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1 Appendix

1.1 Self-labeling

In our experiments, the total iteration steps are set to 2. Since the detection
threshold is crucial to the quality of the pseudo-ground truth label, we deploy
the following strategy to find the proper threshold for different step: For a base
detector, we randomly choose 200 COCO images and use different thresholds to
label them, which shows that the detection thresholds are stable in the range
[0.001, 0.005] and [0.015, 0.030] for each step, respectively. Then we empirically
choose a threshold that gives the best label effects.
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Fig. 1. The visualization of homography sampling. The input image is sequentially
transformed by Scaling, Translation, Symmetric Perspective, and In-plane Rotation.

1.2 Homography sampling parameters

As stated in the paper, during the training, each image I in COCO is trans-
formed by a randomly sampled homography to synthesize the corresponding
image I ′, resulting in the image pair. Like SuperPoint[1], the sampled homog-
raphy combines four simple transformations, namely scaling, translation, sym-
metric perspective, and in-plane rotation. To ensure the sampled homography is
reasonable, we constraint these sub-transformations in the following range:

Scaling : [0.8, 2.0], T ranslation : [−0.1, 0.1],

Symmetric Perspective : [−0.3, 0.3], In-plane Rotation : [−π/2, π/2],

where the sampled value of Scaling, Translation, and Symmetric Perspective is
relative to the input image’s spatial size. The process of homography sampling
can be seen in Fig. 1.

1.3 Photometric augmentation parameters

During the training, the same as SuperPoint[1], we use photometric augmenta-
tion to strengthen the model’s robustness. Before an image input to the model
for the training, it will be randomly processed by a series of sub-augmentations:
1) Brightness: Randomly adds value to all pixels; 2) Contrast : Randomly adjusts
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Fig. 2. The computation of homography error(HE). It is the mean distance between
corners of the target image after being transformed by 1) the ground truth homography
Hgt and 2) the estimated homography Hest. The dashed line ei denotes the error.

image contrast by a scale; 3) Gaussian Noise: Randomly adds noise sampled from
Gaussian distributions; 4) Impulse Noise: Randomly adds impulse noise. 5) Mo-
tion Blur : Randomly blurs an image with a given probability. The parameters
of these sub-augmentations are listed as follows:

Brightness : [−50, 50], Contrast : [0.5, 1.5],

Gaussian Noise : µ = 0, std ∈ [0, 10], Impulse Noise : [0, 0.0035],

Motion Blur : p = 0.5, kernel = 3.

For Gaussian Noise, the operation samples an std from the given range and
generates Gaussian noise based on this std. Similarly, Impluse Noise samples a
probability p and produces the noise under this probability.

1.4 Computation of homography accuracy

The homography accuracy(HA) on HPatches is evaluated based on the homog-
raphy error(HE). First, given a ground-truth homography transformation Hgt

and the estimated one Hest, the HE is computed as follows:

HE =
1

4

4∑
i

||(Hgt −Hest)ci||, (1)

where ci is the ith corner of the original image, and the process is shown in Fig. 2.
Then the homography accuracy under a threshold ε(1-10 used in the paper) can
be formulated as:

HA =
1

n

n∑
i

(HEi <= ε). (2)

1.5 Computation of recall

To compute %Recall on FM-Bench, the average of normalized symmetric epipo-
lar distance is used. This metric’s detailed computation is illustrated in Alg.1
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Algorithm 1: Average of Normalized Symmetric Geometry Distance

Input : F1, F2, N, h1, w1, h2, w2, I1, I2
Output: nsgd

1 nsgd = 0
2 count = 0
3 while count < N do
4 randomly choose a point m in I1
5 draw l1 = F1m in I2
6 if the epipolar line doesn’t intersect in I2 then
7 go back to step 4
8 end
9 randomly choose a point m′ in l1

10 draw l2 = F2m in I2

11 d′ = distance(m′, l2)/
√

h2
2 + w2

2

12 draw l3 = FT
2 m′ in I1

13 d = distance(m, l3)/
√

h2
1 + w2

1

14 nsgd = d′ + d
15 count = count + 1

16 end
17 swap(F1, F2)
18 repeat step 2-15
19 ansgd = nsgd/4N
20 return ansgd

and Fig. 3, where I1, I2 are the input image pair, and F1, F2 are the ground-
truth fundamental matrix and the estimated fundamental matrix, respectively.
Given ansgd, one can evaluate %Recall under a threshold β(0.05 as default[2])
as follows:

Recall =
1

n

n∑
i=0

(ansgdi <= β). (3)
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Fig. 3. Visualization of the epipolar distance between two fundamental matrices. Given
m in I1, one can generate epipolar line l1 based on F1, and epipolar line l2 based on
F2. Analogously, l3 and l4 is the epipolar lines of m′ respectively. The epipolar distance
is thus defined as m′ to l2, and m to l3.
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1.6 More visualization results

Here we give more qualitative detecting and matching samples of our MLIFeat,
which is shown in Fig. 4.
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Fig. 4. Extra visualization samples of detecting and matching. The top block contains
the detection samples of FM-Bench[2]. The middle and the bottom block contains the
matching samples of Aachen-Day-Night[3] and HPatches[4], respectively.


