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This documment constitutes supplementary material for the ACCV 2020
oral paper ”In Defense of LSTMs for addressing Multiple Instance Learning
Problems”. It extends the original submssion in three fronts. First, it includes
details of the network architectures used in each experiment (Sec. 1). Second,
we provide additional examples for instance-level detection of the Colon cancer
experiment (Sec. 2). Third, a presentation of the explanation capabilities of the
proposed model is given (Sec. 3). Then, we show the derivation of the mutual
information estimation used in our paper (Sec. 4). Finally, we show additional
explanation examples for the MNIST-based experiment. (Sec. 5)

1 Architecture

In this section we present the architecture of the models we use in the submitted
manuscript.

1.1 Single/Multi. Digit Occurrence and Digit Outlier Detection

The Instance Description Unit is based on LeNet [1]. The Iterative Bag Pooling
Unit uses a Bi-direction LSTM with 500 dimension input and hidden state. The
Prediction Unit is a classifier. Binary Cross-Entropy loss is used to supervise the
MIL learning and we maximize the Mutual information between Layer 1 and 5.

1.2 Digit Counting

The only difference w.r.t. the previous setting is the Prediction Unit which is
now a regressor. Accordingly, we the Mean Square Error (MSE) loss is used.

1.3 Cross-domain retrieval

The Instance Description Unit is based on VGG-16. The Iterative Bag Pooling
Unit uses a Bi-direction LSTM with 2048 dimension input and cell state. The
output of the LSTM (33-1) is used to learn the triplet embedding supervised
by Triplet loss. The output of (33-2) is used to learn a classifier supervised by
Cross-Entropy loss.
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Layer Type

1 conv(5,1,0)-20 + ReLU
2 maxpool(2,2)
3 conv(5,1,0)-50 +ReLU
4 maxpool(2,2)
5 fc-500 + ReLU
6 LSTM (500, 500)
7 Dropout(0.5)+ fc-1 + sign

Table 1: Architecture of our Single/Multi Digit Occurrence and Digit Outlier Detec-
tion model.

Layer Type

1 conv(5,1,0)-20 + ReLU
2 maxpool(2,2)
3 conv(5,1,0)-50 +ReLU
4 maxpool(2,2)
5 fc-500 + ReLU
6 LSTM (500, 500)
7 Dropout(0.5)+ fc-1

Table 2: Architecture of our Digital Counting model.

1.4 Colon Cancer

The Instance Description Unit is based on [2]. The Iterative Bag Pooling Unit
uses a Bi-direction LSTM with 512 dimension input and cell state. The Predic-
tion Unit is a classifier. Binary Cross-Entropy loss is used to supervise the MIL
learning and we maximize the Mutual information between Layer 1 and 7.

2 More examples for Instance level prediction

Here we show more examples for the instance level prediction of Colon cancer
experiment by using our MIL model. Similar to Figure 5 in the main paper, the
first column shows the original H&E image, the second and third column are
the epithelial nuclei patches (Ground-Truth) and the epithelial nuclei patches
detected by our MIL model, respectively.

3 Explaining Model Prediction

3.1 Methodology

In the main paper, we present an iterative method to make predictions from a
bag-level representation Sj through the use of a prediction function g(.). While
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Layer Type

1-31 VGG-16
32 ReLU + Dropout(0.5) + fc-2048
33-1 LSTM (2048, 2048)
33-2 ReLU + Dropout(0.5) + fc-2000

Table 3: Architecture of our Cross-domain retrieval model.

Layer Type

1 conv(4,1,0)-36 + ReLU
2 maxpool(2,2)
3 conv(3,1,0)-48 +ReLU
4 maxpool(2,2)
5 fc-512 + ReLU
6 Dropout(0.5)
7 fc-512 + ReLU
8 Dropout(0.5)
9 LSTM (500, 500)
10 Dropout(0.5)+ fc-1

Table 4: Architecture of our Colon cancer model.

being able to make accurate predictions is of importance, being able to provide
an explanation supporting the prediction made is a desirable property for any
automatic system. In MIL algorithms, these explanations usually come in the
form of highlighting the elements or instances x∗i of the bag which determine the
predicted bag label ŷj .

In the proposed approach this can be achieved by probing the bag represen-
tation Sj after each of the elements xi are embedded on it. More specifically,
on an initial step we can push every element xi through the bag pooling unit
and store the bag representation Sij computed after the embedding of the ith

element. Then, the relevant elements x∗i can be highlighted by identifying the
elements xi with strong effect in the computed bag representation Sij . Finally,

the selection of elements x∗i can be further verified, by the response ŷij=g(Sij)

that their corresponding bag-level representations Sij produce when evaluated
by the prediction unit.

3.2 Experiment

In this section we analyze the explanation capabilities of our method. Towards
this goal, in Fig. 3 we show the predicted output after observing each element of
the bag. Since the bag pooling unit utilizes a Bi-LSTM, which processes forward
and backward directions of the bag together, we show the two directions of the
bag. In addition, we verify the capabilities of the proposed bag representation
to encode the underlying MI assumption. This could be indicated by reflecting
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significant variations in the Sij when observing the elements xi involved in the MI

assumption. We ease the visualization of the high-dimensional Sij representation
by plotting its corresponding t-SNE [3] projection in Fig. 2.

Discussion: In Fig. 3, we can notice that each time one of the elements that
determine the MI assumption are observed, the bag representation Sij is updated
in such a way that there is a significant change in the prediction made by the
model. This is further supported by the state of the internal representation Sij as
shown by the corresponding t-SNE visualizations (Fig. 2). For the Single Digit
Occurrence case, we notice that the representation gets updated to a different
region of the space when the digit of interest is observed. More specifically, from
the third row of Fig. 2, it is clear that the space is divided into two parts: the bag
representation of negative bags changes within the bottom-left region, while for
positive bags, once the digit of interest occurs, the bag representation jumps to
the top-right region and ends there. Similarly, for the Multiple Digit Occurrence,
Digit Sequences and Digit Counting cases, we notice that the representation
shifts, significatively, to specific regions (green and magenta dots) every time
one of the digits of interest is observed. Moreover, for Multiple Digit Occurrence
and Digit Sequences the representation seems to always reach a common region
once the underlying MI assumption has been completely satisfied.

4 Mutual Information Maximization

We follow the work [4] to estimate the lower boundary of the mutual information
between the input and its latent representation. We advice readers to read the
original paper [4] for a comprehensive understanding.

We take the derivations from [4] here.
Assume we have inputs X and their latent representation Z. The definition

of mutual information is defined as:

I(X,Z) =

∫∫
p(z|x)p(x) log

p(z|x)

p(z)
dxdz

=KL(p(z|x)p(x)||p(z)p(x)),

(1)

where p(x) is the distribution of the inputs, p(z|x) is the distribution of the
corresponding latent representations, p(z) is the distribution of the latent space.
p(z) =

∫
p(z|x)p(x)dx. In order to maximize the mutual information I(X,Z),

we have:

p(z|x) = max
θe

I(X,Z). (2)

p(z) is difficult to calculate, therefore, we try to find an auxiliary distribution
q(z) to approximate p(z). We assume q(z) is standard normal distribution. To
measure the distance of two distribution, we use KL divergence:

KL(p(z)||q(z)) =

∫
p(z)log

p(z)

q(z)
dz. (3)
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According to Eqs. (2) and (3), we have:

p(z|x) = min
θe

{
−
∫∫

p(z|x)p(x) log
p(z|x)

p(z)
dxdz

+α

∫
p(z) log

p(z)

q(z)
dz

}
.

(4)

It can be further rewritten as:

p(z|x) = min
θe

{∫∫
p(z|x)p(x)[−(α+ 1) log

p(z|x)

p(z)

+α log
p(z|x)

q(z)
]dxdz

}
.

(5)

According to Eq. (1), the Eq. (5) can be viewed as:

p(z|x) = min
θe
{−βI(X,Z)

+γEx∼p(x)[KL(p(z|x)||q(z))]
}
.

(6)

[4] chooses JS divergence for mutual information maximization since there is no
boundary for KL divergence:

p(z|x) = min
θe
{−βJS(p(z|x)p(x), p(z)p(x))

+γEx∼p(x)[KL(p(z|x)||q(z))]
}
.

(7)

The variational estimation of JS divergence [5] is defined as:

JS(p(x)||q(x)) = max
T

(Ex∼p(x)[log σ(T (x))]

+Ex∼q(x)[log(1− σ(T (x)))]).
(8)

where T (x) = log 2p(x)
p(x)+q(x) [5]. Here p(z|x)p(x) and p(z)p(x) are utilized to

replace p(x) and q(x). As a result, Eq. (7) can be defined as:

p(z|x) = min
θe

{
−β(E(x,z)∼p(z|x)p(x)[log σ(T (x, z))]

+E(x,z)∼p(z)p(x)[log(1− σ(T (x, z)))])

+ γEx∼p(x)[KL(p(z|x)||q(z))]
}
.

(9)

To solve the problem in Eq. (9), [4] considers to use Negative sampling esti-
mation [6]. [6] uses a discriminator to distinguish the real and noisy samples to
estimate the distribution of real samples. Therefore, σ(T (x, z)) can be treated
as a discriminator, which is trained to distinguish the positive pairs (x and
corresponding latent representation z) and negative pairs (x and its latent rep-
resentation z with random disturbance in batch dimension). Eq. (9) represents
the global mutual information between X and Z.
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Follow the idea from [6], [4] also consider to maximize the local mutual infor-
mation, where original input is replaced by the middle layer of the convolutional
network. In the end, both global and local mutual information are maximized,
the final objective function is:

L =− β(E(x,z)∼p(z|x)p(x)[log σ(T1(x, z))]

+ E(x,z)∼p(z)p(x)[log(1− σ(T1(x, z)))])

− β

hw
Σi,j(E(x,z)∼p(z|x)p(x)[log σ(T2(Cij , z))]

+ E(x,z)∼p(z)p(x)[log(1− σ(T2(Cij , z)))])

+ γEx∼p(x)[KL(p(z|x)||q(z))],
= α ·MIglobal + β ·MIlocal + γ · PriorMatching

(10)

where h and w represent the height and width of the feature map. Cij represents
the feature vector of the middle feature map at coordinates (i, j) and q(z) is the
standard normal distribution.

5 Additional Explanation Examples

Figure 4 shows more t-SNE visualization of the learned bag representation in
Single Digit Occurrence experiment. We binarized the visualized digit bag,
’0’ refers to the non-interest digits while ’1’ refers to the digit of interest. (’9’
in this experiment). It is clear that the space is divided into two parts: the bag
representation of negative bags changes within the bottom-left region, while for
positive bags, once the digit of interest occurs, the bag representation jumps to
the top-right region and ends there.

Figure 5 displays more t-SNE visualization of the learned bag representation
in Multiple Digit Occurrence experiment. ’0’ refers to the non-interest dig-
its. The first small figure shows the prediction of 20 examples overlaid on the
t-SNE space. It is clear that the representation shifts to green dots region or ma-
genta dots region every time when digit ’3’ or digit ’6’ is observed. In addition,
representation seems to always reach a common region (here is the right area)
once the underlying MI assumption has been completely satisfied as long as the
last digit is not one of the interest ones.

Figure 6 shows more t-SNE visualizations of the learned bag representation in
the Digit Sequence experiment. Similar trend can be observed in this exper-
iment. In addition, when the model observes the wrong order of the digits of
interest, even if the representation jumps to the specific regions, the end point
is different from that that is reached in case the correct order is observed. This
suggests that there is a region in the space to indicate whether the underlying
assumption has been satisfied.
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Figure 7 shows more t-SNE visualizations of the learned bag representation in
the Digit Counting experiment. Please note the green dots is the region where
the representations shift to when the digit of interest is observed.
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Fig. 1: More examples for Instance level prediction of Colon cancer experiment by
using our MIL model.
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Fig. 2: t-SNE visualization of the learned bag representation. The first two rows show
examples of predictions on true positive and true negative bags, except for the Digit
Counting experiment, which shows two bags containing 4 and 0, elements of interest,
respectively. The third row shows the prediction of 20 examples overlaid on the t-SNE
space for the digit-based experiments.

Single Digit Occurrence

Neg. set
Pos. set

Multi. Digit Occurrence Digit Squeence

Digit Counting Outlier Detection

Fig. 3: Prediction score post bag representation update after observing each element
from the bag. For reference, we present both the forward (top) and backward (bottom)
directions in which the elements of the bag are observed.
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Fig. 4: t-SNE visualization of the learned bag representation in Single Digit Occur-
rence experiment.On top of each t-SNE representation, the visualized bag is presented
in binary form where ’0’ refers to the background digits while ’1’ refers to the [witness]
digit of interest (’9’ in this experiment).
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Fig. 5: t-SNE visualization of the learned bag representation in Multiple Digit Oc-
currence experiment. On top of each t-SNE representation, ’0’ refers to the background
digits.
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Fig. 6: t-SNE visualization of the learned bag representation in Digit Sequence ex-
periment.
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Fig. 7: t-SNE visualization of the learned bag representation in Digit Counting ex-
periment. On top of each t-SNE representation, the visualized bag is presented in
binary form where ’0’ refers to the background digits while ’1’ refers to the [witness]
digit of interest (’9’ in this experiment).


