
1 Appendix

1.1 Derivation of the upper bound for the entropy of a
logistic mixture model

Let random variable X follows a distribution modeled by a mixture of logistic
distributions with the probability density function defined by

p(x) =

K∑
i=1

πipi(x), (1)

where
∑
i πi = 1 and πi > 0. Let

pi(x) =
e−(x−µi)/si

si
(
1 + e−(x−µi)/si

)2 , (2)

where µi and si are the mean and scale parameters of the i-th component
in the mixture. The cumulative distribution function (CDF) for the logistic
distribution is simply a sigma function defined by

ci(x) =
1

1 + e−(x−µi)/si
. (3)

For a discrete input x in L levels, the probability value of X = x is given by
P (X = x) = c(x+ 1/2)− c(x− 1/2) for x ∈ {2, · · ·L− 1}, p(1) = c(1 + 1/2) and
p(L) = 1− c (L− 1/2).

There is no closure form to calculate the entropy of a logistic mixture model
defined by Eqs. 1 and 2. Although the entropy for discrete case can be calculated
numerically, the calculation is pretty expensive. In our proposal, we propose to
use an upper bound, given by the following proposition, as the estimation of the
entropy.

Proposition 1. The entropy of a random variable X that follows the mixture
of logistic distributions defined by Eqs. 1 and 2 has an upper bound such that

H(X) ≤ −
K∑
i=1

πi log πi +

K∑
i=1

πiHi(X), (4)

where H(X) is the entropy of variable X and Hi(X) is the entropy of a variable
that follows the logistic distribution function defined by Eq. 2.

Proof.

H(X) = −
∑
x

p(x) log p(x)

= −
∑
x

(∑
i

πipi(x) log p(x)

)

1



≤ −
∑
x

(∑
i

πipi(x) log (πipi(x))

)
, given p(x) ≥ πipi(x)

= −
∑
x

(∑
i

πipi(x) (log πi + log pi(x))

)
= −

∑
i

∑
x

πi log πipi(x)−
∑
i

∑
x

πipi(x) log pi(x)

= −
∑
i

πi log πi
∑
x

pi(x)−
∑
i

πi
∑
x

pi(x) log pi(x)

= −
∑
i

πi log πi +
∑
i

πiHi(X)

Next, we use the differential entropy to approximate the true entropy Hi(X)
for a discrete case. Given proposition 1 and the mixture mode defined by Eqs.
1 and 2, we get the upper bound defined by

−
∑
i

πi log πi +
∑
i

πi(ln si + 2) (5)
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