
Fast and Differentiable Message Passing on
Pairwise Markov Random Fields

– Supplementary Material –

Zhiwei Xu1,2[0000−0001−8283−6095], Thalaiyasingam Ajanthan1[0000−0002−6431−0775],
and Richard Hartley1[0000−0002−5005−0191]

1 Australian National University and Australian Centre for Robotic Vision
2 Data61, CSIRO, Canberra, Australia

{firstname.lastname}@anu.edu.au

A Pseudocode of Backpropagation of ISGMR and TRWP

Due to the limited space of the main paper, we provide the pseudocode of backpropa-
gation of ISGMR and TRWP in this appendix, in Algorithms 3-4 respectively.

Algorithm 3: Backpropagation of ISGMR
Input: Partial energy parameters {θi,j}, gradients of final costs∇c = {∇ci(λ)}, set of

nodes V , edges E , directionsR, indices {prk,i(λ)}, {qrk,i}, iteration number K.
We replace∇mr,k+1 by∇m̂r and∇mr,k by∇mr for simplicity.

Output: Gradients {∇θi,∇θi,j(·, ·)}.
1 ∇mr ← ∇Θi ← ∇c,∇Θi,j ← 0 .back Eq. (7)
2 ∇m̂r ← ∇mr .back message updates
3 for iteration k ∈ {K, ..., 1} do
4 ∇mr ← 0 .zero-out
5 forall directions r ∈ R do .parallel
6 forall scanlines t in direction r do .parallel
7 for node i in scanline t do .sequential
8 λ∗ ← qrk,i ∈ L .extract index
9 ∇m̂r

i (λ
∗) −=

∑
λ∈L∇m̂

r
i (λ) .back Eq. (5)

10 for label λ ∈ L do
11 µ∗ ← prk,i(λ) ∈ L .extract index
12 ∇θi−r(µ∗) += ∇m̂r

i (λ) .back Eq. (9)
13 ∇m̂r

i−r(µ
∗) += ∇m̂r

i (λ)

14 ∇md
i−r(µ

∗) += ∇m̂r
i (λ), ∀d ∈ R \ {r, r−}

15 ∇θi−r,i(µ∗, λ) += ∇m̂r
i (λ)

16 ∇m̂r ← 0 .zero-out
17 ∇mr += ∇m̂r .gather history gradients
18 ∇m̂r ← ∇mr .back message updates after iteration

2 Z. Xu et al.

Algorithm 4: Backpropagation of TRWP
Input: Partial energy parameters {θi,j}, gradients of final costs∇c = {∇ci(λ)}, tree

decomposition coefficients {ρi,j}, set of nodes V , edges E , directionsR, indices
{prk,i(λ)}, {qrk,i}, iteration number K.

Output: Gradients {∇θi,∇θi,j(·, ·)}.
1 ∇mr ← ∇Θi ← dc, dΘi,j ← 0 .back Eq. (7)
2 for iteration k ∈ {K, ..., 1} do
3 for direction r ∈ R do .sequential
4 forall scanlines t in direction r do .parallel
5 for node i in scanline t do .sequential
6 λ∗ ← qrk,i ∈ L .extract index
7 ∇mr

i (λ
∗) −=

∑
λ∈L∇m

r
i (λ) .back Eq. (5)

8 for label λ ∈ L do
9 µ∗ ← prk,i(λ) ∈ L .extract index

10 ∇θi−r(µ∗) += ρi−r,i∇mr
i (λ) .back Eq. (11)

11 ∇md
i−r(µ

∗) += ρi−r,i∇mr
i (λ), ∀d ∈ R

12 ∇mr−
i−r(µ

∗) −= ∇mr
i (λ)

13 ∇θi−r,i(µ∗, λ) += ∇mr
i (λ)

14 ∇mr ← 0 .zero-out

B Maintaining Energy Function in Iterations

With the same notations in Eq.(1) and Eq.(9) in the main paper, let a general energy
function in a MRF defined as

E(x|Θ) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θi,j(xi, xj) . (14)

In the standard SGM and ISGMR, given a node i and an edge from nodes j to i, the
message will be updated at kth iteration as follows,

mr,k+1
i (λ) = min

µ∈L

(
θi−r(µ) + θi−r,i(µ, λ) +mr,k+1

i−r (µ) +
∑

d∈R\{r,r−}

md,k
i−r(µ)

)
.

(15)
In Figure 7, however, if we add a term mi(λ) to node i at label λ via mji(λ) from node
j to node i at label λ, the same value should be subtracted along all edges connecting
this node i, that is ∀(i, j) ∈ E , in order to maintain the same Eq. (14) in optimization.
This supports the exclusion of r− from R in Eq. (15). This is important for multiple
iterations because the non-zero messages after the 1st iteration, as additional terms, will
change the energy function via Eq. (15). Hence, a simple combination of many standard
SGMs will change the energy function due to the lack of the subtraction above.

C Indexing First Nodes by Interpolation

Tree graphs contain horizontal, vertical, and diagonal (including symmetric, asymmet-
ric wide, and asymmetric narrow) trees, shown in Figure 8. Generally, the horizontal and

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 3

Fig. 7: Energy function maintained in iterative message passing. When adding a term
mji(λ) to node i at label λ, the same value should be subtracted on all edges connecting
node i at label λ.

vertical trees are for 4-connected graphs, symmetric trees are for 8-connected graphs,
and asymmetric trees are for more than 8-connected graphs, resulting in different ways
of indexing the first nodes for parallelization. In the following, we denote an image
size with height H and width W , coordinates of the first node in vertical and horizon-
tal directions as ph and pw respectively, and scanning steps in vertical and horizontal
directions as Sh and Sw respectively.

(a) (b) (c) (d) (e) (f)

Fig. 8: Multi-direction message passing(forward passing in 6 directions). (a) horizontal
trees. (b) vertical trees. (c) symmetric trees from up-left to down-right. (d) symmetric
trees from up-right to down-left. (e) asymmetric narrow trees with height and width
steps S = (Sh, Sw) = (2, 1). (f) asymmetric wide trees with S = (1, 2).

Horizontal and vertical graph trees. Coordinate of the first node of a horizontal and
vertical tree, p = (ph, pw), can be presented by (ph, 0) and (0, pw) respectively in the
forward pass, and (ph,W − 1) and (H − 1, pw) respectively in the backward pass.
Symmetric and asymmetric wide graph trees. Coordinate of the first node p =
(ph, pw) is calculated by

N =W + (H − 1) ∗ abs(Sw) ,
pw = [0 : N − 1]− (H − 1) ∗max (Sw, 0) ,

ph =

{
0 if Sh > 0 ,

H − 1 otherwise ,

(16)

where N is tree number, abs(∗) is absolution, and Ts is shifted indices of trees.
Asymmetric narrow graph trees. Coordinate of the first node p by interpolation is

calculated by

4 Z. Xu et al.

c1 = mod(Ts, abs(Sh)) ,

c2 =
float(Ts)

float(abs(Sh))
,

ph =

{
mod(abs(Sh)− c1, abs(Sh)) if Sw > 0 ,

c1 otherwise ,

ph = H − 1− ph if Sh < 0 ,

pw =

{
ceil(c2) if Sw > 0 ,

floor(c2) otherwise ,

(17)

where mod(∗) is modulo, floor(∗) and ceil(∗) are two integer approximations, float(∗)
is data conversion for single-precision floating-point values, and the rest share the same
notations in Eq. (16).

Although ISGMR and TRWP are parallelized over individual trees, message up-
dates on a tree are sequential. The interpolation for asymmetric diagonals avoids as
many redundant scanning as possible, shown in Figure 9. This is more practical for
realistic stereo image pairs that the width is much larger than the height.

(a) (b) (c)

Fig. 9: Interpolation in asymmetric graph trees in forward passing. (a) asymmetric wide
trees with steps S = (1, 2). (b) asymmetric narrow trees with S = (2, 1). (c) asym-
metric narrow trees with S = (3, 1). Red circles are first nodes of trees; large circles
are within image size; small circles are interpolated; o is axes center. Coordinates of
interpolations in (a) are integral; in (b)-(c) round to the nearest integers by Eq. (17).

D Differentiability of ISGMR

Below, we replace mr,k by mr and mr,k+1 by m̂r for simplicity. This is because from
the practical implementation, messages in direction r should be updated instead of al-
locating new memories in each iteration to avoid GPU memory increase. Thus, we only
use two variables mr and m̂r for messages before and after an iteration.

D.1 Explicit Representation of Forward Propagation

Since message update in ISGMR relies on recursively updated messages m̂r in each
scanning direction r and messages mr from all the other directions updated in the
previous iteration, an explicit ISGMR message update is

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 5

m̂r
i (λ) = min

µ∈L

(
θi−r(µ) + θi−r,i(µ, λ) + m̂r

i−r(µ) +
∑

d∈R\{r,r−}

md
i−r(µ)

)
,

∀i ∈ V,∀λ ∈ L,∀r ∈ R .

(18)

Applying message reparametrization by

m̂r
i (λ) = m̂r

i (λ)−min
k∈L

m̂r
i (k), ∀i ∈ V,∀λ ∈ L,∀r ∈ R . (19)

After updating messages in all directions within an iteration, we assign the updated
message m̂ to m by

mi(λ) = m̂i(λ), ∀i ∈ V,∀λ ∈ L . (20)

Eventually, after all iterations, unary potentials and updated messages from all direc-
tions will be aggregated by

ci(λ) = θi(λ) +
∑
d∈R

md
i (λ), ∀i ∈ V,∀λ ∈ L . (21)

Different from optimization with winner-takes-all for labelling in learning by xi =
argminλ∈Lci(λ),∀i ∈ V , a regression with disparity confidences calculated by the final
costs is used to fit with the real-valued ground truth disparities g = {gi},∀i ∈ V .
Generally, the disparity confidence fi(λ) with a normalization such as SoftMin() is
represented by

fi(λ) = SoftMin(ci(λ)), ∀i ∈ V,∀λ ∈ L , (22)

and the regression for real-valued disparity d = {di},∀i ∈ V is

di =
∑
λ∈L

λfi(λ),∀i ∈ V . (23)

The loss functionL(d,g) in learning can be standard L1 or smooth L1 loss function.

D.2 Derivations of Differentiability

Now we do backpropagation at kth iteration for learnable parameters {θi, θi,j}. With
the same notations in Section 4 in the main paper, {prk,i(λ)} and {qrk,i} are indices
stored in the forward propagation from message minimization and reparameterization
respectively, and∇∗ = dL/d∗.

D.2.1 Gradients of unary potentials
Proposition: Gradients of unary potentials {θi(λ)} are represented by

6 Z. Xu et al.

∇θi(λ) = ∇ci(λ) +
∑
v∈L

∑
r∈R
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

= ∇ci(λ) +
∑
v∈L

∑
r∈R

∑
µ∈L

(
∇m̂r

i+2r(µ)
∣∣
v=prk,i+2r(µ)

+
∑

d∈R\{r,r−}

∇md
i+r+d(µ)

∣∣
v=pdk,i+r+d(µ)

)∣∣∣
λ=prk,i+r(v)

.

(24)

Derivation:

The backpropagation from Eq. (23)-Eq. (18) is

∇θi(λ) =
dL

dθi(λ)

=
∑
j∈V

∑
v∈L

∂L

∂dj(v)

∂dj(v)

∂fj(v)

∂fj(v)

∂cj(v)

∂cj(v)

∂θi(λ)
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

(∂cj(v)
∂θj(v)

∂θj(v)

∂θi(λ)
+
∑
r∈R

∂cj(v)

∂mr
j(v)

∂mr
j(v)

∂θi(λ)

)
.back Eq. (21)

= ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇mr

j(v)
∂mr

j(v)

∂θi(λ)

= ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇mr

j(v)
∂mr

j(v)

∂m̂r
j(v)

∂m̂r
j(v)

∂θi(λ)
.back Eq. (20)

= ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂θi(λ)
.

(25)

With backpropagation of Eq. (19) using an implicit message reparametrization with
index v∗ = qrk,j at kth iteration,∇m̂r

j(v) in the second term above is updated by

∇m̂r
j(v)←

{
∇m̂r

j(v) if v 6= v∗ ,

−
∑
v′∈L\v∗ ∇m̂r

j(v
′
) otherwise .

(26)

Derivation of Eq. (26):

Explicit representation of Eq. (19) is m̃r
i (λ) = m̂r

i (λ)− m̂r
i (λ
∗), where λ∗ = qrk,i,

then we have

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 7

∇m̂r
i (λ) =

∂L

∂m̂r
i (λ)

=
∑
i′∈V

∑
λ′∈L

∂L

∂m̃r
i′
(λ′)

∂m̃r
i′
(λ
′
)

∂m̂r
i (λ)

=
∑
i′∈V

∑
λ′∈L

∂L

∂m̃r
i′
(λ′)

(∂m̃r
i′
(λ
′
)

∂m̂r
i′
(λ′)

∂m̂r
i′
(λ
′
)

∂m̂r
i (λ)

+
∂m̃r

i′
(λ
′
)

∂m̂r
i′
(λ∗)

∂m̂r
i′
(λ∗)

∂m̂r
i (λ)

)
=

∂L

∂m̃r
i (λ)

−
∑
λ′∈L

∂L

∂m̃i(λ
′)

∣∣∣∣
λ=λ∗

=

{
∇m̃r

i (λ) if λ 6= λ∗ ,

−
∑
λ′∈L\λ∗ ∇m̃r

i (λ
′
) otherwise .

(27)

Back to the implicit message reparametrization with∇m̃r replaced by∇m̂r, we have

∇m̂r
i (λ) =

{
∇m̂r

i (λ) if λ 6= λ∗ ,

−
∑
λ′∈L\λ∗ ∇m̂r

i (λ
′
) otherwise .

(28)

End of the derivation of Eq. (26).
Next, we continue the backpropagation through Eq. (18) for unary potentials as

∇θi(λ) = ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂θi(λ)
.from Eq. (25)

= ∇ci(λ) +
∑
v∈L

∑
r∈R
∇m̂r

i+r(v)
∂m̂r

i+r(v)

∂θi(λ)
.back Eq. (18) without recursion

= ∇ci(λ) +
∑
v∈L

∑
r∈R
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

. .satisfy argmin() rule in Eq. (18)

(29)
Derivation of ∇ci(λ) by backpropagation from the loss function, disparity regres-

sion, and SoftMin(), can be obtained by PyTorch autograd directly. For the readability of
derivations by avoiding using {mr

i+r(m
r
i (θi−r(λ))),m

r
i+2r(m

r
i+r(m

r
i (θi−r(λ)))), ...},

we do not write the recursion of gradients in the derivations. Below, we derive∇m̂r
i+r(v)

in the backpropagation.

D.2.2 Gradients of Messages
For notation readability, we first derive message gradient∇m̂r

i (λ) instead of∇m̂r
i+r(v).

Proposition: Gradients of messages {m̂r
i (λ)} are represented by

∇m̂r
i (λ) =

∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑

d∈R\{r,r−}

∇md
i+d(v)

∣∣
λ=pdk,i+d(v)

)
.

(30)

8 Z. Xu et al.

Derivation:

∇m̂r
i (λ) =

dL

dm̂r
i (λ)

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂m̂r
i (λ)

.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂r
i (λ)

.back Eq. (21)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂d
j (v)

∂m̂d
j (v)

∂m̂r
i (λ)

.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂m̂r
i (λ)

,

(31)
then we update∇m̂d

j (v) by Eq. (26) and continue as follows,

∇m̂r
i (λ) =

∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂m̂r
i (λ)

.from Eq. (31)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

(∑
λ′∈L

∂m̂d
j (v)

∂m̂d
j−d(λ

′)

∂m̂d
j−d(λ

′
)

∂m̂r
i (λ)

+
∑

d′∈R\{d,d−}

∑
λ′∈L

∂m̂d
j (v)

∂md′

j−d(λ
′)

∂md
′

j−d(λ
′
)

∂m̂r
i (λ)

)
.back Eq. (18)

=
∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑
d∈R

∑
d′∈R\{d,d−}

∑
λ′∈L

∇m̂d
j (v)

∂m̂d
j (v)

∂md′

j−d(λ
′)

∂md
′

j−d(λ
′
)

∂m̂r
i (λ)

)
.

(32)
Since md

′

j−d(λ
′
) is differentiable by m̂r

i (λ) due to Eq. (20) and, for ISGMR, message
gradients in directions except the current direction r come from the next iteration (since
in the forward propagation these messages come from the previous iteration), we have

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 9

∇m̂r
i (λ) =

∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑
d∈R

∑
d′∈R\{d,d−}

∑
λ′∈L

∇m̂d
j (v)

∂m̂d
j (v)

∂md′

j−d(λ
′)

∂md
′

j−d(λ
′
)

∂m̂r
i (λ)

)
.from Eq. (32)

=
∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑
d∈R

∇m̂d
i+d(v)

∂m̂d
i+d(v)

∂mr
i (λ)

∂mr
i (λ)

∂m̂r
i (λ)

∣∣∣∣∣
r 6∈{d,d−}

)
.due to Eq. (20)

=
∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑

d∈R\{r,r−}

∇md
i+d(v)

∣∣
λ=pdk,i+d(v)

)
.

(33)
Here, updating the message gradient at node i depends on its next node i + r along
the scanning direction r; this scanning direction is opposite to the forward scanning
direction, and thus, it depends on node i + r instead of i − r. Gradient of message
mr
i (λ) can be derived in the same way.

Now one can derive ∇m̂r
i+r(v) in the same manner of ∇m̂r

i (λ) and apply it to
Eq. (29) to obtain Eq. (24).

D.2.3 Gradient of Pairwise Potentials
Proposition: Gradients of pairwise potentials {θi−r,i(µ, λ)} are represented by

∇θi−r,i(µ, λ) = ∇m̂r
i (λ)|µ=prk,i(λ)

, ∀i ∈ V,∀r ∈ R,∀λ, µ ∈ L . (34)

Derivation:

∇θi−r,i(µ, λ) =
dL

dθi−r,i(µ, λ)

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂θi−r,i(µ, λ)
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂θi−r,i(µ, λ)
.back Eq. (21)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇cj(v)
∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i(µ, λ)
.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i(µ, λ)
.

(35)

10 Z. Xu et al.

Now we update∇m̂d
j (v) by Eq. (26). Then

∇θi−r,i(µ, λ) =
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i(µ, λ)
.from Eq. (35)

= ∇m̂r
i (λ)|µ=prk,i(λ)

. .back Eq. (18) without recursion

(36)
One can note that the memory requirement of {θi−r,i(µ, λ)} is 4

∑
r∈R |Er||L||L|

bytes using single-precision floating-point values. This will be high when the number
of disparities |L| is large. In practical, since the pairwise potentials can be decomposed
by θi,j(λ, µ) = θi,jV (λ, µ),∀(i, j) ∈ E ,∀λ, µ ∈ L with edge weights θi,j and a
pairwise function V (·, ·), it takes up 4(

∑
r∈R |Er| + |L||L|) bytes in total, which is

much less than 4
∑
r∈R |Er||L||L| above. Therefore, we additionally provide the gra-

dient derivations of these two terms, edge weights and pairwise functions, for practical
implementations of the backpropagation.

D.2.4 Gradient of Edge Weights
Proposition: Gradients of edge weights {θi−r,i} are represented by

∇θi−r,i =
∑
v∈L
∇m̂r

i (v)V (prk,i(v), v), ∀i ∈ V,∀r ∈ R . (37)

Derivation:

∇θi−r,i =
dL

dθi−r,i

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂θi−r,i
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂θi−r,i
.back Eq. (21)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇cj(v)
∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i
.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i
.

(38)
Again, before updating gradients of edge weights by Eq. (18), ∇m̂d

j (v) is updated by
Eq. (26). Then

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 11

∇θi−r,i =
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i
.from Eq. (38)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θj−d,j
V (pdk,j(v), v)

∂θj−d,j
∂θi−r,i

.back Eq. (18), no recursion

=
∑
v∈L
∇m̂r

i (v)V (prk,i(v), v) .

(39)

In the case that when edge weights are undirected, i.e., θi,j = θj,i, the derivations
above still hold, and if θi,j = θj,i are stored in the same tensor, ∇θi,j will be accumu-
lated by adding ∇θj,i for storing the gradient of this edge weight. This is also applied
to the gradient of pairwise potentials in Eq. (34) above.

D.2.5 Gradients of Pairwise Functions
Proposition: Gradients of a pairwise function V (·, ·) are

∇V (λ, µ) =
∑
j∈V

∑
r∈R

θj−r,j∇m̂r
j(µ)

∣∣
λ=prk,j(µ)

, ∀λ, µ ∈ L . (40)

Derivation:

∇V (λ, µ) =
dL

dV (λ, µ)

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂V (λ, µ)
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
r∈R

∂cj(v)

∂mr
j(v)

∂mr
j(v)

∂V (λ, µ)
.back Eq. (21)

=
∑
j∈V

∑
v∈L

∑
r∈R
∇cj(v)

∂cj(v)

∂mr
j(v)

∂mr
j(v)

∂m̂r
j(v)

∂m̂r
j(v)

∂V (λ, µ)
.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂V (λ, µ)
.

(41)

∇m̂r
j(v) is updated by Eq. (26). Then

12 Z. Xu et al.

∇V (λ, µ) =
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂V (λ, µ)
.from Eq. (41)

=
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∑
λ′∈L

∂m̂r
j(v)

∂V (λ′ , v)

∂V (λ
′
, v)

∂V (λ, µ)
.from Eq. (18)

=
∑
j∈V

∑
r∈R

θj−r,j∇m̂r
j(µ)

∣∣
λ=prk,j(µ)

.

(42)

D.3 Characteristics of Backpropagation

1. Accumulation. Since a message update usually has several components, its gradi-
ent is therefore accumulated when backpropagating through every component. For in-
stance, in Eq. (29), the gradient of unary potential∇θi(λ) has∇ci(λ) and∇m̂r

i+r(v),∀r ∈
R and ∀v satisfying λ = prk,i+r(v) at kth iteration. It is calculated recursively but not
at once due to multiple nodes on a tree, multiple directions, and multiple iterations. In
Eq. (33), the message gradient of a node relies on the gradient of all nodes after it in
the forward propagation since this message will be used to all the message updates after
this node.
2. Zero Out Gradients. Message gradients are not accumulated throughout the back-
propagation but should be zeroed out in some cases. In more details, in the forward
propagation, the repeated usage of mr and m̂r is for all iterations but the messages
are, in fact, new variables whenever they are updated. Since the gradient of a new mes-
sage must be initialized to 0, zeroing out the gradients of the new messages is im-
portant. Specifically, in ISGMR that within an iteration mr ← m̂r is executed only
when message updates in all directions are done. Thus, ∇mr must be zeroed out af-
ter ∇m̂r ← ∇mr. Similarly, after using ∇m̂r to update the gradients of learnable
parameters and messages,∇m̂r ← 0,∀r ∈ R.

D.4 PyTorch GPU version vs. our CUDA version

For the compared PyTorch GPU version, we highly paralleled individual trees in each
direction while sequential message updates in each tree (equally scanline) are iterative.
As Pytorch auto-grad is not customized for our min-sum message passing algorithms,
these iterative message updates require to allocate new GPU memory for each updated
message, which makes it very inefficient and memory-consuming. Its backpropagation
is slower since extra memory is needed to unroll the forward message passing to com-
pute gradients of messages and all intermediate variables that require gradients.

In contrast, our implementation is specific to the min-sum message passing. This
min-sum form greatly accelerates our backpropagation by updating gradients only re-
lated to the indices which are stored in pre-allocated GPU memory during forward pass
(line 10 in Alg. 1). For example, from node i to i + r in Fig. 2(a), forward pass needs
messages over 9 edges (grey lines); but only one (1 of 3 blue lines) from i + r to i re-
quires gradient updates in the backpropagation. This makes our CUDA implementation

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 13

much faster than the PyTorch GPU version, especially the backpropagation with at least
700× speed-up.

E Computational Complexity of Min-Sum & Sum-Product TRW

Given a graph with parameters {θi, θi,j}, maximum iteration K, set of edges {Er},
disparities L, directions R, computational complexities of min-sum and sum-product
TRW are shown below. For the efficient implementation, let θi,j(λ, µ) = θi,jV (λ, µ).

E.1 Computational Complexity of Min-Sum TRW

Representation of a message update in min-sum TRW is

mr
i (λ) = min

µ∈L

(
ρi−r,i

(
θi−r(µ) +

∑
d∈R

md
i−r(µ)

)
−mr−

i−r(µ) + θi−r,iV (µ, λ)
)
. (43)

In our case where the maximum disparity is less than 256, memory for the back-
propagatio of the min-sum TRW above is only for indices µ∗ = prk,i(λ) ∈ L from
message minimization with K

∑
r∈R |Er||L| bytes 8-bit unsigned integer values, as

well as for indices from message reparametrization with K
∑
r∈R |Er| bytes. In total,

the min-sum TRW needs K
∑
r∈R |Er| (|L|+ 1) bytes for the backpropagation.

E.2 Computational Complexity of Sum-Product TRW

Representation of a message update in sum-product TRW is

exp(−mr
i (λ)) =

∑
µ∈L

exp
(
− ρi−r,i

(
θi−r(µ) +

∑
d∈R

md
i−r(µ)

)
+mr−

i−r(µ)

− θi−r,iV (µ, λ)
)

=
∑
µ∈L

(
exp

(
− ρi−r,iθi−r(µ)

) ∏
d∈R

exp
(
− ρi−r,imd

i−r(µ)
)

exp(mr−

i−r(µ)) exp
(
− θi−r,iV (µ, λ)

))
.

(44)

Usually, it can be represented as

m̃r
i (λ) =

∑
µ∈L

(
exp
−ρi−r,iθi−r(µ)

1

∏
d∈R

(
m̃d
i−r(µ)2

)ρi−r,i 1

m̃r−
i−r(µ) 3

exp
−θi−r,i

4
V (µ,λ)

5

)
.

(45)
Problem 1: Numerical Overflow: For single-precision floating-point data, a valid nu-
merical range of x in exp(x) is less than around 88.7229; otherwise, it will be infinite.
Therefore, for the exponential index in Eq. (44), a numerical overflow will happen quite
easily. One solution is to reparametrize these messages to a small range, such as [0, 1],

14 Z. Xu et al.

in the same manner as SoftMax(), which requires logarithm to find the maximum index,
followed by exponential operations.
Problem 2: Low efficiency OR high memory requirement in backpropagation: In
the backpropagation, due to the factorization in Eq. (45), it needs to rerun the forward
propagation to calculate intermediate values OR store all these values in the forward
propagation. However, the former makes the backpropagation at least as slow as the
forward propagation while the later requires a large memory,
K
∑
r∈R |Er||L| (8|L|+ 4|R||L|+ 4) bytes single-precision floating-point values.

Derivation:
For one message update in Eq. (45), the gradient calculation of terms 1,2-3,4,5

(underlined) requires 4×{|L|, |R||L|, 1, |L|} bytes respectively. ForK iterations, set of
directions R, edges {Er}, ∀r ∈ R, it requires K

∑
r∈R |Er||L| (8|L|+ 4|R||L|+ 4)

bytes in total. This is in O(|R||L|) order higher than the memory requirement in the
min-sum TRW memory requirement, K

∑
r∈R |Er| (|L|+ 1) bytes.

F Additional Evaluations

F.1 More Evaluations with Constant Edge Weights

More results from the main experiments are given in Tables 6-7.

Table 6: Energy minimization on Middlebury with constant edge weights. For Map,
ISGMR-4 has the lowest energy among ISGMR-related methods; for others, ISGMR-8
and TRWP-4 have the lowest energies in ISGMR-related and TRWP-related methods
respectively. ISGMR is more effective than SGM in optimization, and TRWP-4 outper-
forms MF and SGM.

Method Tsukuba Teddy Venus Cones Map
1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter

MF-4 3121704 1620524 3206347 2583784 108494928 14618819 9686122 6379392 1116641 363221
SGM-4 873777 644840 2825535 2559016 5119933 2637164 3697880 3170715 255054 216713
TRWS-4 352178 314393 1855625 1807423 1325651 1219774 2415087 2329324 150853 143197
ISGMR-4 (ours) 824694 637996 2626648 1898641 4595032 1964032 3296594 2473646 215875 148049
TRWP-4 (ours) 869363 314037 2234163 1806990 32896024 1292619 3284868 2329343 192200 143364

MF-8 2322139 504815 3244710 2545226 68718520 2920117 7762269 3553975 840615 213827
SGM-8 776706 574758 2868131 2728682 4651016 2559933 3631020 3309643 243058 222678
ISGMR-8 (ours) 684185 340347 2532071 1847833 4062167 1285330 3039638 2398060 195718 149857
TRWP-8 (ours) 496727 348447 1981582 1849287 8736569 1347060 2654033 2396257 162432 151970
MF-16 1979155 404404 3315900 2622047 43077872 1981096 6741127 3062965 638753 204737
SGM-16 710727 587376 2907051 2846133 4081905 2720669 3564423 3413752 242932 232875
ISGMR-16 (ours) 591554 377427 2453592 1956343 3222851 1396914 2866149 2595487 190847 165249
TRWP-16 (ours) 402033 396036 1935791 1976839 2636413 1486880 2524566 2660964 162655 164704

F.2 More Visualizations for Image Denoising

We provide more visualizations of image denoising on “Penguin” and “House” in Fig-
ures 10-11 corresponding to Table 2 in the main paper.

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 15

Table 7: Energy minimization on 3 image pairs of KITTI2015 and 2 of ETH-3D with
constant edge weights. ISGMR is more effective than SGM in optimization in both
single and multiple iterations, and TRWP-4 outperforms MF and SGM.

Method 000002 11 000041 10 000119 10 delivery area 1l facade 1s
1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter

MF-4 82523536 44410056 69894016 36163508 72659040 42392548 19945352 9013862 13299859 6681882
SGM-4 24343250 18060026 15926416 12141643 24999424 18595020 5851489 4267990 1797314 1429254
TRWS-4 9109976 8322635 6876291 6491169 10811576 9669367 1628879 1534961 891282 851273
ISGMR-4 (ours) 22259606 12659612 14434318 9984545 23180608 18541970 5282024 2212106 1572377 980151
TRWP-4 (ours) 40473776 8385450 30399548 6528642 36873904 9765540 9899787 1546795 2851700 854552
MF-8 61157072 18416536 53302252 16473121 57201868 21320892 16581587 4510834 10978978 3422296
SGM-8 20324684 16406781 13740635 11671740 20771096 16652122 5396353 4428411 1717285 1464208
ISGMR-8 (ours) 17489158 8753990 11802603 6639570 18411930 10173513 4474404 1571528 1438210 884241
TRWP-8 (ours) 18424062 8860552 13319964 6678844 20581640 10445172 4443931 1587917 1358270 889907
MF-16 46614232 14192750 40838292 12974839 44706364 16708809 13223338 3229021 9189592 2631006
SGM-16 18893122 16791762 13252150 12162330 19284684 16936852 5092094 4611821 1670997 1535778
ISGMR-16 (ours) 15455787 9556611 10731068 6806150 16608803 11037483 3689863 1594877 1324235 937102
TRWP-16 (ours) 11239113 9736704 8187380 6895937 13602307 11309673 2261402 1630973 1000985 950607

(a) noisy (b) GT (c) MF-4 (d) MF-8 (e) MF-16

(f) SGM-4 (g) SGM-8 (h) SGM-16 (i) TRWS-4 (j) ISGMR-4

(k) ISGMR-8 (l) ISGMR-16 (m) TRWP-4 (n) TRWP-8 (o) TRWP-16

Fig. 10: Visualization of MRF inferences for image denoising on “Penguin”.

16 Z. Xu et al.

(a) noisy (b) GT (c) MF-4 (d) MF-8 (e) MF-16

(f) SGM-4 (g) SGM-8 (h) SGM-16 (i) TRWS-4 (j) ISGMR-4

(k) ISGMR-8 (l) ISGMR-16 (m) TRWP-4 (n) TRWP-8 (o) TRWP-16

Fig. 11: Visualization of MRF inferences for image denoising on “House”.

	Fast and Differentiable Message Passing on Pairwise Markov Random Fields – Supplementary Material –

