Fast and Differentiable Message Passing on
Pairwise Markov Random Fields
— Supplementary Material —

Zhiwei Xu'-2[0000-0001-8283-6095] Thalaivasingam Ajanthan! [0000—0002—6431-0775]

and Richard Hartleyl [0000—0002—5005—0191]
L Australian National University and Australian Centre for Robotic Vision

2 Data61, CSIRO, Canberra, Australia
{firstname.lastname}@anu.edu.au

A Pseudocode of Backpropagation of ISGMR and TRWP

Due to the limited space of the main paper, we provide the pseudocode of backpropa-
gation of ISGMR and TRWP in this appendix, in Algorithms 3}{4] respectively.

Algorithm 3: Backpropagation of ISGMR
Input: Partial energy parameters {0; ; }, gradients of final costs Vc = {V¢;(A)}, set of
nodes V, edges &, directions R, indices {p}, ;(\)}, {gx,;}. iteration number K.
We replace V""" by V™ and Vm™* by Vm” for simplicity.
Output: Gradients {V60;, V0, ;(-,-)}.

1 Vm' < V0O; < Ve, VO;; <0 >back Eq. (7)
2 Vm'* + Vm”" >back message updates
3 for iteration k € {K, ..., 1} do

4 Vm" + 0 >zero-out
5 forall directions r € R do >parallel
6 forall scanlines ¢ in direction do >parallel
7 for node ¢ in scanline ¢ do >sequential
8 N—qr, €L >extract index
9 Ving (A*) == > \er Vi (M) >back Eq. (5)
10 for label A € £ do

11 p—=pri(N) el >extract index
12 VO—r (") += Vi () >back Eq. (9)
13 Vil (u*) += Vil (A)

14 Vmi_ (u*) += Vil (\),¥d € R\ {r,r~}

15 V@i,m-(,u*,)\) += Vm:()\)

16 vm" < 0 >zero-out

17 Vm" +=Vm" >gather history gradients

18 vm” < Vm" >back message updates after iteration

2 Z. Xu et al.

Algorithm 4: Backpropagation of TRWP

Input: Partial energy parameters {6; ; }, gradients of final costs Ve = {V¢; (M)}, tree
decomposition coefficients {p; ; }, set of nodes V, edges &, directions R, indices
{pk,:(M)}, {qx i}, iteration number K.

Output: Gradients {V68;, V0, ;(-,-)}.

1 Vm" < VO; < dc,d®;; + 0 >back Eq. (7)
2 for iteration k € {K,...,1} do
3 for direction 7 € R do >sequential
4 forall scanlines ¢ in direction r do >parallel
5 for node ¢ in scanline ¢ do >sequential
6 Ne—qp, €L >extract index
7 Vmi(A*) == > VMi(A) >back Eq. (5)
8 for label A € £ do
9 = ppi(A) €L >extract index
10 VOi—r (™) += pi—riVmj(X) >back Eq. (11)
1 Vmi_,(u*) += pi—riVmi(\),Vd € R
2 Vi (u7) —= Vi (\)
13 VOi—ri(1*, A) += Vmi(A)
14 Vm" < 0 >zero-out

B Maintaining Energy Function in Iterations

With the same notations in Eq.(1) and Eq.(9) in the main paper, let a general energy
function in a MRF defined as

Ex|®) =) 6i(z:i)+ Y 0;;(zi,z;). (14)

i€V (i,5)€€

In the standard SGM and ISGMR, given a node ¢ and an edge from nodes j to ¢, the
message will be updated at kth iteration as follows,

mp P O) = min (0 () + O) + P () 4 Y0 mi ()
pneL
deR\{r,r—}

15)
In Figure[7} however, if we add a term m;(\) to node ¢ at label X via m;(A) from node
7 to node 7 at label A, the same value should be subtracted along all edges connecting
this node 4, that is (i, j) € &, in order to maintain the same Eq. in optimization.
This supports the exclusion of r~ from R in Eq. . This is important for multiple
iterations because the non-zero messages after the 1st iteration, as additional terms, will
change the energy function via Eq. (I5). Hence, a simple combination of many standard
SGMs will change the energy function due to the lack of the subtraction above.

C Indexing First Nodes by Interpolation

Tree graphs contain horizontal, vertical, and diagonal (including symmetric, asymmet-
ric wide, and asymmetric narrow) trees, shown in Figure Generally, the horizontal and

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 3

L-1 L-1
o —mu(n) o
[] [] + ,()\
o —mag el
: _mﬂ(}\‘) :
[] []
0 0
j i

Fig.7: Energy function maintained in iterative message passing. When adding a term
m;;(A) to node 7 at label A, the same value should be subtracted on all edges connecting
node ¢ at label \.

vertical trees are for 4-connected graphs, symmetric trees are for 8-connected graphs,
and asymmetric trees are for more than 8-connected graphs, resulting in different ways
of indexing the first nodes for parallelization. In the following, we denote an image
size with height H and width W, coordinates of the first node in vertical and horizon-
tal directions as p;, and p,, respectively, and scanning steps in vertical and horizontal
directions as Sy, and .S,, respectively.

(a) (b) (© (d (e) ®

Fig. 8: Multi-direction message passing(forward passing in 6 directions). (a) horizontal
trees. (b) vertical trees. (c) symmetric trees from up-left to down-right. (d) symmetric
trees from up-right to down-left. (e) asymmetric narrow trees with height and width
steps S = (Sh, Sw) = (2, 1). (f) asymmetric wide trees with S = (1, 2).

Horizontal and vertical graph trees. Coordinate of the first node of a horizontal and
vertical tree, p = (pn, pw), can be presented by (py, 0) and (0, p,,) respectively in the
forward pass, and (py, W — 1) and (H — 1, p,,) respectively in the backward pass.
Symmetric and asymmetric wide graph trees. Coordinate of the first node p =
(ph, Dw) is calculated by

N=W +(H —1)*abs(S,) ,
pw=[0:N—1]— (H — 1) *xmax (S,,0) ,

(16)
{0 if S, >0,
Ph =

H —1 otherwise ,

where N is tree number, abs(x) is absolution, and T’ is shifted indices of trees.
Asymmetric narrow graph trees. Coordinate of the first node p by interpolation is
calculated by

4 Z. Xu et al.

¢1 = mod(T}, abs(Sy)) ,

~ float(Ty)
2~ Hoat(abs(Sy)) ’
) mod(abs(Sp) — c1,abs(Sy)) if Sy >0,
e otherwise , a7

ph:H—l—phifSh<0,

_Jceil(cz) if Sy >0,
v floor(cy) otherwise ,

where mod () is modulo, floor(x) and ceil(x) are two integer approximations, float()
is data conversion for single-precision floating-point values, and the rest share the same
notations in Eq. (T6).

Although ISGMR and TRWP are parallelized over individual trees, message up-
dates on a tree are sequential. The interpolation for asymmetric diagonals avoids as
many redundant scanning as possible, shown in Figure 0] This is more practical for
realistic stereo image pairs that the width is much larger than the height.

Vi ... 80000 V.8 e 000 7 S eee
T\ 0\ \0\0\V o\ \0\ \0\\0\\®
0\ \e\\e\\e\\®

(a) (b) (©)

Fig. 9: Interpolation in asymmetric graph trees in forward passing. (a) asymmetric wide
trees with steps S = (1,2). (b) asymmetric narrow trees with S = (2, 1). (c) asym-
metric narrow trees with S = (3,1). Red circles are first nodes of trees; large circles
are within image size; small circles are interpolated; o is axes center. Coordinates of
interpolations in (a) are integral; in (b)-(c) round to the nearest integers by Eq. .

D Differentiability of ISGMR

Below, we replace m™* by m” and m™**+1 by 7n" for simplicity. This is because from

the practical implementation, messages in direction 7 should be updated instead of al-
locating new memories in each iteration to avoid GPU memory increase. Thus, we only
use two variables m” and m" for messages before and after an iteration.

D.1 Explicit Representation of Forward Propagation

Since message update in ISGMR relies on recursively updated messages m” in each
scanning direction r and messages m” from all the other directions updated in the
previous iteration, an explicit ISGMR message update is

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 5

(A = min (0 (1) + Oimpi(, \) 0 () + Y mil (),

e dER\{rr—} (18)
VieV,YAe LVreR.
Applying message reparametrization by
mi(A) =m;(A\) —minml (k), Vie V,VAeLVreR. (19)

kel

After updating messages in all directions within an iteration, we assign the updated
message m to m by

mz()\) = ’ﬁ’ll()\), Vie V,.VAe L. (20)

Eventually, after all iterations, unary potentials and updated messages from all direc-
tions will be aggregated by

c(N) =0;(\) + Y _mi(\), VieV,ViecL. @1
deR
Different from optimization with winner-takes-all for labelling in learning by x; =
argmin, . ~¢;(\), Vi € V, aregression with disparity confidences calculated by the final
costs is used to fit with the real-valued ground truth disparities g = {g¢;},Vi € V.
Generally, the disparity confidence f;(A) with a normalization such as SoftMin() is
represented by

fi(\) = SoftMin(c;())), VieV,VAe L, (22)
and the regression for real-valued disparity d = {d;},Vi € V is
di =Y Mi(\),YieV. 23)
AeL

The loss function L(d, g) in learning can be standard L1 or smooth L1 loss function.

D.2 Derivations of Differentiability

Now we do backpropagation at kth iteration for learnable parameters {6;, 6; ; }. With
the same notations in Section 4 in the main paper, {p; ;(A)} and {qj ;} are indices
stored in the forward propagation from message minimization and reparameterization
respectively, and Vx = dL/dx.

D.2.1 Gradients of unary potentials
Proposition: Gradients of unary potentials {6;(\)} are represented by

6 Z.Xuet al.

Vo;(\) = Ve (M) + Z Z Vi ()|/\:P2,i+r(”)

vELTER

=Vei(\) + Z Z Z (Vi o, (1 v =] 1r2n () (24)

vELTER peL

+ Z vmg+r+d (M) |

—nd .
V=Pk,i+ +d(“))‘)\: ro
deR\{r,r—1} e Phitr(®)

Derivation:

The backpropagation from Eq. 23)-Eq. (I8) is

V() = d:(L N
N oL g;zc z) af; E:; g;; 83 >back Eq. (23)-Eq.
JEV ve[, J i
dcj(v) 90;(v) dcj(v) Omj(v)
_g};v (8, (v) 96; ()\)‘f'reznamg(v) 591(/\)) Dbacqu.

= Ve + Y3 V(o r(”))

jeEVveL TER

j(v) O
= Vei(A) + Z Z Z Vm amJ (v) W(/\) >back Eq.
()

JEVVELTER

=Va(\)+>) > vl 5

JjEVvELTER

(25)

With backpropagation of Eq. (I9) using an implicit message reparametrization with
index v* = ¢y ; at kth iteration, Vi (v) in the second term above is updated by

Vint() « 4 75 , HvE, (26)
J =2 v er\er VIj(v) otherwise .

Derivation of Eq. (26)):
Explicit representation of Eq. is mj (A) = mj () — mj (A*), where A* = g,
then we have

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 7

oL
amr (\)

8L w7 (\)
- Z Z el ()
i'ev N EL‘, Z

ZZa

i'eviecL

oL
i Zﬁ Ois(N)

Vi (A) =

(aww(')6ﬁw(X)%_aﬁ@(X)aﬁ@(Aw)
it (V) Omf(\) " oy, (A1) omf(x)) @D

A=A
Vi (A) i\ £ A
=D Neow VI (\') otherwise .

Back to the implicit message reparametrization with V" replaced by V", we have

Q):{vmﬁm PN A A

V! /
m - ZA’GL\A* VmI(A) otherwise .

3

(28)

End of the derivation of Eq. (26)).
Next, we continue the backpropagation through Eq. (I8) for unary potentials as

VO;(A) = Ve (N) + Z Z Z Vi (v)) >from Eq.

jeEVveLTER

T
(v

= Vei(A) + Z Z Vi, (v 392—27;5)) >back Eq. without recursion
7

vELTER

= Ve (\) + Z Z VmH_r)|>\:P2 () >satisfy argmin() rule in Eq.
veELTER ' 29
(29)

Derivation of V¢;(\) by backpropagation from the loss function, disparity regres-
sion, and SoftMin(), can be obtained by PyTorch autograd directly. For the readability of
derivations by avoiding using {m; .(mj (0;—()))), m} o, (mi.(m](0;i—r(N)))), ...},
we do not write the recursion of gradients in the derivations. Below, we derive V[, ,.(v)
in the backpropagation.

D.2.2 Gradients of Messages
For notation readability, we first derive message gradient Viinj (A) instead of Vinj, . (v).
Proposition: Gradients of messages {/} ()} are represented by

Vi) = 3 (Vi Oy ot Y I)
vel ’ deR\{r,r~} ’
(30

8 Z.Xuet al.

Derivation:
cry _dL
Vi) = 2y
= Z Z Ve;(v ac] v) pback Eq. -Eq. (22)
JEVvEL)
dc;(v) Oml(v)
= Z Z Ve, (v) J — i >back Eq.
jeEVvEL 8m () amz ()\)
dc;j(v) Ome(v) 9 (v)
= Ve;(v) J 2 — >back Eq. (20)
J;M;ﬁ ’ i Omf(v) Oms(v) Oy (N)

d
DM W RLHERCT
JEVvELAER 8m M)
(€2Y)
then we update V74 (v) by Eq. and continue as follows,

om d
Z Z Z Vm 3mi EZ; >from Eq.
JEVvel der

’

A amd(v) amd_,(\)
RRBRLT Zﬁ o, (\)

ST
JEVvEL dER o (A)

/

<) amy_y(\)
+ Z Z 3m 87;1;()\)) >back Eq.

d eR\{d,d~} N €L

=3 (Vi (0 !A_pk)

veL

Ad(“) om ;ld(/\)
+Z Z ZVm i (0)

dER ¢ eR\{d,d~} N €L am] a\))

(32)
Since m‘f_ d()\l) is differentiable by /] (\) due to Eq. lb and, for ISGMR, message
gradients in directions except the current direction r come from the next iteration (since
in the forward propagation these messages come from the previous iteration), we have

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 9

Vi) = Y (Vi)]y

veL

4 omd(v) 8m?7d()\/)
P 2 2 VOGO)

deER ' eR\{d,d~} N €L

= Z (vm2+r(v)|/\:p;,i+r(v)

veL

) >from Eq.

~d 3 .
+ Z Ving, 4(v) amr (N dmr (V) >due to Eq.

deR g

= Z < Vm;ﬂ(””,\:p;ym(v)

veL

d
+ Z Vmi, 4(v) h:pg ira(®)) ‘
deR\{r,r—} ,

(33)

Here, updating the message gradient at node ¢ depends on its next node ¢ + r along

the scanning direction r; this scanning direction is opposite to the forward scanning

direction, and thus, it depends on node ¢ + r instead of ¢ — r. Gradient of message
m} (A) can be derived in the same way.

Now one can derive Vi, .(v) in the same manner of Vi () and apply it to

Eq. (29) to obtain Eq. (24).

D.2.3 Gradient of Pairwise Potentials
Proposition: Gradients of pairwise potentials {6;_, ; (i, A)} are represented by

VOi_ri(u, N) = Vm:()‘)lu:pi,i(%) , YieV,VreR,VA\peLl. (34)

Derivation:

dL
VoD = o un)
e
- Z Z Vej (U)aoc]((v))\) >back Eq. (23)-Eq.
JEVVEL i—rilH
dc;(v) Omd(v)
- Ve;(v) : . >back Eq.
g;/veza deZR am?(“) 00y i(p,)
dc;(v) Omi(v) omd(v)
- Z Z Z Vej(v) 5 — ! pback Eq.
JEVvELIER 8mj (v) 8mj (v) 00 —ri(p1, A)
dind(v)
ST Y vt
Siactag T 1 00imra(uA)

(33)

10 Z.Xuet al.

Now we update V7ng(v) by Eq. . Then

VOi—ri(p, A Z Z Z Vm 391”((1}))\) >from Eq.
jeEVveLdeR

= Vm;()\)bt:ph(/\) . >back Eq. without recursion
(36)

One can note that the memory requirement of {6; . ; (1, \)} is 4> 5 [E"|[L]|L]
bytes using single-precision floating-point values. This will be high when the number
of disparities |£] is large. In practical, since the pairwise potentials can be decomposed
by 0;; (A p) = 6,,;V(\), V(i,5) € VA pn € L with edge weights 0, ; and a
pairwise function V(-,-), it takes up 4(3, o |€"| + |£]|L]) bytes in total, which is
much less than 4 Y . |E"[|L||L] above. Therefore, we additionally provide the gra-
dient derivations of these two terms, edge weights and pairwise functions, for practical

implementations of the backpropagation.

D.2.4 Gradient of Edge Weights
Proposition: Gradients of edge weights {6,_,.;} are represented by

Vbiori =Y Vi)V (pf(v).v), VieV.vreR. 37
veLl
Derivation:
dL
Oi—ri =
Vi-r, ddi_,.;
_ Z Z VC 5'63) >back Eq. 'EQ-
J 8974 T, Z
JEVvEL
omd
_ Z Z Ve, 8(:](v) 87;1 (U) >back Eq.
jEVveEL "() OBirs

acj v) Omd(v) (o)

_ Z Z Z Ve, o) 3m @) 892‘]—r,i >back Eq.

JEVvELIER

d()
=22) Vi) g

JEVvELIER

(38)
Again, before updating gradients of edge weights by Eq. , Vm;l(v) is updated by
Eq. 26). Then

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 11

d
Vo,;_ M—ZZZVm 89 () l>fr0mEq.

JEVvELIER

(U) d ae#d,' .
= Z Z Z Vin 80 ”y V(pg.;(v), v)ﬁ >back Eq. , no recursion

JEVvELIER

—va V(p,i(v),v) -

veLl

(39)

In the case that when edge weights are undirected, i.e., 0; ; = 0; ;, the derivations
above still hold, and if 6; ; = 0, ; are stored in the same tensor, V6, ; will be accumu-
lated by adding V§; ; for storing the gradient of this edge weight. This is also applied
to the gradient of pairwise potentials in Eq. (34) above.

D.2.5 Gradients of Pairwise Functions

Proposition: Gradients of a pairwise function V (-, -) are

=22 Oira Vil (s VAHEL. 40)
JEVTER
Derivation:
dL
YV =t
80] v)
- Z Z Ve; aV 1) >back Eq. -Eq.
JEVvEL
ac (v) Om}(v)
- Z Z Vej(v . : >back Eq.
jEVveL m’;(v) OV (A,)
86 (v) 8mr-() om’(v)
- Z Z Z Ve, . s pback Eq.
JEVvELTER m’;(v) 9 (v) OV (A,)

. i (v)
— Vi (
ZZZR Dt
41)

Vi (v) is updated by Eq. (26). Then

12 Z. Xu et al.

Z Z Z Vi (8V /\(12) >from Eq.

JEVvELTER

_ZZZVAT Z 3‘//\1}11 3V(()) l>fromEq. 42)

JEVvELTrER

— Z Z 05— Vi (1 ’A:p;,j(u) '

JEVTreR

D.3 Characteristics of Backpropagation

1. Accumulation. Since a message update usually has several components, its gradi-
ent is therefore accumulated when backpropagating through every component. For in-
stance, in Eq. , the gradient of unary potential V6;(\) has V¢;(A) and Vi, . (v),Vr €
R and Vv satisfying A = pj. ; +(v) at kth iteration. It is calculated recursively but not
at once due to multiple nodes on a tree, multiple directions, and multiple iterations. In
Eq. (33), the message gradient of a node relies on the gradient of all nodes after it in
the forward propagation since this message will be used to all the message updates after
this node.

2. Zero Out Gradients. Message gradients are not accumulated throughout the back-
propagation but should be zeroed out in some cases. In more details, in the forward
propagation, the repeated usage of m™ and m?" is for all iterations but the messages
are, in fact, new variables whenever they are updated. Since the gradient of a new mes-
sage must be initialized to 0, zeroing out the gradients of the new messages is im-
portant. Specifically, in ISGMR that within an iteration m* < m" is executed only
when message updates in all directions are done. Thus, Vm" must be zeroed out af-
ter Vm* < Vm?’. Similarly, after using Vim"* to update the gradients of learnable
parameters and messages, Vim® < 0,Vr € R.

D.4 PyTorch GPU version vs. our CUDA version

For the compared PyTorch GPU version, we highly paralleled individual trees in each
direction while sequential message updates in each tree (equally scanline) are iterative.
As Pytorch auto-grad is not customized for our min-sum message passing algorithms,
these iterative message updates require to allocate new GPU memory for each updated
message, which makes it very inefficient and memory-consuming. Its backpropagation
is slower since extra memory is needed to unroll the forward message passing to com-
pute gradients of messages and all intermediate variables that require gradients.

In contrast, our implementation is specific to the min-sum message passing. This
min-sum form greatly accelerates our backpropagation by updating gradients only re-
lated to the indices which are stored in pre-allocated GPU memory during forward pass
(line 10 in Alg. 1). For example, from node 7 to ¢ + r in Fig. 2(a), forward pass needs
messages over 9 edges (grey lines); but only one (1 of 3 blue lines) from ¢ + r to ¢ re-
quires gradient updates in the backpropagation. This makes our CUDA implementation

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 13

much faster than the PyTorch GPU version, especially the backpropagation with at least
700x speed-up.

E Computational Complexity of Min-Sum & Sum-Product TRW

Given a graph with parameters {6;,6; ;}, maximum iteration K, set of edges {£"},
disparities £, directions R, computational complexities of min-sum and sum-product
TRW are shown below. For the efficient implementation, let 6; ;(\, i) = 0; ;V (A,).

E.1 Computational Complexity of Min-Sum TRW

Representation of a message update in min-sum TRW is

mj(A\) = mln(pl rilfie +Zm () —mi_ () + 0V (u,)) (43)

deR

In our case where the maximum disparity is less than 256, memory for the back-
propagatio of the min-sum TRW above is only for indices p* = pzyi()\) € L from
message minimization with K) . |E"||L| bytes 8-bit unsigned integer values, as
well as for indices from message reparametrization with K) . |£"| bytes. In total,
the min-sum TRW needs K) | _ || (|£| + 1) bytes for the backpropagation.

E.2 Computational Complexity of Sum-Product TRW
Representation of a message update in sum-product TRW is

exp Z exXp (Pi— rz z + Z m r + m::r(:u’)

pneL deR

—0i—r iV (1, A))

= Z (eXp — Pi— rz i— r H EXP Pifr,imgfr(u))

HEL deR

exp(mi_, (1) exp (— bi iV (1, 1))

(44)

Usually, it can be represented as

i) = 3 (exp P TT (i (),)" o exp P Y,)

pel dER i—r(1) 3
(45)

Problem 1: Numerical Overflow: For single-precision floating-point data, a valid nu-
merical range of x in exp(z) is less than around 88.7229; otherwise, it will be infinite.
Therefore, for the exponential index in Eq. (#4), a numerical overflow will happen quite
easily. One solution is to reparametrize these messages to a small range, such as [0, 1],

14 Z. Xu et al.

in the same manner as SoftMax(), which requires logarithm to find the maximum index,
followed by exponential operations.

Problem 2: Low efficiency OR high memory requirement in backpropagation: In
the backpropagation, due to the factorization in Eq. (43), it needs to rerun the forward
propagation to calculate intermediate values OR store all these values in the forward
propagation. However, the former makes the backpropagation at least as slow as the
forward propagation while the later requires a large memory,

K cr IETIL] (8| L] + 4|R||L] 4 4) bytes single-precision floating-point values.
Derivation:

For one message update in Eq. @]), the gradient calculation of terms 1,2-3,4,5
(underlined) requires 4 x {|L|, |R||£L]|, 1, | L|} bytes respectively. For K iterations, set of
directions R, edges {E"}, Vr € R, it requires K) _» |E7||L] (8|L| 4+ 4|R||L] + 4)
bytes in total. This is in O(|R||£]) order higher than the memory requirement in the
min-sum TRW memory requirement, K >~ [E7] (|| + 1) bytes.

F Additional Evaluations

F.1 More Evaluations with Constant Edge Weights

More results from the main experiments are given in Tables

Table 6: Energy minimization on Middlebury with constant edge weights. For Map,
ISGMR-4 has the lowest energy among ISGMR-related methods; for others, ISGMR-8
and TRWP-4 have the lowest energies in ISGMR-related and TRWP-related methods
respectively. ISGMR is more effective than SGM in optimization, and TRWP-4 outper-
forms MF and SGM.

Method Tsukuba Teddy Venus Cones Map
liter [SOiter | liter [50iter | Titer | 50iter | Liter [50iter | 1iter [50 iter
MF-4 3121704[1620524|3206347(2583784|108494928|14618819|9686122(6379392|1116641|363221
SGM-4 873777| 644840(2825535|2559016| 5119933| 2637164(3697880|3170715| 255054216713
TRWS-4 352178| 314393|1855625|1807423| 1325651| 1219774|2415087|2329324| 150853|143197

ISGMR-4 (ours) || 824694| 637996|2626648|1898641| 4595032| 1964032|3296594|2473646| 215875|148049
TRWP-4 (ours) 869363| 314037|2234163|1806990| 32896024| 1292619|3284868|2329343| 192200|143364

MF-8 2322139| 504815|3244710{2545226| 68718520| 2920117|7762269|3553975| 840615|213827
SGM-8 776706| 574758|2868131|2728682| 4651016 2559933|3631020|3309643| 243058|222678
ISGMR-8 (ours) || 684185| 340347|2532071|1847833| 4062167| 1285330(3039638|2398060| 195718|149857
TRWP-8 (ours) 496727| 348447|1981582|1849287| 8736569| 1347060(2654033|2396257| 162432|151970
MF-16 1979155| 404404|3315900(2622047| 43077872| 1981096|6741127|3062965| 638753|204737
SGM-16 710727| 587376|2907051|2846133| 4081905| 2720669|3564423|3413752| 242932|232875
ISGMR-16 (ours)|| 591554| 377427|2453592|1956343| 3222851| 1396914|2866149|2595487| 190847|165249
TRWP-16 (ours) || 402033 396036(1935791|1976839| 2636413| 1486880|2524566|2660964| 162655|164704

F.2 More Visualizations for Image Denoising

We provide more visualizations of image denoising on “Penguin” and “House” in Fig-
ures corresponding to Table 2 in the main paper.

Fast and Differentiable Message Passing on Pairwise Markov Random Fields 15

Table 7: Energy minimization on 3 image pairs of KITTI2015 and 2 of ETH-3D with
constant edge weights. ISGMR is more effective than SGM in optimization in both
single and multiple iterations, and TRWP-4 outperforms MF and SGM.

Method [00000211 [00004110 | 000119_10 [delivery area 1l [facade_1s
| liter [SOiter | Tliter | S0iter | liter [50iter | liter [50iter | TLiter [50 iter
MF-4 82523536(44410056|69894016|36163508|72659040(42392548(19945352(9013862(13299859 6681882
SGM-4 24343250|18060026(15926416|12141643|24999424118595020| 5851489(4267990| 1797314|1429254
TRWS-4 9109976| 8322635| 6876291| 6491169|10811576| 9669367| 1628879|1534961| 891282| 851273

ISGMR-4 (ours) ||22259606(12659612(14434318| 9984545|23180608|18541970| 5282024 (2212106| 1572377| 980151
TRWP-4 (ours) ||40473776| 8385450|30399548| 6528642|36873904| 9765540| 9899787|1546795| 2851700| 854552
MF-8 61157072|18416536|53302252|16473121|57201868|21320892|16581587|4510834|10978978 3422296
SGM-8 20324684 |16406781|13740635|11671740|20771096|16652122| 5396353|4428411| 1717285|1464208
ISGMR-8 (ours) |[17489158| 8753990|11802603| 6639570|18411930(10173513| 4474404|1571528| 1438210| 884241
TRWP-8 (ours) ||18424062| 8860552|13319964| 6678844|20581640|10445172| 4443931|1587917| 1358270| 889907
MF-16 46614232(14192750|40838292(12974839|44706364|16708809(13223338|3229021| 9189592(2631006
SGM-16 18893122(16791762|13252150{12162330|19284684|16936852| 5092094 |4611821| 1670997|1535778
ISGMR-16 (ours)||15455787| 9556611(10731068| 6806150|16608803|11037483| 3689863 |1594877| 1324235 937102
TRWP-16 (ours) ||11239113| 9736704| 8187380| 6895937|13602307|11309673| 2261402|1630973| 1000985| 950607

(a) noisy (b) GT (c) MF-4 (d) MF-8 () MF-16

3 1

() SGM-4 (g) SGM-8 (h) SGM-16 (i) TRWS-4 (j) ISGMR-4

NN

(k) ISGMR-8 (1) 1sGMR-16 (m) TRWP-4 (n) TRWP-8 (0) TRWP-16

Fig. 10: Visualization of MRF inferences for image denoising on “Penguin”.

16 Z.Xu et al.

(k) ISGMR-8 (1) 1sSGMR-16 (m) TRWP-4 (n) TRWP-8 (o) TRWP-16

Fig. 11: Visualization of MRF inferences for image denoising on “House”.

	Fast and Differentiable Message Passing on Pairwise Markov Random Fields – Supplementary Material –

