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A Supplementary Material

A.1 Sound Source Separation for Instrument Combinations
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Fig. 1. The sound source separation performance for different mixtures of instruments
in MUSIC dataset. The results are shown in terms of SDR. The diagonals and off-
diagonals represent the results of separating instrumental combinations of same and
different categories respectively. The higher value of SDR represents the better perfor-
mance of sound source separation, e.g. acoustic guitar and flute (2 and 6), flute and
tuba (6 and 9), tuba and xylophone (9 and 11). The SDR values on the diagonals clearly
indicate the hardest case of separating sounds between two instruments from the same
category, e.g. flute (6 and 6).

In this section, we present sound source separation performance for differ-
ent instrument mixtures using MUSIC dataset. Fig. 1 illustrates the results in
terms of SDR in a matrix form. The diagonals represent the results of sepa-
rating instruments of same categories (e.g. two guitars), and the off-diagonals
are combinations from different categories (e.g. guitar and violin). The higher



2 Lingyu Zhu, Esa Rahtu

value of SDR represents the better performance of sound source separation, e.g.
acoustic guitar and flute (2 and 6), flute and tuba (6 and 9), tuba and xylophone
(9 and 11). The SDR values on the diagonals clearly indicate that separating
sounds between two instruments from the same category is the hardest case. In
particular, separating the mixture of two flutes is challenging. One reason might
be the small amount of motion related to playing flute.

A.2 Sound Source Localization Examples

We visualize more examples of localized sounding sources by our proposed Sound
Source Location Masking (SSLM) network in comparison with baseline methods
of SoP [1], SoM [2], and MP-Net [3] on MUSIC, A-MUSIC and A-NATURAL
datasets in Fig. 4, Fig. 5, and Fig. 6 respectively.

A.3 Datasets

We evaluate the proposed approaches using Multimodal Sources of Instrument
Combinations (MUSIC) [1] dataset, and two sub-sets of AudioSet [4]: A-MUSIC
and A-NATURAL.

MUSIC The MUSIC dataset is relatively small high quality dataset of mu-
sical instruments. It contains 714 untrimmed YouTube videos which span 11
instrumental categories, namely accordion, acoustic guitar, cello, clarinet, erhu,
flute, saxophone, trumpet, tuba, violin, and xylophone. For all the reported ex-
periments, we randomly split the dataset into 400 training videos, 100 validation
videos, and 130 test videos.

A-MUSIC and A-NATURAL A-MUSIC dataset is a trimmed musical in-
strument dataset from AudioSet. It has around 25k videos spanning 10 instru-
mental categories: accordion, bagpipe, cello, flute, piano, pizzicato, saxophone,
trumpet, ukulele, and zither. A-NATURAL dataset is a trimmed natural sound
dataset from AudioSet. It contains around 10k videos which cover 10 categories
of natural sounds, namely baby crying, chainsaw, dog, drum, firework, helicopter,
printer, rail, snoring, and water. We split both the A-MUSIC and A-NATURAL
dataset samples to 80%, 10%, and 10% as train, validation and test set.

A.4 Implementation Details

Overall Architecture We illustrate the overall architecture of the COF model
in the case of two stages on two sound sources in Fig. 2. The vision networks
of the COF model at different stages change accordingly to the vision network
options discussed in Sec. 3.2 of main paper.
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Fig. 2. The overall architecture of the COF model in the case of two stages on two sound
sources. In the first stage, visual representations (vision network) and sound features
(sound network) are passed to the sound separator that produces the spectrum masks
g for each source. g are then further provided as inputs for the upcoming stage. Stage
two refines the separation result using visual representation z2 to identify components
r1−>2 from the source 1 that should belong to the source 2. The spectrum masks g are
updated accordingly by subtracting from [g1]1 and adding to [g2]1. Similar operation
is done for the source 2. Finally, we obtain the separated audios by applying inverse
STFT to the output component spectrograms [Ŷ1]2 and [Ŷ2]2, which are converted
from [g1]2 and [g2]2 (Eq. (2) in main paper). Note that the vision networks at different
stages can change accordingly to the vision network options discussed in Sec. 3.2 of
main paper.

Vision Network We extract video frames at 8fps and adopt frame augmen-
tation by random scaling, random horizontal flipping, and random cropping
(224× 224) during training for all datasets. We apply a dilated 2D ResNet18 [5]
with dilation=2 to obtain representations of C2D-RGB and C2D-DYN. For a
single input RGB image or dynamic image of size 3 × 16H × 16W, we truncate
the ResNet18 after stride=16 and achieve the visual feature of size K×H×W by
performing a 3 × 3 convolution with output channels of K =16 on the top. The
C3D models utilize 3D version of ResNet18 on T=48 frames. With the stride=16
on spatial dimension and stride=8 on the temporal dimension, we yield the C3D-

RGB and C3D-FLO representations of size T
′
× K × H × W, where T

′
=6 and

H = W = 14.

Mutual Attention Module The Mutual Attention (MA) module is proposed
to fuse the appearance and motion information. In the MA module, we obtain the
spatial attention map by projecting the appearance features from C2D-RGB to
a single-channel feature map with a 1 × 1 convolution and a sigmoid operation.
The MA module enhances the sound source relevant motions by multiplying the
C3D features with the spatial attention map. The appearance-weighted features
are added back to the original C3D features in order to keep C3D features as the
principle cue in case the C2D-RGB fails to localize the sound source. We obtain
C3D feature attention by adding a sigmoid function on top of the final enhanced
C3D features. The multiplication between the C3D feature attention and the
time-inflated appearance features are added back to the C2D-RGB appearance
features. Within this process, for the predicted regions of interest from C2D-
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Fig. 3. The architecture of sound separator. Sound separator combines visual repre-
sentations z with sound network feature maps using a linear combination to predict
the spectrum mask g. g is then provided for the upcoming stage as input.

RGB, the appearance that has no motions will be eliminated. Finally, we receive

the mutual attentive features of dimension T
′
×K×H×W from the two-stream

structures.

Sound Network We adopt the U-Net [6] with 7 layers of 2D CNN and output
channels of K=16 as the architecture of Sound Network. The input audio sig-
nals are represented as spectrograms, which are obtained from the audio stream
using Short-time Fourier transform (STFT). To obtain the final separated audio
signals, the inverse STFT is applied to the component spectrograms.

Sound Separator We depict the architecture of the sound separator (Eq. (1) in
main paper) in Fig. 3. The sound separator combines the visual representations
z with the sound network output using a linear combination to produce the
spectrum mask g. Spectrum masks g for all the sources are then provided for
the upcoming stage as inputs.

Sound Source Location Masking Network The SSLM network is imple-
mented using a dilated residual network (DRN) [7] pre-trained on ImageNet [8],
with three up-projection blocks [9] followed by a 3 × 3 convolution layer. The
SSLM is trained together with the overall model in a self-supervised manner.
Firstly, we train the plain COF and freeze the model parameters. Secondly, we
add the ”SSLM” to the COF model as shown in Fig. 5a. The input video frames
are first passed through the SSLM component which outputs a weighted location
mask [0,1] having same spatial size as the input frame. The input video frames
are multiplied element-wise with the mask, and the result is passed to the COF
model. The ”SSLM” parameters are optimized to identify a minimum set of in-
put pixels, for which the subsequent COF network output is almost identical to
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the COF output without ”SSLM”. Finally, the ”SSLM” and COF models are
fine-tuned jointly.

Optimization Our implementation is built on Pytorch. The network is trained
with a batch size of 10 for 4,000 iterations. We use stochastic gradient descent
(SGD) with momentum 0.9 and weight decay 1e-4 to train our Cascaded Op-
ponent Filter (COF) network and Adam optimizer to train the Sound Source
Location Masking (SSLM) network. The vision networks of COF and the SSLM,
pre-trained on ImageNet [8], use a learning rate of 1e-4, while the rest of mod-
ules which are trained from scratch use a learning rate of 1e-3. We decrease the
learning rate from its initial value by a factor of 10 every 1,600 iterations.
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(a) Image (b) SoP (c) SoM (d) MP-Net (e) SSLM

Fig. 4. Visualizing sound source location of our proposed SSLM network in comparison
with baseline methods SoP, SoM, and MP-Net on MUSIC dataset.
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(a) Image (b) SoP (c) SoM (d) MP-Net (e) SSLM

Fig. 5. Visualizing sound source location of our proposed SSLM network in comparison
with baseline methods SoP, SoM, and MP-Net on A-MUSIC dataset.
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(a) Image (b) SoP (c) SoM (d) MP-Net (e) SSLM

Fig. 6. Visualizing sound source location of our proposed SSLM network in comparison
with baseline methods SoP, SoM, and MP-Net on A-NATURAL dataset.


