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1 Supplementary Material

In this supplementary material we provide some details to the calculations from the
main paper and we present proofs to some statements. These are intended to help the
interested reader to better understand the proposed method.

2 Basics

With A ∈ Rk×l, B ∈ Rl×m, C ∈ Rm×n, using the Kronecker product ⊗ and the
vec-operator we can write:

vec(ABC) = (CT ⊗A)vec(B) , (1)

where (CT ⊗A) ∈ Rnk×ml and vec(B) ∈ Rlm and with the vec-operator that stacks
the columns of matrix B.

The vector cross product can be formulated using the cross-product-operator [·]×. With
η,µ ∈ R3:

[η]× =

 0 −η3 η2
η3 0 −η1
−η2 η1 0

 , (2)

η × µ = [η]× µ = [µ]
T
× η = −µ× η (3)

vec([η]×) = Hη , (4)

H =
[
vec([e1]×), vec([e2]×), vec([e3]×)

]
, (5)

with the unit basis vectors e1, e2, e3.

3 Objective function matrices

3.1 Matrices of pose subproblem

In Section 3.2. of the main paper, for every single pose with index k, we obtain an
optimization problem with objective function

f(Rk, tk) =
∑
i

wik ‖(Rkxik + tk)× di −mi‖2 . (6)
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We can write this objective function in a more compact form by using the Kronecker
identity (1), the cross product operator (2), the vec-operator with rk = vec (Rk) , and
the introduction of some new variables:

Arr,k =
∑
i

wik

(
xikx

T
ik

)
⊗
(
[di]× [di]

T
×

)
, (7)

Att,k =
∑
i

wik [di]× [di]
T
× , (8)

Atr,k =
∑
i

2wik [di]×

(
xT
ik ⊗ [di]

T
×

)
, (9)

br,k =
∑
i

−2wik

(
xT
ik ⊗ [di]

T
×

)T
mi , (10)

bt,k =
∑
i

2wik [di]
T
× mi , (11)

hk =
∑
i

wik ‖mi‖2 , (12)

which results in the more compact form:

f(rk, tk) = rTkArr,krk + tTkAtt,ktk + tTkAtr,krk + bT
r,krk + bT

t,ktk + hk . (13)

3.2 Matrices of rotation subproblem

In Section 3.2. of the main paper, we obtain an optimization problem for the rotation
estimation:

f(R) = rTAr+ bTr+ c , s.t. r = vec (R) , R ∈ SO(3) . (14)

with:

A = Arr −
1

4
AT

trA
−1
tt Atr , (15)

b = br −
1

4
AT

trA
−1
tt bt , (16)

c = h− 1

4
bT
t A

−1
tt bt . (17)

4 Rotation optimization

In Section 3.2 we needed to minimize:

f(R) = rTAr+ bTr+ c , s.t. r = vec (R) , R ∈ SO(3) , (18)

to find an optimal rotation matrix R. We explained that we use a gradient-based optimiza-
tion on the rotation manifold. The basic theory and the methods to calculate the gradient
and the Hessian for such an optimization problem can be found in the literature [1–3]. In
the following, we give a short introduction and demonstrate how the gradient and Hessian
for our optimization problem (18) can be calculated. Fig. 1 visualizes the procedure.
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Fig. 1: Visualization of the local parametrization of the SO(3)-manifold through its tangent space.
The search direction is found in the so(3) tangent space and back-projected onto the manifold to
find a minimum of the objective.

4.1 Gradient

In the so(3)-tangent space we calculate the derivative in direction η. With R(η) =
e[η]×R , r = vec(R) and H as defined in (5), we get:

Dfη (R) [η] =
∂

∂ε
fηε (R)

∣∣∣∣
ε=0

, (19)

∂

∂ε
fηε (R) =

∂r(ηε)T

∂ε

∂

∂r
f(R)

∣∣∣∣
r=r(ηε)

=
∂r(ηε)T

∂ε
2 (Ar(ηε) + b) (20)

= 2vec([η]× eε[η]×R)T (Ar(ηε) + b) . (21)

With ε→ 0 it follows:

Dfη (R) [η] =
∂

∂ε
fηε (R)

∣∣∣∣
ε=0

= 2vec([η]× R)T (Ar+ b) (22)

(1)
=
((

RT ⊗ I
)
vec([η]×)

)T
(Ar+ b) (23)

(4)
= 2ηTHT (R⊗ I) (Ar+ b) = ηTgrad(f) . (24)

Finally, we obtain the gradient of our locally parameterized objective function:

grad(f) = 2HT (R⊗ I) (Ar+ b) . (25)

4.2 Hessian

Similar to the previous calculations, we calculate the second order derivative:

D grad(f)[η] = ηT ∂

∂ε
grad(f)

∣∣∣∣
ε=0

, (26)

ηT ∂

∂ε
grad(f) = ηT ∂

∂ε
2HT (R(ηε)⊗ I) (Ar(ηε) + b) (27)

=
∂

∂ε

(
2vec([η]× eε[η]×R)T(Avec(eε[η]×R) + b)

)
. (28)
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With ε→ 0 it follows:

D grad(f)[η] = 2vec([η]
2
× R)T (Ar+ b) + 2vec([η]× R)TAvec([η]× R) . (29)

It follows with the reshape operator mat(vec(A)) = A:

2vec([η]
2
× R)T (Ar+ b) = 2ηTHT

(
[η]× R⊗ I

)
(Ar+ b)

= 2ηTHTvec
(
mat (Ar+ b)RT [η]

T
×

)
= 2ηTHT

(
I⊗mat (Ar+ b)RT

)
vec([η]

T
×)

= −2ηTHT
(
I⊗mat (Ar+ b)RT

)
Hη

= ηTHess1(f)η ,

2vec([η]× R)TAvec([η]× R) = 2ηTHT (R⊗ I)A (R⊗ I)
T
Hη

= ηTHess2(f)η .

Finally, we obtain the Hessian of our locally parameterized objective function:

Hess(f) = Hess1(f) + Hess2(f) (30)

= −2HT
(
I⊗mat (Ar+ b)RT

)
H+ 2HT (R⊗ I)A (R⊗ I)

T
H .

(31)

5 Proof: Invertibility of Att

Calculating the translation vector from the rotation in Section 3.2. required the matrix
Att to be invertible. Here, we show that Att is positive definite in most cases and thus
invertible. We need to show:

xTAttx > 0 =⇒ Att is invertible. (32)

With ‖di‖ = 1, wik > 0 and ∀x ∈ R3 with ‖x‖ > 0 we calculate:

xTAttx = xT
∑
i

wik [di]× [di]
T
× x =

∑
i

wikx
T [di]× [di]

T
× x

=
∑
i

wik

(
[di]

T
× x
)T

[di]
T
× x =

∑
i

wik

∥∥∥[di]
T
× x
∥∥∥2

=
∑
i

wik ‖x× di‖2 > 0 .

This is always true, except for the degenerate case of parallel rays (orthographic projec-
tion, e.g. telecentric optics). Then x = sdi ,∀i with some arbitrary scalar s, results in
xTAttx = 0 . In this case we have an ambiguity in the translation term, because it is not
possible to estimate the distance of the calibration pattern to a camera with orthographic
projection:

t = t0 + sd0 . (33)
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6 Proof: Convergence of AM-Calibration

Following the research in the field of AM [4, 5], we proof that the proposed alternating
minimization technique for camera calibration is convergent, thus

f
(
P(n+1),L(n+1)

)
< f

(
P(n),L(n)

)
, (34)

with the current estimate of the ray parameters L(n) , the current estimate of the poses
P(n) =

[
R(n), T (n)

]
and the abbreviation R := {R1,R2, . . . } , T := {t1, t2, . . . } ,

L := {L1,L2, . . . } .
Define the operators SL and SP, as solution to the ray subproblem of Section 3.1.

and as solution to the pose subproblem of Section 3.2., respectively:

SL
{
f
(
P(n),L(n)

)}
= f

(
P(n),L(n+1)

)
, (35)

SP
{
f
(
P(n),L(n+1)

)}
= f

(
P(n+1),L(n+1)

)
. (36)

Because the optimization of camera rays delivers an optimal solution to its subproblem,
we cannot get an increase in the objective function:

SL
{
f
(
P(n),L(n)

)}
≤ f

(
P(n),L(n)

)
. (37)

Furthermore, if we initialize the Newton descend algorithm for pose estimation with the
previous pose, we always get a descend in the objective function value:

SP
{
f
(
P(n),L(n+1)

)}
< f

(
P(n),L(n+1)

)
. (38)

In conclusion we obtain:

f
(
P(n+1),L(n+1)

)
= SP

{
f
(
P(n),L(n+1)

)}
< f

(
P(n),L(n+1)

)
= SL

{
f
(
P(n),L(n)

)}
≤ f

(
P(n),L(n)

)
, (39)

=⇒ f
(
P(n+1),L(n+1)

)
< f

(
P(n),L(n)

)
q.e.d. (40)
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