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1 Ablation Study on a Challengeable Case

To thoroughly validate the effectiveness of the PU and CA block, we conduct
experiments on challenge case (e.g. x4) with small network (A2F-S). The results
is shown in Table 1. Similar to the ablation study on A2F-L, performance can
be slightly improved by using auxiliary features (with projection unit), while the
performance of the model can be greatly improved by using auxiliary features and
channel attention. We think it is because shallow network with fewer auxiliary
features is insufficient to get high frequency information, while the attentive
auxiliary features can help (e.g. A2F-S).

Table 1. Ablation study on A2F-S.

Methods Params MultiAdd Set5 Set14 B100 Urban100 Manga109

Baseline 312k 17.98G 31.75 28.35 27.39 25.50 29.66
A2F-S-NOCA 323k 18.57G 31.75 28.33 27.40 25.51 29.68

A2F-S 331k 18.60G 31.87 28.36 27.41 25.58 29.77

2 Necessity about designing A2F

To demonstrate the necessity of designing our lightweight SR method, we do a
comparision with [1] by reducing its model size through using less residual groups
or residual blocks. Thus, RCAN-L and RCAN-S have almost the same number of
convolutional layers with A2F-L and A2F-SD, which makes this comparision fair.
We use the official code5 of RCAN and train the model with official configuration.
We also calculate the num of parameters and GFLOPS when the size of inputs is
32×32×3. From Table2, our method has great superiority, which demonstrates
the necessity of designing a customized network for lightweight SR task.

5 https://github.com/yulunzhang/RCAN
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Table 2. Necessity about designing A2F. These results are obtained with scale x4.

Model Param/GFlops Set5 Set14 B100 Urban100 Manga109

RCAN-S 423k/0.413G 31.58 28.19 27.29 25.23 29.18
A2F-SD(ours) 320k/0.321G 32.06 28.47 27.48 25.80 30.16
RCAN-L 1450K/1.29G 31.90 28.40 27.42 25.65 29.76
A2F-L(ours) 1374k/1.37G 32.32 28.67 27.62 26.32 30.72

3 Effectiveness of auxiliary features

We remove auxiliary features links from the network (A2F-SD) to prove the effect
of auxiliary features. So the input of the attention branch is only the output of
last layer. The result shown in Table 3 demonstrates that auxiliary features are
useful.

Table 3. Effectiveness of auxiliary features. “(w/o)” means that no auxiliary features
are adopted in A2F-SD. These results are obtained with scale x4.

Model Param/GFlops Set5 Set14 B100 Urban100 Manga109

A2F-SD(w/o) 313k/0.315G 31.86 28.37 27.38 25.55 29.75
A2F-SD 320k/0.321G 32.06 28.47 27.48 25.80 30.16

4 Average PSNR/SSIM

According to Table 6 in our paper, we calculate the average PSNR/SSIM among
five datasets in Table 4 to avoid the situation that some of these five datasets
may be saturated but often the improvement is in the range of 0.05db. Note
that we do this on a challengeable task (e.g. scale x4) to illustrate our powerful
capacity.

Table 4. The average PSNR and SSIM among five datasets and the FLOPs with input
size 32 × 32 for scale x4.

Parameters < 1000K

Metric SRCNN DRRN A2F-SD AWSRN-S VDSR LapSRN

Params/Mul-Adds 57K/52.7G 297K/6797G 320K/18.2G 588K/37.7G 665K/612.6G 813K/149.4G
FLOPs 0.332G 3.024G 0.321G 0.601G 2.728G 1.988G

PSNR/SSIM 27.41/0.7792 28.434/0.8098 28.794/0.8179 28.566/0.8124 28.132/0.8019 28.27/0.8051

Parameters ≥ 1000K

Metric SRFBN-S A2F-M AWSRN-M A2F-L AWSRN DRCN

Params/Mul-Adds 1000K/- 1010K/56.7G 1254K/72G 1374K/77.2G 1587K/91.1G 1774K/17974G
FLOPs 0.323G 1.010G 1.280G 1.370G 1.620G -

PSNR/SSIM 28.698/0.8148 29.044/0.8228 29.034/0.8226 29.13/0.8246 29.122/0.8245 28.18/0.8017
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5 Visual Comparison on Other Datasets

Besides the qualitative comparison on Set14 [2] and Urban100 [3], we also do
this on other datasets that are Set5 [4] and Manga109 [5] on scale ×4. We do
not make comparisons on ×2 and ×3 due to that as the scale becomes larger,
the difference between methods will be more noticeable. Please see Figure 1 for
visual details.

Ground Truth

PSNR/SSIM
Params/Multi-adds

DRRN

27.451/0.9034
297K/6797G

LapSRN

27.472/0.9128
813K/149.4G

CARN-M

27.968/0.9187
412K/32.5G

AWSRN-SD

28.029/0.9166
444K/25.4G

A2F-SD(ours)

28.346/0.9202
320K/18.2G

Bicubic

22.101/0.7373
Params/Multi-adds

SRCNN

21.809/0.7214
57K/52.7G

FSRCNN

25.367/0.8562
12K/4.6G

VDSR

26.931/0.8959
665K/612.6G

Dataset: Set5
File: butterfly

Ground Truth

PSNR/SSIM
Params/Multi-adds

DRRN

19.841/0.6629
297K/6797G

LapSRN

19.881/0.6739
813K/149.4G

CARN-M

20.530/0.7077
412K/32.5G

AWSRN-SD

20.652/0.7120
444K/25.4G

A2F-SD(ours)

20.736/0.7216
320K/18.2G

Bicubic

18.007/0.5128
Params/Multi-adds

SRCNN

15.943/0.4459
57K/52.7G

FSRCNN

16.102/0.4549
12K/4.6G

VDSR

19.581/0.6440
665K/612.6G

Dataset: Manga109
File: ThatsIzumiko_000

Fig. 1. Qualitative comparison over two datasets for scale ×4. The red rectangle on
the image of ours indicates visible difference compared with others.

6 Comparision with Non-Lightweight SOTAs

In our work, we aim to provide a fast, low-parameters and accurate method,
which is appropriate for realistic applications but with a little performance drop-
ing off. We make a comparison with non-lightweight SOTAs that are published
in ICCV or CVPR recently including OISR-LF-s [6], OISR-LF [6], OISR-RK2-
s [6], OISR-RK2 [6], OISR-Rk3 [6], SRFBN [7], MSRN [8], MDSR [9], EBRN [10],
SAN [11], RCAN [1], RDN [12], FRSR [13].

From Table 5, we can find that our A2F-L model has the fewest parameters
and multi-adds operations on each scale, but it can outperform or comparable
with some methods that have more parameters and multi-adds operations (e.g.
OISR-LF-s(1370K), OISR-RK2-s(1370K), MSRN(6300K), SRFBN(3631K), OISR-
LF(4970K), OISR-RK2(4970K), MDSR(6920K)). Until the parameters is be-
yond about 7500K, there exists methods outperforming our model obviously.
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Table 5. The quantitative comparison with non-lightweight methods on four datasets
among ×2, ×3, ×4 scale. Red implys that the parameters and the multi-adds operations
are both bigger than our model A2F-L. “-” means we do not find an official report or
the code to calculate about one method. “**” in SRFBN for ×2 scale indicates that
there appears an out-of-memory when we calculates its flops by the same codes, which
means its flops may be very huge. We infer 1900G based on the numerical relation from
the Multi-Adds of ×3 and ×4.

Method Scale Param MultiAdds Set5 Set14 B100 Urban100

OISR-LF-s (CVPR2019)

2

1370K 316.2G 38.02/0.9605 33.62/0.9178 32.20/0.9000 32.21/0.9290
OISR-RK2-s (CVPR2019) 1370K 316.2G 37.98/0.9604 33.58/0.9172 32.18/0.8996 32.09/0.9281
SRFBN (CVPR2019) 2140K 1900G** 38.11/0.9609 33.82/0.9196 32.29/0.9010 32.62/0.9328
OISR-LF (CVPR2019) 4970K 1145.7G 38.12/0.9609 33.78/0.9196 32.26/0.9007 32.52/0.9320
OISR-RK2 (CVPR2019) 4970K 1145.7G 38.12/0.9609 33.80/0.9193 32.26/0.9006 32.48/0.9317
EBRN (ICCV2019) 5778K - 38.35/0.9620 34.24/0.9226 32.47/0.9033 33.52/0.9402
MSRN (ECCV2018) 6300K - 38.08/0.9605 33.74/0.9170 32.23/0.9013 32.22/0.9326
MDSR (CVPR2017) 6920K 1592.2G 38.11/0.9602 33.85/0.9198 32.29/0.9007 32.84/0.9347
SAN (CVPR2019) 15700K - 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370
RCAN (ECCV2018) 16000K 1570.4G 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384
RDN (CVPR2018) 22120K 5096.2G 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353
OISR-RK3 (CVPR2019) 41910K 9656.5G 38.21/0.9612 33.94/0.9206 32.36/0.9019 33.03/0.9365

A2F-L (ours) 2 1363K 306.1G 38.09/0.9607 33.78/0.9192 32.23/0.9002 32.46/0.9313

OISR-LF-s (CVPR2019)

3

1550K 160.1G 34.39/0.9272 30.35/0.8426 29.11/0.8058 28.24/0.8544
OISR-RK2-s (CVPR2019) 1550K 160.1G 34.43/0.9273 30.33/0.8420 29.10/0.8053 28.20/0.8534
SRFBN (CVPR2019) 2833K 1431.9G 34.70/0.9292 30.51/0.8461 29.24/0.8084 28.73/0.8641
OISR-LF (CVPR2019) 5640K 578.6G 34.56/0.9284 30.46/0.8450 29.20/0.8077 28.56/0.8606
OISR-RK2 (CVPR2019) 5640K 578.6G 34.55/0.9282 30.46/0.8443 29.18/0.8075 28.50/0.8597
MSRN (ECCV2018) 6300K - 34.38/0.9262 30.34/0.8395 29.08/0.8041 28.08/0.8554
MDSR (CVPR2017) 7510K 768.1G 34.66/0.9280 30.44/0.8452 29.25/0.8091 28.79/0.8655
SAN (CVPR2019) 15700K - 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671
RCAN (ECCV2018) 16000K 1590G 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702
RDN (CVPR2018) 22310K 2281.2G 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653
OISR-RK3 (CVPR2019) 44860K 4590.1G 34.72/0.9297 30.57/0.8470 29.29/0.8103 28.95/0.8680

A2F-L (ours) 3 1367K 136.3G 34.54/0.9283 30.41/0.8436 29.14/0.8062 28.40/0.8574

OISR-LF-s (CVPR2019)

4

1520K 114.2G 32.14/0.8947 28.63/0.7819 27.60/0.7369 26.17/0.7888
OISR-RK2-s (CVPR2019) 1520K 114.2G 32.21/0.8950 28.63/0.7822 27.58/0.7364 26.14/0.7874
SRFBN (CVPR2019) 3631K 1128.7G 32.47/0.8983 28.81/0.7868 27.72/0.7409 26.60/0.8015
FRSR (CVPR2019) 4800K - 32.20/0.8939 28.54/0.7808 27.60/0.7366 26.21/0.7904
OISR-LF (CVPR2019) 5500K 412.2G 32.33/0.8968 28.73/0.7845 27.66/0.7389 26.38/0.7953
OISR-RK2 (CVPR2019) 5500K 412.2G 32.32/0.8965 28.72/0.7843 27.66/0.7390 26.37/0.7953
MSRN (ECCV2018) 6300K - 32.07/0.8903 28.60/0.7751 27.52/0.7273 26.04/0.7896
MDSR (CVPR2017) 7880K 480.4G 32.50/0.8973 28.72/0.7857 27.72/0.7418 26.67/0.8041
EBRN (ICCV2019) 8186K - 32.79/0.9032 29.01/0.7903 27.85/0.7464 27.03/0.8114
SAN (CVPR2019) 15700K - 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068
RCAN (ECCV2018) 16000K 919.9G 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087
RDN (CVPR2018) 22270K 1309.2G 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028
OISR-RK3 (CVPR2019) 44270K 2962.5G 32.52/0.8992 28.86/0.7878 27.75/0.7428 26.79/0.8068

A2F-L (ours) 4 1374K 77.2G 32.32/0.8964 28.67/0.7839 27.62/0.7379 26.32/0.7931
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