Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning - Supplementary Material

Xuehui Wang¹, Qing Wang¹, Yuzhi Zhao², Junchi Yan³, Lei Fan⁴, and Long Chen^{1(⊠)}

¹ School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China wangxh228@mail2.sysu.edu.cn, chenl46@mail.sysu.edu.cn

² City University of Hong Kong, Hong Kong, China

³ Shanghai Jiao Tong University, Shanghai, China

⁴ Northwestern University, Evanston, USA

1 Ablation Study on a Challengeable Case

To thoroughly validate the effectiveness of the PU and CA block, we conduct experiments on challenge case (e.g. x4) with small network (A²F-S). The results is shown in Table 1. Similar to the ablation study on A²F-L, performance can be slightly improved by using auxiliary features (with projection unit), while the performance of the model can be greatly improved by using auxiliary features and channel attention. We think it is because shallow network with fewer auxiliary features is insufficient to get high frequency information, while the attentive auxiliary features can help (e.g. A²F-S).

Table 1. Ablation study on A²F-S.

Methods	Params	MultiAdd	Set5	Set14	B100	Urban100	Manga109
Baseline	312k	17.98G	31.75	28.35	27.39	25.50	29.66
A ² F-S-NOCA	323k	18.57G	31.75	28.33	27.40	25.51	29.68
$A^{2}F-S$	331k	18.60G	31.87	28.36	27.41	25.58	29.77

2 Necessity about designing A²F

To demonstrate the necessity of designing our lightweight SR method, we do a comparision with [1] by reducing its model size through using less residual groups or residual blocks. Thus, RCAN-L and RCAN-S have almost the same number of convolutional layers with A^2F-L and A^2F-SD , which makes this comparison fair. We use the official code⁵ of RCAN and train the model with official configuration. We also calculate the num of parameters and GFLOPS when the size of inputs is $32 \times 32 \times 3$. From Table2, our method has great superiority, which demonstrates the necessity of designing a customized network for lightweight SR task.

⁵ https://github.com/yulunzhang/RCAN

2 X. Wang et al.

Table 2. Necessity about designing A²F. These results are obtained with scale x4.

Model	Param/GFlops	Set5	Set14	B100	Urban100	Manga109
RCAN-S	423k/0.413G	31.58	28.19	27.29	25.23	29.18
$A^{2}F-SD(ours)$	320k/0.321G	32.06	28.47	27.48	25.80	30.16
RCAN-L	1450 K/1.29 G	31.90	28.40	27.42	25.65	29.76
$A^{2}F-L(ours)$	1374k/1.37G	32.32	28.67	27.62	26.32	30.72

3 Effectiveness of auxiliary features

We remove auxiliary features links from the network (A^2F-SD) to prove the effect of auxiliary features. So the input of the attention branch is only the output of last layer. The result shown in Table 3 demonstrates that auxiliary features are useful.

Table 3. Effectiveness of auxiliary features. "(w/o)" means that no auxiliary features are adopted in A²F-SD. These results are obtained with scale x4.

Model	Param/GFlops	Set5	Set14	B100	Urban100	Manga109
$A^{2}F-SD(w/o)$	313k/0.315G	31.86	28.37	27.38	25.55	29.75
A^2F-SD	320k/0.321G	32.06	28.47	27.48	25.80	30.16

4 Average PSNR/SSIM

According to Table 6 in our paper, we calculate the average PSNR/SSIM among five datasets in Table 4 to avoid the situation that some of these five datasets may be saturated but often the improvement is in the range of 0.05db. Note that we do this on a challengeable task (e.g. scale x4) to illustrate our powerful capacity.

Table 4. The average PSNR and SSIM among five datasets and the FLOPs with input size 32×32 for scale x4.

Parameters < 1000K								
Metric	SRCNN	DRRN	A ² F-SD	AWSRN-S	VDSR	LapSRN		
Params/Mul-Adds	57K/52.7G	297 K/6797 G	320K/18.2G	588K/37.7G	665 K/612.6 G	813K/149.4G		
FLOPs	0.332G	3.024G	0.321G	0.601G	2.728G	1.988G		
PSNR/SSIM	27.41/0.7792	28.434/0.8098	28.794/0.8179	28.566/0.8124	28.132/0.8019	28.27/0.8051		
$Parameters \ge 1000K$								
Metric	SRFBN-S	$A^{2}F-M$	AWSRN-M	A^2F-L	AWSRN	DRCN		
Params/Mul-Adds	1000K/-	$1010\mathrm{K}/56.7\mathrm{G}$	1254K/72G	1374K/77.2G	1587K/91.1G	1774 K/17974 G		
FLOPs	0.323G	1.010G	1.280G	1.370G	1.620G	-		
PSNR/SSIM	28.698/0.8148	29.044/0.8228	29.034/0.8226	29.13/0.8246	29.122/0.8245	28.18/0.8017		

5 Visual Comparison on Other Datasets

Besides the qualitative comparison on Set14 [2] and Urban100 [3], we also do this on other datasets that are Set5 [4] and Manga109 [5] on scale $\times 4$. We do not make comparisons on $\times 2$ and $\times 3$ due to that as the scale becomes larger, the difference between methods will be more noticeable. Please see Figure 1 for visual details.

Fig. 1. Qualitative comparison over two datasets for scale $\times 4$. The red rectangle on the image of ours indicates visible difference compared with others.

6 Comparision with Non-Lightweight SOTAs

In our work, we aim to provide a fast, low-parameters and accurate method, which is appropriate for realistic applications but with a little performance droping off. We make a comparison with non-lightweight SOTAs that are published in ICCV or CVPR recently including OISR-LF-s [6], OISR-LF [6], OISR-RK2 [6], OISR-RK3 [6], SRFBN [7], MSRN [8], MDSR [9], EBRN [10], SAN [11], RCAN [1], RDN [12], FRSR [13].

From Table 5, we can find that our A^2F -L model has the fewest parameters and multi-adds operations on each scale, but it can outperform or comparable with some methods that have more parameters and multi-adds operations (e.g. OISR-LF-s(1370K), OISR-RK2-s(1370K), MSRN(6300K), SRFBN(3631K), OISR-LF(4970K), OISR-RK2(4970K), MDSR(6920K)). Until the parameters is beyond about 7500K, there exists methods outperforming our model obviously. Table 5. The quantitative comparison with non-lightweight methods on four datasets among $\times 2$, $\times 3$, $\times 4$ scale. Red implys that the parameters and the multi-adds operations are both bigger than our model A²F-L. "-" means we do not find an official report or the code to calculate about one method. "**" in SRFBN for $\times 2$ scale indicates that there appears an out-of-memory when we calculates its flops by the same codes, which means its flops may be very huge. We infer 1900G based on the numerical relation from the Multi-Adds of $\times 3$ and $\times 4$.

				1			
Method	Scale	Param	MultiAdds	Set5	Set14	B100	Urban100
OISR-LF-s (CVPR2019)		1370K	316.2G	38.02/0.9605	33.62/0.9178	32.20/0.9000	32.21/0.9290
OISR-RK2-s (CVPR2019)		1370K	316.2G	37.98/0.9604	33.58/0.9172	32.18/0.8996	32.09/0.9281
SRFBN (CVPR2019)		2140K	1900G**	38.11/0.9609	33.82/0.9196	32.29/0.9010	32.62/0.9328
OISR-LF (CVPR2019)		4970K	1145.7G	38.12/0.9609	33.78/0.9196	32.26/0.9007	32.52/0.9320
OISR-RK2 (CVPR2019)		4970K	1145.7G	38.12/0.9609	33.80/0.9193	32.26/0.9006	32.48/0.9317
EBRN (ICCV2019)	2	5778K	-	38.35/0.9620	34.24/0.9226	32.47/0.9033	33.52/0.9402
MSRN (ECCV2018)	2 ×	6300K	-	38.08/0.9605	33.74/0.9170	32.23/0.9013	32.22/0.9326
MDSR (CVPR2017)		6920K	1592.2G	38.11/0.9602	33.85/0.9198	32.29/0.9007	32.84/0.9347
SAN (CVPR2019)		$15700 \mathrm{K}$	-	38.31/0.9620	34.07/0.9213	32.42/0.9028	33.10/0.9370
RCAN (ECCV2018)		16000K	1570.4G	38.27/0.9614	34.12/0.9216	32.41/0.9027	33.34/0.9384
RDN (CVPR2018)		22120K	5096.2G	38.24/0.9614	34.01/0.9212	32.34/0.9017	32.89/0.9353
OISR-RK3 (CVPR2019)		41910K	9656.5G	38.21/0.9612	33.94/0.9206	32.36/0.9019	33.03/0.9365
A2F-L (ours)	2	1363K	306.1G	38.09/0.9607	33.78/0.9192	32.23/0.9002	32.46/0.9313
OISR-LF-s (CVPR2019)		1550K	160.1G	34.39/0.9272	30.35/0.8426	29.11/0.8058	28.24/0.8544
OISR-RK2-s (CVPR2019)		1550K	160.1G	34.43/0.9273	30.33/0.8420	29.10/0.8053	28.20/0.8534
SRFBN (CVPR2019)		2833K	1431.9G	34.70/0.9292	30.51/0.8461	29.24/0.8084	28.73/0.8641
OISR-LF (CVPR2019)		5640K	578.6G	34.56/0.9284	30.46/0.8450	29.20/0.8077	28.56/0.8606
OISR-RK2 (CVPR2019)		5640K	578.6G	34.55/0.9282	30.46/0.8443	29.18/0.8075	28.50/0.8597
MSRN (ECCV2018)	3	6300K	-	34.38/0.9262	30.34/0.8395	29.08/0.8041	28.08/0.8554
MDSR (CVPR2017)		7510K	768.1G	34.66/0.9280	30.44/0.8452	29.25/0.8091	28.79/0.8655
SAN (CVPR2019)		15700K	-	34.75/0.9300	30.59/0.8476	29.33/0.8112	28.93/0.8671
RCAN (ECCV2018)		16000K	1590G	34.74/0.9299	30.65/0.8482	29.32/0.8111	29.09/0.8702
RDN (CVPR2018)		22310K	2281.2G	34.71/0.9296	30.57/0.8468	29.26/0.8093	28.80/0.8653
OISR-RK3 (CVPR2019)		44860K	4590.1G	34.72/0.9297	30.57/0.8470	29.29/0.8103	28.95/0.8680
A2F-L (ours)	3	1367K	136.3G	34.54/0.9283	30.41/0.8436	29.14/0.8062	28.40/0.8574
OISR-LF-s (CVPR2019)		1520K	114.2G	32.14/0.8947	28.63/0.7819	27.60/0.7369	26.17/0.7888
OISR-RK2-s (CVPR2019)		1520K	114.2G	32.21/0.8950	28.63/0.7822	27.58/0.7364	26.14/0.7874
SRFBN (CVPR2019)		3631K	1128.7G	32.47/0.8983	28.81/0.7868	27.72/0.7409	26.60/0.8015
FRSR (CVPR2019)		4800K	-	32.20/0.8939	28.54/0.7808	27.60/0.7366	26.21/0.7904
OISR-LF (CVPR2019)		5500K	412.2G	32.33/0.8968	28.73/0.7845	27.66/0.7389	26.38/0.7953
OISR-RK2 (CVPR2019)		5500K	412.2G	32.32/0.8965	28.72/0.7843	27.66/0.7390	26.37/0.7953
MSRN (ECCV2018)	4	6300K	-	32.07/0.8903	28.60/0.7751	27.52/0.7273	26.04/0.7896
MDSR (CVPR2017)		7880K	480.4G	32.50/0.8973	28.72/0.7857	27.72/0.7418	26.67/0.8041
EBRN (ICCV2019)		8186K	-	32.79/0.9032	29.01/0.7903	27.85/0.7464	27.03/0.8114
SAN (CVPR2019)		15700K	-	32.64/0.9003	28.92/0.7888	27.78/0.7436	26.79/0.8068
RCAN (ECCV2018)		16000K	919.9G	32.63/0.9002	28.87/0.7889	27.77/0.7436	26.82/0.8087
RDN (CVPR2018)		22270K	1309.2G	32.47/0.8990	28.81/0.7871	27.72/0.7419	26.61/0.8028
OISR-RK3 (CVPR2019)		44270K	2962.5G	32.52/0.8992	28.86/0.7878	27.75/0.7428	26.79/0.8068
A2F-L (ours)	4	1374K	77.2G	32.32/0.8964	28.67/0.7839	27.62/0.7379	26.32/0.7931

References

- Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV). (2018) 286–301
- Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE transactions on image processing 19 (2010) 2861–2873
- Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2015) 5197–5206
- 4. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. (2012)
- Matsui, Y., Ito, K., Aramaki, Y., Fujimoto, A., Ogawa, T., Yamasaki, T., Aizawa, K.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and Applications 76 (2017) 21811–21838
- He, X., Mo, Z., Wang, P., Liu, Y., Yang, M., Cheng, J.: Ode-inspired network design for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2019)
- Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2019)
- 8. Li, J., Fang, F., Mei, K., Zhang, G.: Multi-scale residual network for image superresolution. In: The European Conference on Computer Vision (ECCV). (2018)
- Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. (2017) 136–144
- Qiu, Y., Wang, R., Tao, D., Cheng, J.: Embedded block residual network: A recursive restoration model for single-image super-resolution. In: The IEEE International Conference on Computer Vision (ICCV). (2019)
- Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2019)
- Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2018) 2472–2481
- Soh, J.W., Park, G.Y., Jo, J., Cho, N.I.: Natural and realistic single image superresolution with explicit natural manifold discrimination. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2019)