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In this supplementary material, we first demonstrate the necessity of using
structure similarity (SSIM) to evaluate the reconstruction accuracy in Section
1, and then provide in Section 2 the definitions of the edges considered in our
model analysis of edge constraints. Section 3 gives the detail of the networks in
the paper, and Section 4 presents additional reconstruction results of our method
and the state-of-the-art method CMR [1] on CUB-200-2011.

(a) Ground Truth (b) Ours (c) CMR

Fig. 1: Example for showing the necessity of SSIM as performance metric to
assess the reconstruction accuracy. Although our reconstructed shape is visually
more consistent with the ground truth, our method has higher SSIM but lower
IoU than the counterpart method CMR (see Table 1).

1 SSIM as Performance Metric

Here, we use an example to show the necessity of using structure similarity
(SSIM) as performance metric to assess the reconstruction accuracy. See Fig. 1.
Obviously, compared with the result of the CMR method [1], our reconstructed
shape is visually more consistent with the ground truth, which is correctly mea-
sured by SSIM. However, as shown in Table 1, CMR has higher IoU than our
method for this example. We believe that this is because IoU puts more weight
on the interior of reconstructed objects, while neglecting to some extent the
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discrepancy of boundary. Therefore, in this paper we propose to use SSIM as
another performance metric to measure the similarity between the reconstructed
and ground truth shapes.

Table 1: The reconstruction accuracy of our method and the counterpart method
CMR for the example image in Fig. 1 in terms of IoU and SSIM.

Method IoU SSIM

Ours 0.681 0.81635
CMR 0.718 0.80799

2 Edge Definitions

To more effectively utilize the geometric constraints in training data and to
compensate for the shortcoming of mean squared error (MSE) in describing
shape topology, our proposed method defines inter-keypoint constraint based
on the edges connecting the keypoints. In our experiments, we implement four
different definitions of the edges. (i) FC: edges collecting all pairs of visible
keypoints; (ii) DT: edges defined by Delaunay Triangulation over the set of
visible keypoints; (iii) M1: a set of edges manually defined according to prior
knowledge; and (iv) M2: another set of edges also manually defined according
to prior knowledge. Figure 2 shows the edges for an example bird image. As
being demonstrated by our experiments, our proposed DT edges achieve the
best performance thanks to its capability of dealing with large pose variations
and to its high efficiency.

(a) RGB image (b) fc (c) DT (d) DT (e) DT

Fig. 2: Visualization of the four different definitions of edges in implementing the
inter-keypoint constraint.
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Fig. 3: Schematic diagram of the proposed method of unsupervised 3D object
reconstruction from single images.

3 Network Details

3.1 Proposed Network

Fig. 4: Architecture of the fusion
module. The input of the fusion
module is the feature maps ex-
tracted by the four blocks in the en-
coder.

Figure 3 shows the architecture of the pro-
posed network. We take the pre-trained
ResNet-18 [2] as the encoder to extract
features from input RGB images. As
shown in Fig. 4, features extracted by
different blocks in the endcoder are sent
to the fusion module. Shape deformation,
UV-flow [1] and camera parameters [3] are
then predicted all by inference from the
fused features but with respective regres-
sors. In each regressor, the fused feature is
first transformed via the feature transfor-
mation module (see Fig. 5) and then sent
to the corresponding predictor. Figures 6
and 7 show the architecture of the three
predictors. The layers involved in Fig. 5 - Fig. 7 are defined as follows:

– Linear(a) is an affine transformation layer [4]. a is the number of feature
maps.

– Conv(a, b, c) is a 2D convolution layer. The number of feature maps is a, the
kernel size is b× b, and the stride size is c× c.

– Upsampling(a) uses bilinear interpolation to upsample the feature maps. a
is the scale fator.

– LeakyReLU(a) is a nonlinear activation function [5]. a is the value of alpha.
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Fig. 5: Architecture of the feature transformation module. The number of feature
maps of the last linear transformation layer in shape deformation regressor is 400.
The concatenation with initial shape is applied only for the shape deformation
regressor.

Fig. 6: Architecture of the texture predictor. The size of UV-flow is 128×64×2.
a = {128, 64, 32, 16, 8}.

(a) Shape deformation predictor.

(b) Camera parameters pre-
dictor. The three linear trans-
formation layers estimate the
Roation (R), Transformation
(T), Scale (S) parameters, re-
spectively.

Fig. 7: Architecture of (a) shape deformation predcitor and (b) camera parame-
ters predictor.
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4 Additional Reconstruction Results

Figures 8 and 9 visualize some additional results by our method and the coun-
terpart method [1] for 3D bird reconstruction.

Fig. 8: Reconstruction results of our method and the CMR method [1] on CUB-
200-2011. For easy comparison, we overlay ground truth masks (in grey color)
with the reconstructed ones (in cyan color), and highlight their common regions
in red color.
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Fig. 9: Reconstruction results of our method and the CMR method [1] on CUB-
200-2011. For easy comparison, we overlay ground truth masks (in grey color)
with the reconstructed ones (in cyan color), and highlight their common regions
in red color.
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