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In the following supplementary material, we fist provide detailed theoretical
analysis to illustrate how our proposed Forward and Backward Cyclic Adap-
tation (FBC) in Algorithm 1 approximates the objective function of gradient
alignment (to Eq.3 in our main submission). Details are shown in Section 1. We
then provide more ablation studies in Section 2 and implementation details in
Section 3. Section 4 demonstrates more examples of feature visualization on the
Watercolor [1].

1 Deriving the Objective Function

We detail the theoretical analysis in the main submission to show how the pro-
posed algorithm approximates the objective function of gradient alignment. We
follow the conventions in Reptile [2] and demonstrate the gradient computations
during the training. In Reptile [2], they effectively extrapolated the gradient with
a number of steps taken. Let us first denote the terms following [2, 3]:

gi =
∂Li(θi)
∂θi

(gradient obtained during SGD), (1)

θi+1 = θi − αgi (squence of parameter vectors), (2)

ḡi =
∂Li(θi)
∂θ1

(gradient at initial point), (3)

gji =
∂Li(θi)
∂θj

(gradient evaluated at point i with respect to parameters j),

(4)

H̄i =
∂2Li(θi)
∂θ21

(Hessian at initial point), (5)

Hj
i =

∂2Li(θi)
∂θ2j

(Hessian evaluated at point i with respect to parameters j),

(6)
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where the α is learning rate and Li is the loss function on the samples for each
gradient updates.

According to Taylor’s theorem, we have the SGD gradients as follows:

gi = L′i(θ1) = L′i(θ1) + L′′i (θi − θ1) +O(‖θi − θ1‖2), (7)

= ḡi + H̄i(θi − θ1) +O(‖θi − θ1‖2) (using definition of ḡi, H̄i),
(8)

= ḡi − αH̄i

i−1∑
j=1

gj +O(‖θi − θ1‖2) (using gradient updates θi − θ1 = −α
i−1∑
j

gj),

(9)

= ḡi − αH̄i

i−1∑
j=1

ḡj +O(‖θi − θ1‖2) (using gj = ḡj +O(‖θi − θ1‖2)).

(10)

If we consider there are two steps of parameter updates with stochastic gradient
descent (SGD), where the gradient of the first step is g1 and the one of second
step is g2. According to the Eq. 10, we have

g1 = ḡ1, (11)

g2 = ḡ2 − αH̄2ḡ1 +O(‖θi − θ1‖2). (12)

Then, the overall gradient of the two SGD steps is

g = g1 + g2 = ḡ1 + ḡ2 − αH̄2ḡ1 +O(‖θi − θ1‖2). (13)

In Reptile [2], they noted that

ε[H̄2ḡ1] = ε[H̄1ḡ2] =
1

2
ε[H̄2ḡ1 + H̄1ḡ2] =

1

2
ε[
∂

∂θ1
(ḡ1ḡ2)], (14)

where the ε is the expected loss. Therefore, the overall expected loss is

ε[g] = ε[ḡ1] + ε[ḡ2]− 1

2
αε[

∂

∂θ1
(ḡ1ḡ2)]. (15)

In our work, we aim to address the domain adaptation problem for object
detection. In our proposed forward and backward cyclic adaptation (Algorithm
1), we train the network with episodic training. In each episode, similar to the
two-step SGD updates discussed above, we first perform the backward hopping
on labeled source samples {XS ,YS} to obtain the parameters θS , and then we
initialize the forward passing with θS and train the network with pseudo labeled
target samples {XT , ŶT }, obtaining the updated parameters θT . The shared
model θ is updated by θS and θT sequentially. We can consider the gradient of
forward passing, gS , as g1, and similarly gT as g2. Then we can substitute gS
and gT to Eq. 15:

E[ge] = E[ḡS ] + E[ḡT ]− 1

2
αε[

∂

∂θS
(ḡS ḡT )] , (16)
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where E is the expected loss. The above equation shows that the training of our
proposed adaptation method (Algorithm 1) is approximating the objective of
gradient alignment:

min
θS ,θT

LθS (XS ,YS) + LθT (XT , ŶT )− α∂LθS (XS ,YS)

∂θS
· ∂LθT (XT , ŶT )

∂θT
. (17)

2 More Ablation Studies

In this section, we evaluate the effects of the different components in our proposed
adaptation method. As shown in the Eq.11 and Eq.12 in our submission, our
overall objective function is

min
θ
L = Linv(XS ,YS ,XT ) + γLdiv(XS ,XT )

= Lg(XS ,YS ,XT ) + λLadv(XS ,XT ) + γLdiv(XS ,XT ) ,

where Lg is the loss of gradient alignment, Ladv is the loss of local feature
alignment via adversarial training and Ldiv is the loss of domain-diversity. λ and
γ are the hyperparameters and we set λ = 0.5 and γ = 0.1 for all the experiments
in this work.

In the following sections, we use G, L, and D to indicate gradient alignment,
local feature alignment and domain diversity, respectively.

2.1 Effects of Gradient Alignment

To evaluate the effects of gradient alignment, we perform the forward-backward
cyclic method (FBC) on four different cross-domain scenarios with gradient
alignment only. The results are shown in Table 1 - 4. In the adaptation sce-
narios, PASCAL [4]-to-Clipart [1] (in Table 1) and PASCAL-to-Watercolor [1]
(in Table 2), the FBC with gradient alignment can achieve better adaptation
results than the FBC with local feature alignment only. It is because the domain
discrepancy in these two adaptation scenarios is large, i.e., adapting real objects
to cartoon or watercolor objects. This indicates that gradient alignment has its
superiority in aligning high-level semantics.

However, in the adaptation scenarios, Sim10k [5]-to-Cityscapes [6] (in Ta-
ble 3 and Cityscapes [6]-to-FoggyCityscapes [7] (in Table 4 , the domain dis-
crepancy between two domain are mainly in the low-level features, e.g., textures
and colors. Therefore, in these scenarios, the FBC with gradient alignment only
can achieve limited gain on mAP, compared with the FBC with local feature
alignment. It is more evident in Cityscapes-to-FoggyCityscapes, where the foggy
images are rendered from the real images. However, the FBC with gradient align-
ment only is still 4.6% higher than the source only model (in Table 4). Although
the FBC with local feature alignment can obtain a high mAP with 33.7%, in
combination with gradient alignment and domain diversity, the mAP can be
boosted to 36.7%.
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2.2 Effects of Local Feature Alignment

The local feature alignment is conducted via adversarial training, which aligns
the marginal feature distributions between the source and target domains. As
discussed in the main submission, the alignment of marginal feature distribu-
tions does not perform well when the domain discrepancy is large. This is also
demonstrated in our experiments. In Table 1 and Table 2, the FBC with lo-
cal feature alignment only does not perform better than the gradient alignment,
when the domain discrepancy is large. But when the domain discrepancy is small,
i.e., in low-level semantics, the FBC with local feature alignment demonstrates
its superiority, as shown in Table 3 and Table 4.

It is worthy to mention that the gradient alignment and local feature align-
ment are complementary, as gradient alignment can achieve category-level align-
ment for high-level semantics and local feature alignment via adversarial training
has its advantages for aligning low-level semantics. The combination of these two
alignment and domain diversity can achieve the state-of-the-art performance.

2.3 Effects of Domain Diversity

Here we evaluate the effects of the domain-diversity. As shown in Table 1 -
Table 4, the domain diversity can consistently improve the adaptation results.

We also analyze the sensitivity of hyper-parameter γ on the adaptation from
Cityscapes to FoggyCityscapes. Results are shown in Table 5. It shows that when
the value of γ is too large, the entropy regularization in domain diversity will
affect the accuracy of classification.

Method G L D aero bcy-
cle

bird boat
bot-
tle

bus car cat chair cow
ta-
ble

dog hrs
mo-
tor

prsn plnt sheep sofa train tv mAP

Source
Only

24.2 47.1 24.9 17.7 26.6 47.3 30.4 11.9 36.8 26.4 10.1 11.8 25.9 74.6 42.1 24.0 3.8 27.2 37.9 29.9 29.5

FBC
X 28.8 64 21.1 19.1 39.7 60.7 29.5 14.2 46.4 29.3 21.8 8.9 28.8 72.7 51.3 32.9 12.8 28.1 52.7 49.5 35.6
X X 32.1 57.6 24.4 23.7 34.1 59.3 32.2 9.1 40.3 41.3 27.8 11.9 30.2 72.9 48.8 38.3 6.1 33.1 46.5 48 35.9

X 31.8 53.0 21.3 25.0 36.1 55.9 30.4 11.6 39.3 21.0 9.4 14.5 32.4 79.0 44.9 37.8 6.2 35.6 43.0 53.5 34.1
X X X 43.9 64.4 28.9 26.3 39.4 58.9 36.7 14.8 46.2 39.2 11.0 11.0 31.1 77.1 48.1 36.1 17.8 35.2 52.6 50.5 38.5

Table 1. The results (%) on the adaptation from PASCAL [4] to Clipart Dataset [1].

Method G L D bike bird car cat dog prsn mAP
Source Only (ours) 66.7 43.5 41 26.0 22.9 58.9 43.2

FBC (ours)
X 90.9 46.5 51.3 33.2 29.5 65.9 52.9
X X 88.7 48.2 46.6 38.7 35.6 64.1 53.6

X 89.0 47.2 46.1 39.9 27.7 65.0 52.5
X X X 90.1 49.7 44.1 41.1 34.6 70.3 55.0

Table 2. The results (%) on the adaptation from PASCAL [4] to Watercolor
Dataset [1].
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Method G L D AP on Car
Source Only (ours) 31.2

FBC (ours)
X 38.2
X X 39.2

X 41.4
X X X 42.7

Table 3. The results (%) on the adaptation from Sim10k [5] to Cityscapes Dataset [6].

Method G L D personrider car truck bus train motor bcycle mAP
Source Only (ours) 22.4 34.2 27.2 12.1 28.4 9.5 20.0 27.1 22.9

FBC (ours)
X 25.8 35.6 35.5 18.4 29.6 10.0 24.5 30.3 26.2
X X 29.0 37.0 35.6 18.9 32.1 10.7 25.0 31.3 27.5

X 31.6 45.1 42.6 26.4 37.8 22.1 29.4 34.6 33.7
X X X 31.5 46.0 44.3 25.9 40.6 39.7 29.0 36.4 36.7

Table 4. Results (%) on the adaptation from Cityscapes [6] to FoggyCityscapes
Dataset [7].

3 More Implementation Details

In this section, we provide more implementation details of our experiments.

3.1 Details of Local Feature Alignment.

In this work, we utilize the Gradient Reversal Layer (GRL) proposed by Ganin
and Lempitsky [8] for adversarial training. We extract local features from low-
level layer as input of the domain classifier D and the least-squares loss [9, 10].
To make a fair comparison, our domain classifier is the same as the local domain
classifier in SWDA, which consists of three layered convolutional layers with
kernel size as 1.

For the local features, the features output from conv3-3 are extracted in
the case of VGG16 model and the features output from the last res3c layer are
extracted in ResNet101 model. The name of the layer follows the prototxt in
Caffe [11].

3.2 Training Details

We optimize the network using Stochastic Gradient Descent (SGD) with a learn-
ing rate of 0.001. Following the implementation details of SWDA [12], we resize
the training and test images with the shorter side of 600 pixels and set the
training batch size as 1. Without specific notation, we set λ as 0.5 and γ as 0.1.

4 Feature Visualization

As a supplement of Fig.5 in the main submission, we also adopt the Grad-
cam [13] to visualize the features on the Watercolor dataset in Fig. 1.
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γ 0 0.1 0.5
FBC (ours) 35.0 36.7 32.0

Table 5. Results (%) on the adaptation from Cityscapes [6] to FoggyCityscapes
Dataset [7].
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Fig. 1. Feature visualization shows the evidence for improvements in classifiers before
and after domain adaptation using Grad-cam [13] on the Watercolor dataset [1]. The
images in the middle column show the attention for the classifier before adaptation
and the one on the right show the attention for the classifier after adaptation. This
figure demonstrates that the adapted detector utilizes more semantics to classify the
objects, which indicates the effectiveness of our proposed domain adaptation method.


