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1 Ablation Study on a Challengeable Case

To thoroughly validate the effectiveness of the PU and CA block, we conduct
experiments on challenge case (e.g. x4) with small network (A%F-S). The results
is shown in Table 1. Similar to the ablation study on A?F-L, performance can
be slightly improved by using auxiliary features (with projection unit), while the
performance of the model can be greatly improved by using auxiliary features and
channel attention. We think it is because shallow network with fewer auxiliary
features is insufficient to get high frequency information, while the attentive
auxiliary features can help (e.g. A?F-S).

Table 1. Ablation study on A%F-S.

Methods  |Params|MultiAdd| Set5 |Set14|B100|Urban100|Mangal09
Baseline 312k | 17.98G |31.75|28.35|27.39| 25.50 29.66
A%F-S-NOCA| 323k | 18.57G |[31.75|28.33|27.40| 25.51 29.68
A%F-S 331k | 18.60G |31.87|28.36(|27.41| 25.58 29.77

2 Necessity about designing A%F

To demonstrate the necessity of designing our lightweight SR method, we do a
comparision with [1] by reducing its model size through using less residual groups
or residual blocks. Thus, RCAN-L and RCAN-S have almost the same number of
convolutional layers with A2F-L and A%2F-SD, which makes this comparision fair.
We use the official code® of RCAN and train the model with official configuration.
We also calculate the num of parameters and GFLOPS when the size of inputs is
32 x 32 x 3. From Table2, our method has great superiority, which demonstrates
the necessity of designing a customized network for lightweight SR task.

® https://github.com/yulunzhang/RCAN
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Table 2. Necessity about designing A2F. These results are obtained with scale x4.

Model Param/GFlops| Set5 |Set14|B100 |Urban100{Mangal09
RCAN-S 423k/0.413G |31.58 28.19|27.29| 25.23 29.18
A’F-SD(ours)|320k/0.321G |32.06(28.47|27.48| 25.80 | 30.16
RCAN-L 1450K/1.29G | 31.90 | 28.40 | 27.42 | 25.65 29.76
A°F-L(ours) [1374k/1.37G|32.32|28.67|27.62| 26.32 30.72

3 Effectiveness of auxiliary features

We remove auxiliary features links from the network (A2F-SD) to prove the effect
of auxiliary features. So the input of the attention branch is only the output of
last layer. The result shown in Table 3 demonstrates that auxiliary features are
useful.

Table 3. Effectiveness of auxiliary features. “(w/0)” means that no auxiliary features
are adopted in A?F-SD. These results are obtained with scale x4.

Model Param/GFlops| Set5 |Set14 | B100 |Urban100|Mangal09
A”F-SD(w/o0)| 313k/0.315G |31.86|28.37|27.38| 25.55 29.75
A’F-SD 320k/0.321G|32.06|28.47(27.48| 25.80 30.16

4 Average PSNR/SSIM

According to Table 6 in our paper, we calculate the average PSNR/SSIM among
five datasets in Table 4 to avoid the situation that some of these five datasets
may be saturated but often the improvement is in the range of 0.05db. Note
that we do this on a challengeable task (e.g. scale x4) to illustrate our powerful
capacity.

Table 4. The average PSNR and SSIM among five datasets and the FLOPs with input
size 32 x 32 for scale x4.

Parameters < 1000K
Metric SRCNN DRRN A’F-SD AWSRN-S VDSR LapSRN
Params/Mul-Adds| 57K/52.7G | 297K/6797G | 320K/18.2G | 588K/37.7G |665K/612.6G| 813K/149.4G
FLOPs 0.332G 3.024G 0.321G 0.601G 2.728G 1.988G
PSNR/SSIM | 27.41/0.7792 | 28.434/0.8098 |28.794/0.8179| 28.566/0.8124 |28.132/0.8019| 28.27/0.8051
Parameters > 1000K
Metric SRFBN-S A’F-M AWSRN-M A%F-L AWSRN DRCN
Params/Mul-Adds| 1000K/- |1010K/56.7G| 1254K/72G |1374K/77.2G|1587K/91.1G [1774K/17974G
FLOPs 0.323G 1.010G 1.280G 1.370G 1.620G -
PSNR/SSIM  |28.698/0.8148(29.044/0.8228| 29.034/0.8226 |29.13/0.8246 |29.122/0.8245| 28.18/0.8017
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5 Visual Comparison on Other Datasets

Besides the qualitative comparison on Setl4 [2] and Urbanl00 [3], we also do
this on other datasets that are Set5 [4] and Mangal09 [5] on scale x4. We do
not make comparisons on x2 and x3 due to that as the scale becomes larger,
the difference between methods will be more noticeable. Please see Figure 1 for

visual details.

Bicubic SRCNN FSRCNN VDSR
S adds 57K/52.7G 12K/4.6G 665K/612.6G
22.101/0.7373 21.809/0.7214 25.367/0.8562 26.931/0.8959

Ground Truth
Params/! i-adds
PSNR/SSIM

DRRN

297K/6797G
27.451/0.9034

CARN-M AWSRN-SD AZF-SD(ours)
412K/32.5G 444K/25.4G 320K/18.2G
27.968/0.9187 28.029/0.9166 28.346/0.9202

LapSRN
813K/149.4G
27.472/0.9128

Dataset: SetS
File: butterfly

v

SRCNN FSRCNN S
57K/52.7G 12K/4.6G 665K/612.6G
15.943/0.4459 16.102/0.4549 19.581/0.6440

Ground Truth
Params/_Multi»adds

Params/Multi-adds
18.007/0.5128

o

DRRN LapSRN CARN-M WSRN-SD AZF-SD(ours)
Dataset: Mangal09 297K/6797G 813K/149.4G 412K/32.5G 320K/18.2G
File: Thatslzumiko_000 19.841/0.6629 19.881/0.6739 20.530/0.7077 20.736/0.7216

Fig. 1. Qualitative comparison over two datasets for scale x4. The red rectangle on
the image of ours indicates visible difference compared with others.

6 Comparision with Non-Lightweight SOTAs

In our work, we aim to provide a fast, low-parameters and accurate method,
which is appropriate for realistic applications but with a little performance drop-
ing off. We make a comparison with non-lightweight SOTAs that are published
in ICCV or CVPR recently including OISR-LF-s [6], OISR-LF [6], OISR-RK2-
s [6], OISR-RK2 [6], OISR-Rk3 [6], SRFBN [7], MSRN [8], MDSR [9], EBRN [10],
SAN [11], RCAN [1], RDN [12], FRSR [13].

From Table 5, we can find that our A?F-L model has the fewest parameters
and multi-adds operations on each scale, but it can outperform or comparable
with some methods that have more parameters and multi-adds operations (e.g.
OISR-LF-s(1370K), OISR-RK2-s(1370K), MSRN(6300K), SRFBN(3631K), OISR-
LF(4970K), OISR-RK2(4970K), MDSR(6920K)). Until the parameters is be-
yond about 7500K, there exists methods outperforming our model obviously.
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Table 5. The quantitative comparison with non-lightweight methods on four datasets
among X2, X3, x4 scale. Red implys that the parameters and the multi-adds operations
are both bigger than our model A2F-L. “” means we do not find an official report or
the code to calculate about one method. “**” in SRFBN for x2 scale indicates that
there appears an out-of-memory when we calculates its flops by the same codes, which
means its flops may be very huge. We infer 1900G based on the numerical relation from
the Multi-Adds of x3 and x4.

Method Scale| Param |MultiAdds Seth Set14 B100 Urban100
OISR-LF-s (CVPR2019) 1370K | 316.2G | 38.02/0.9605 | 33.62/0.9178 | 32.20/0.9000 | 32.21/0.9290
OISR-RK2-s (CVPR2019) 1370K | 316.2G | 37.98/0.9604 | 33.58/0.9172 | 32.18/0.8996 | 32.09/0.9281
SRFBN (CVPR2019) 2140K | 1900G** | 38.11/0.9609 | 33.82/0.9196 | 32.29/0.9010 | 32.62/0.9328
OISR-LF (CVPR2019) 4970K | 1145.7G | 38.12/0.9609 | 33.78/0.9196 | 32.26/0.9007 | 32.52/0.9320
OISR-RK2 (CVPR2019) 4970K | 1145.7G | 38.12/0.9609 | 33.80/0.9193 | 32.26/0.9006 | 32.48/0.9317
EBRN (ICCV2019) 9 5778K - 38.35/0.9620 | 34.24/0.9226 | 32.47/0.9033 | 33.52/0.9402
MSRN (ECCV2018) 6300K - 38.08/0.9605 | 33.74/0.9170 | 32.23/0.9013 | 32.22/0.9326
MDSR (CVPR2017) 6920K | 1592.2G | 38.11/0.9602 | 33.85/0.9198 | 32.29/0.9007 | 32.84/0.9347
SAN (CVPR2019) 15700K - 38.31/0.9620 | 34.07/0.9213 | 32.42/0.9028 | 33.10/0.9370
RCAN (ECCV2018) 16000K| 1570.4G | 38.27/0.9614 | 34.12/0.9216 | 32.41/0.9027 | 33.34/0.9384
RDN (CVPR2018) 22120K| 5096.2G | 38.24/0.9614 | 34.01/0.9212 | 32.34/0.9017 | 32.89/0.9353
OISR-RK3 (CVPR2019) 41910K| 9656.5G | 38.21/0.9612 | 33.94/0.9206 | 32.36/0.9019 | 33.03/0.9365
A2F-L (ours) 2 |1363K| 306.1G |38.09/0.9607(33.78/0.9192|32.23/0.9002(32.46,/0.9313
OISR-LF-s (CVPR2019) 1550K | 160.1G | 34.39/0.9272 | 30.35/0.8426 | 29.11/0.8058 | 28.24/0.8544
OISR-RK2-s (CVPR2019) 1550K | 160.1G | 34.43/0.9273 | 30.33/0.8420 | 29.10/0.8053 | 28.20,/0.8534
SRFBN (CVPR2019) 2833K | 1431.9G | 34.70/0.9292 | 30.51/0.8461 | 29.24/0.8084 | 28.73/0.8641
OISR-LF (CVPR2019) 5040K | 578.6G | 34.56/0.9284 | 30.46/0.8450 | 29.20/0.8077 | 28.56/0.8606
OISR-RK2 (CVPR2019) 5640K | 578.6G | 34.55/0.9282 | 30.46/0.8443 | 29.18/0.8075 | 28.50/0.8597
MSRN (ECCV2018) 3 | 6300K - 34.38/0.9262 | 30.34/0.8395 | 29.08/0.8041 | 28.08/0.8554
MDSR (CVPR2017) 7510K | 768.1G | 34.66/0.9280 | 30.44/0.8452 | 29.25/0.8091 | 28.79/0.8655
SAN (CVPR2019) 15700K - 34.75/0.9300 | 30.59/0.8476 | 29.33/0.8112 | 28.93/0.8671
RCAN (ECCV2018) 16000K| 1590G | 34.74/0.9299 | 30.65/0.8482 | 29.32/0.8111 | 29.09/0.8702
RDN (CVPR2018) 22310K| 2281.2G | 34.71/0.9296 | 30.57/0.8468 | 29.26/0.8093 | 28.80/0.8653
OISR-RK3 (CVPR2019) 44860K| 4590.1G | 34.72/0.9297 | 30.57/0.8470 | 29.29/0.8103 | 28.95/0.8680
A2F-L (ours) 3 |1367K| 136.3G |34.54/0.9283|30.41/0.8436|29.14/0.8062|28.40/0.8574
OISR-LF-s (CVPR2019) 1520K | 114.2G | 32.14/0.8947 | 28.63/0.7819 | 27.60/0.7369 | 26.17/0.7888
OISR-RK2-s (CVPR2019) 1520K | 114.2G | 32.21/0.8950 | 28.63/0.7822 | 27.58/0.7364 | 26.14/0.7874
SRFBN (CVPR2019) 3631K | 1128.7G | 32.47/0.8983 | 28.81/0.7868 | 27.72/0.7409 | 26.60/0.8015
FRSR (CVPR2019) 4800K - 32.20/0.8939 | 28.54/0.7808 | 27.60/0.7366 | 26.21/0.7904
OISR-LF (CVPR2019) 5500K | 412.2G | 32.33/0.8968 | 28.73/0.7845 | 27.66/0.7389 | 26.38/0.7953
OISR-RK2 (CVPR2019) 5500K | 412.2G | 32.32/0.8965 | 28.72/0.7843 | 27.66/0.7390 | 26.37/0.7953
MSRN (ECCV2018) 4 | 6300K - 32.07/0.8903 | 28.60/0.7751 | 27.52/0.7273 | 26.04/0.7896
MDSR (CVPR2017) 7880K | 480.4G | 32.50/0.8973 | 28.72/0.7857 | 27.72/0.7418 | 26.67/0.8041
EBRN (ICCV2019) 8186K - 32.79/0.9032 | 29.01/0.7903 | 27.85/0.7464 | 27.03/0.8114
SAN (CVPR2019) 15700K - 32.64/0.9003 | 28.92/0.7888 | 27.78/0.7436 | 26.79/0.8068
RCAN (ECCV2018) 16000K| 919.9G | 32.63/0.9002 | 28.87/0.7889 | 27.77/0.7436 | 26.82/0.8087
RDN (CVPR2018) 22270K| 1309.2G | 32.47/0.8990 | 28.81/0.7871 | 27.72/0.7419 | 26.61/0.8028
OISR-RK3 (CVPR2019) 44270K| 2962.5G | 32.52/0.8992 | 28.86/0.7878 | 27.75/0.7428 | 26.79/0.8068
A2F-L (ours) 4 |1374K| 77.2G |32.32/0.8964|28.67/0.7839|27.62/0.7379|26.32/0.7931
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