
Supplementary Material for FreezeNet i

S1 Supplementary Material for FreezeNet: Full
Performance by Reduced Storage Costs

S1.1 Training Hyperparameters for MNIST and CIFAR-10

Our results in the main body of the text are benchmarked against SNIP [S.2],
since we share its feature selection and it is also a one-shot method, applied before
training. For the comparison we use their training schedule and do not tune any
hyperparameters. They take a batch size of 100 (MNIST) or 128 (CIFAR) and
SGD with momentum parameter 0.9 [S.3] as optimizer. The initial learning rate
is set to 0.1 and divided by ten at every 25k/30k optimization steps for MNIST
and CIFAR, respectively. For regularization, weight decay with coefficient 5·10−4

is applied. The overall number of training epochs is 250.

S1.2 Tiny ImageNet Experiment

In addition to the MNIST and CIFAR experiments, we also tested FreezeNet
on a ResNet34 [S.1] on the Tiny ImageNet classification task S.1. The ResNet34
architecture is shown in Table S5. The Tiny ImageNet dataset consists of 64×64
RGB images with 200 different classes. Those classes have 500 training images,
50 validation images and 50 test images, each. For training, we use the same data
augmentation as for CIFAR, i.e. random horizontal flipping and translations up
to 4 pixels. We train the network for 100 epochs with an initial learning rate
of 0.01. The learning rate is decayed by a factor 10 after epoch 30, 60 and 80.
As optimizer, again SGD with momentum parameter 0.9 is used. Also, weight
decay with coefficient 5 · 10−4 is applied. The networks are initialized with a
Kaiming-uniform initialization.

S.1https://tiny-imagenet.herokuapp.com/ with training schedule adapted from
https://github.com/ganguli-lab/Synaptic-Flow.

Fig. S1. Comparison of FreezeNet, FreezeNet-WD and SNIP for a ResNet34 trained
on Tiny ImageNet.

ii P. Wimmer, J. Mehnert and A. Condurache

In Figure S1, the results for FreezeNet, FreezeNet-WD and SNIP are shown.
The mean and standard deviation for every freezing rate and method are each
calculated for three runs with different random seeds. We see, that FreezeNet
can be used to train a ResNets successfully. FreezeNet has the same accuracy
than the baseline method while training only 10% of its weights. For all rates,
FreezeNet achieves better or equal results than SNIP. Also, FreezeNet’s results
are more stable, shown by the slimmer standard deviation bands. Contrarily to
the CIFAR-10 experiment, FreezeNet-WD shows worse results than SNIP for
lower freezing rates. Reaching good results with a FreezeNet on ResNet34 needs
a higher rate of trainable parameters than on VGG16, see Table 3.

S1.3 GraSP

The GraSP criterion [S.4] is based on the idea of preserving, or even increasing,
the pruned network’s gradient flow compared to the unpruned counterpart. Thus,

∆L(W) :=

∥∥∥∥
∂L

∂W

∥∥∥∥
2

2

(S.1)

is tried to be maximized with the masked weights m�W . For that purpose,

∆L(m�W) ≈ ∆L(W)−WT ·HL ·
∂L

∂W
+ (m�W)

T ·HL ·
∂L

∂W
(S.2)

is approximated via the first order Taylor series, with the Hessian HL := ∂2L
∂W 2 ∈

RD×D. As ∆L(W) −WT ·HL · ∂L∂W is fix, the importance score for all weights
W ∈ RD is computed as

S(W) := W �
(
HL ·

∂L

∂W

)
(S.3)

and the weights with the 1− q highest importance scores are trained, the other
ones are pruned. Contrarily to the saliency score (1), the importance score (S.3)
takes the sign into account. Pruning with the GraSP criterion is applied, as
SNIP and FreezeNet, once before the training starts [S.4]. Thus, GraSP pruned
networks also have sparse gradients during training.

Training Setup for Result in Table 4 Different freezing rates are displayed
in Table 4, as we first tried to find results in the corresponding papers with
freezing rates approximately q = 0.99. If no result for such a freezing rate was
given, we report the result with the closest accuracy to FreezeNet’s performance
for q = 0.99.

We used the experimental setup described in Section 4 with hyperparameters
from Section S1.1. The official method to calculate the GraSP score was used.S.2

Moreover, learning rates 2n · 0.1 with n ∈ {−4, . . . , 4} were tested for a split of

S.2https://github.com/alecwangcq/GraSP.

Supplementary Material for FreezeNet iii

Algorithm S1 FreezeNet with Reinitialization after Computation of Freezing
Mask
Require: Freezing rate q, initial parametrization Θ0 = W0 ∪B0, reinitialized param-

eters Θ1 = W1 ∪B1, network f , loss function L

1: Calculate saliency score g ∈ R|W0| according to equation (1) with fΘ0 for one
training batch

2: Define freezing mask m ∈ R|W0|

3: Calculate freezing threshold ε, where ε denotes the b(1−q)·|W0|c-highest magnitude
of g

4: Set mk = 0 if |gk| < ε else mk = 1
5: Set networks parameters to Θ1, i.e. use fΘ1 for training
6: Start training with forward propagation as usual but backpropagate gradient
m� ∂L

∂W1
for weights and ∂L

∂B1
for biases

training/validation images of 9/1, 19/1 and 3/1. Each of these 27 combinations
was run 5 times with a different initialization. For each combination, the net-
work with the best validation accuracy was tested at its early stopping time.
The best result was reported for the learning rate λ = 0.1 with a split of train-
ing/validation images of 19/1 — the same setup as used for the best FreezeNet
result. The reported test accuracy for the GraSP pruned network is given by
98.9%.

S1.4 Reinitialization Tests

Up to now it is unanswered how the reinitialization of a network’s weights after
the calculation of the saliency scores affects the trainability of this network. To
check this, we modify Algorithm 1 by adding a reinitialization step after the
computation of the saliency score. FreezeNets with reinitializations are intro-
duced in Algorithm S1. We have tested a LeNet-5-Caffe baseline architecture for
MNIST on Algorithm S1. Again we follow the training setup from Sections 4
together with S1.1.

First we tested combinations of initializing and reinitializing a FreezeNet with
the Xavier-normal and the Kaiming-uniform initialization schemes. We name the
network without reinitialized weights FreezeNet-K for a Kaiming-uniform initial-
ized network, or FreezeNet-X for a Xavier-normal initialized one. The reinitial-
ized networks are denoted as FreezeNet-A-B for A,B ∈ {K,X} where A stands
for the initialization used for finding the freezing mask and B for the reinitializa-
tion, applied before training. The left plot in Figure S2 compares FreezeNet-X
with FreezeNet-X-X and FreezeNet-K-X. This graph shows, that reinitializa-
tions do not significantly change the performance of FreezeNets. It also does
not seem to make a difference if the probability distribution used for the reini-
tialization differs from the one used to calculate the freezing mask, examined
through FreezeNet-K-X and FreezeNet-X-X. Similar results are reported for the
comparison of FreezeNet-K with FreezeNet-K-K and FreezeNet-X-K, shown in
the left part of Figure S3.

iv P. Wimmer, J. Mehnert and A. Condurache

Fig. S2. LeNet-5-Caffe baseline architecture compared to a FreezeNet-X, a FreezeNet-
X-X and a FreezeNet-K-X in the left plot. On the right side we compare a FreezeNet-
X-X with a FreezeNet-K-K. Inserted: Zoomed in versions of the plots.

In Figure S3, right plot, various other reinitialization methods are tested
on a Xavier-normal initialized FreezeNet. We can see, that the variance scaling
reinitialization methods Xavier-normal, Kaiming-uniform and pmσ lead to the
same results. The pmσ initialization scheme is introduced in Section 4.5 in the
main body of the text. Using other, non-variance scaling methods as constant
reinitialization (either with all values 1 or the layers variance σ) or drawing
weights i.i.d. from N (0, 1) generates networks which cannot be trained at all.

The right plot in Figure S2 shows that the initialization, used after the freez-
ing mask is computed, is important to solve the MNIST task successfully for high
freezing rates. The Kaiming init- and reinitialization, FreezeNet-K-K, performs
slightly better for the lower freezing rates and is outperformed by FreezeNet-X-
X for the higher ones. Without reinitialization, a similar behaviour for low and
high freezing rates can be seen in Figure 3 — right plot.

Summarized, using an appropriate initialization scheme for the weights, af-
ter the freezing mask is computed, is essential for achieving good results with
FreezeNets. Based on our experiments we suggest initializing (and reinitializing,
if wanted) FreezeNets with variance scaling methods.

Supplementary Material for FreezeNet v

Fig. S3. Left: LeNet-5-Caffe baseline architecture with a corresponding FreezeNet-K, a
FreezeNet-K-K and a FreezeNet-X-K. Right: Comparison of different reinitializations
for a FreezeNet (FN) with LeNet-5-Caffe baseline architecture with Xavier-normal
initialization. Inserted: Zoomed in versions of the plots.

S1.5 Learning Rate Experiments

SGD is used in our experiments, thus we also tested a broad range of learning
rates for different freezing rates. This test was done with the same setup as
described in Sections 4 and S1.1. The results for a LeNet-5-Caffe baseline ar-
chitecture on the MNIST classification task are shown in Figures S4 and S5. In
order to cover a broad range of learning rates, we used 2n ·λ0, n ∈ {−4,−3, . . . , 4}
and λ0 = 0.1 as learning rates. All learning and freezing rate combinations were
trained with three different random initializations. The learning rates with the
best results are shown in the left part of Figure S4. For almost any freezing
rate, the learning rate 0.1 works best. Thus, FreezeNets do not need expen-
sive learning rate searches but can use a learning rate performing well on the
baseline architecture. But optimizing the learning rate can improve FreeNets’
performance beyond question. Another conclusion we want to highlight is that
higher learning rates can be applied for higher freezing rates. Even if they do not
work well for smaller freezing rates, as the example of λ = 0.2 in the left part
of Figure S4 shows. The same holds for learning rates bigger than 0.2, which
require even higher freezing rates to lead to satisfying results, as shown in the
right part of Figure S5. For high freezing rates, using higher learning rates can
lead to better and faster training, as shown in Figure S4, right side.

The results for the learning rate search for the CIFAR10 task with a VGG16-
D are shown in Figure S6. Again, λ0 = 0.1 performs best for most of the freezing
rates and is only slightly improved for some freezing rates by λ = 0.2 and
λ = 0.05.

vi P. Wimmer, J. Mehnert and A. Condurache

Fig. S4. Learning rate tests for a FreezeNet with a LeNet-5-Caffe baseline. The left
part shows the mean test accuracy for the best performing learning rates. The right
plot shows the mean validation accuracy for three training runs recorded over the first
100k epochs for different learning rates.

Fig. S5. Learning rate tests for a FreezeNet with a LeNet-5-Caffe baseline. The left
part shows the mean test accuracy for the learning rates λ ≤ 0.1. The right plot shows
the mean validation accuracy for the learning rates λ ≥ 0.1.

Fig. S6. Best performing learning rates for a FreezeNet with a VGG16-D baseline on
the CIFAR-10 classification task.

Supplementary Material for FreezeNet vii

S1.6 Figures for LeNet-5-Caffe on MNIST

Figure S7 shows the comparison of FreezeNet and SNIP over a broad range
of freezing rates, discussed in Section 4.1. Here, the networks are trained and
evaluated as described in Section 4 with hyperparameters from Section S1.1.

The training progress of FreezeNet’s result, reported in Table 4, is shown in
Figure S8.

S1.7 Network Architectures

Figures S9, S10 and S11 visualize the used LeNet-300-100, LeNet-5-Caffe and
VGG16-D network architectures, respectively. The ResNet34 architecture can
be looked up in Table S5 together with Figure S12.

Fig. S7. Comparison SNIP and FreezeNet for the MNIST classification task and a
LeNet-5-Caffe baseline architecture. The inserted plot is a zoomed version.

viii P. Wimmer, J. Mehnert and A. Condurache

Fig. S8. Training of FreezeNet for freezing rate q = 0.99 and baseline architecture
LeNet-5-Caffe. Training procedure is done as described in Section S1.1 with hyperpa-
rameters from Section S1.1 but with a split 19/1 of training and validation images. This
plot shows the run with the best validation accuracy out of five tries. The correspond-
ing test accuracy equals 99.1%, calculated with the weights stored in the early stop
epoch, as reported in Table 4. The red circle highlights the epoch where early stopping
occurs. The inserted plot is a zoomed version showing the early stopping epoch.

Image x ∈ R1×28×28

Linear, nin = 784, nout = 300

ReLU

Linear, nin = 300, nout = 100

ReLU

Linear nin = 100, nout = 10

log softmax

Probability Vector p ∈ [0, 1]10

T
o
ta

l
P

a
ra

m
eter

co
u

n
t:

2
6
6
,6

1
0

(4
1
0

B
ia

s)

LeNet-300-100 Architecture

Fig. S9. Architecture of the used LeNet-300-100. In front of the first layer, the feature
map x ∈ R1×28×28 is flattened to x̂ ∈ R784. For linear layers, nin and nout denote the
number of incoming and outgoing neurons, respectively.

Supplementary Material for FreezeNet ix

Image x ∈ R1×28×28

Conv2D, nin = 1, nout = 20

ReLU

MaxPool2D

Conv2D, nin = 20, nout = 50

ReLU

MaxPool2D

Linear nin = 800, nout = 500

ReLU

Linear nin = 500, nout = 10

log softmax

Probability Vector p ∈ [0, 1]10

T
o
ta

l
P

a
ra

m
eter

co
u
n
t:

4
3
1
,0

8
0

(5
8
0

B
ia

s)

24× 24

12× 12

8× 8

4× 4

LeNet-5-Caffe Architecture

Fig. S10. Architecture of the used LeNet-5-Caffe. All 2D-convolutional layers have
kernel size 5× 5, 1× 1 stride and no zero padding. A max-pooling layer has kernel size
2× 2, stride 2× 2 and dilation 1× 1. Before entering the first linear layer, the feature
map x̂ ∈ R50×4×4 is flattened to ˆ̂x ∈ R800. The resolutions left to the blocks denote the
resolution of the feature maps, processed by the corresponding layers. For convolutional
layers, nin and nout denote the number of incoming and outgoing channels, respectively.
For linear layers, nin and nout denote the number of incoming and outgoing neurons,
respectively.

x P. Wimmer, J. Mehnert and A. Condurache

Image x ∈ R3×32×32

ConvBlock nin = 3, nout = 64

ConvBlock nin = 64, nout = 64

MaxPool nin = 64, nout = 64

ConvBlock nin = 64, nout = 128

ConvBlock nin = 128, nout = 128

MaxPool nin = 128, nout = 128

ConvBlock nin = 128, nout = 256

ConvBlock nin = 256, nout = 256

ConvBlock nin = 256, nout = 256

MaxPool nin = 256, nout = 256

ConvBlock nin = 256, nout = 512

ConvBlock nin = 512, nout = 512

ConvBlock nin = 512, nout = 512

MaxPool nin = 512, nout = 512

ConvBlock nin = 512, nout = 512

ConvBlock nin = 512, nout = 512

ConvBlock nin = 512, nout = 512

MaxPool nin = 512, nout = 512

LinearBlock nin = 512, nout = 512

LinearBlock nin = 512, nout = 512

Linear Layer nin = 512, nout = nc

log softmax

Probability Vector p ∈ [0, 1]nc

T
otal

P
aram

eter
cou

n
t:

15,255,626
(C

IF
A

R
-1

0
)/15,301,796

(C
IF

A
R

-1
0
0
)

(5,258/5,348
B
ias

an
d
10,496/10,496

B
atch

N
orm

)
32× 32

16× 16

8× 8

4× 4

2× 2

1× 1

VGG16-D Architecture

Fig. S11. Architecture of VGG16-D. Here, nc ∈ {10, 100} equals the numbers of classes
for the given classification task. For CIFAR-10, nc = 10 and for CIFAR-100 we have
nc = 100. A ConvBlock consists of a 2D-convolutional layer with kernel size 3× 3, and
1 × 1 stride and padding. Each convolution is followed by a 2D-Batch Normalization
Layer and a ReLU activation function. The max-pooling layer has kernel size 2 × 2,
stride 2× 2 and dilation 1× 1. Before entering the first LinearBlock, the feature map
x̂ ∈ R512×1×1 is flattened to ˆ̂x ∈ R512. A LinearBlock consist of a fully connected layer
followed by a 1D-Batch Normalization Layer and a ReLU activation function. The
resolution left to the blocks denotes the resolution of the feature maps, processed by
the corresponding blocks. For Convolutional blocks, nin and nout denote the number
of incoming and outgoing channels, respectively. For linear blocks and layers, nin and
nout denote the number of incoming and outgoing neurons, respectively.

Supplementary Material for FreezeNet xi

Table S5. ResNet34 with ResBlocks, shown in Figure S12. The kernel size is given
by k. For Convolutional layers and ResBlocks, nin and nout denote the number of
incoming and outgoing channels, respectively. For the linear layer, nin and nout denote
the number of incoming and outgoing neurons, respectively. Before entering the linear
layer, the feature map x ∈ R512×1×1 is flattened to x̂ ∈ R512. A ResNet34 consists of
21, 383, 816 parameters in total. Thereof, 21, 366, 464 weights, 200 biases and 17, 152
BatchNorm parameters.

Module Output Size Repeat nin nout k Stride Padding Bias BatchNorm ReLU

Conv2D 64× 64 ×1 3 64 3 1 1 7 3 3

ResBlock 32× 32 ×1 64 64 3 2 1 7 3 3

ResBlock 32× 32 ×2 64 64 3 1 1 7 3 3

ResBlock 16× 16 ×1 64 128 3 2 1 7 3 3

ResBlock 16× 16 ×3 128 128 3 1 1 7 3 3

ResBlock 8× 8 ×1 128 256 3 2 1 7 3 3

ResBlock 8× 8 ×5 256 256 3 1 1 7 3 3

ResBlock 4× 4 ×1 256 512 3 2 1 7 3 3

ResBlock 4× 4 ×2 512 512 3 1 1 7 3 3

AvgPool2D 1× 1 ×1 512 512 4 0 0 7 7 7

Linear 200 ×1 512 200 — — — 3 7 7

log softmax 10 ×1 200 200 — — — 7 7 7

3× 3 Conv2D nin, nout, s

BatchNorm2D

ReLU

3× 3 Conv2D nout, nout, 1

BatchNorm2D

⊕
ReLU

1× 1 Conv2D nin, nout, s

BatchNorm2D

ResBlock(nin, nout, s)

Fig. S12. Architecture of a ResBlock with nin input channels, nout output channels
and stride s for the first convolution. The second 3 × 3 conolution has stride 1 and
cout in- and output channels. All residual connections are a 1× 1 2D Convolution with
cin input and cout output channels and stride s followed by a BatchNorm2D layer. All
Conv2D layers are initialized without biases.

xii P. Wimmer, J. Mehnert and A. Condurache

References Supplementary Material

1. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. CoRR abs/1502.01852 (2015)

2. Lee, N., Ajanthan, T., Torr, P.: SNIP: Single-shot network pruning based on
connection sensitivity. In: International Conference on Learning Representations
(2019)

3. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-
tion and momentum in deep learning. In: Proceedings of the 30th International
Conference on Machine Learning. pp. 1139–1147 (2013)

4. Wang, C., Zhang, G., Grosse, R.: Picking winning tickets before training by pre-
serving gradient flow. In: International Conference on Learning Representations
(2020)

