained
generic object detection network to generate bounding box labels instead of
hand annotation. However, currently available trained model performs poorly
on our dataset or does not have same classes. Hand labeled bounding boxes
are still required to fine-tune the model on the 2D-3D-S dataset [7]. It will be
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interesting to explore noisy bounding boxes that predicted by network in weakly
supervised semantic segmentation, we leave this problem as our future work.
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