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Abstract. Fully supervised change detection methods require difficult
to procure pixel-level labels, while weakly supervised approaches can be
trained with image-level labels. However, most of these approaches re-
quire a combination of changed and unchanged image pairs for training.
Thus, these methods can not directly be used for datasets where only
changed image pairs are available. We present W-CDNet, a novel weakly
supervised change detection network that can be trained with image-level
semantic labels. Additionally, W-CDNet can be trained with two differ-
ent types of datasets, either containing changed image pairs only or a
mixture of changed and unchanged image pairs. Since we use image-level
semantic labels for training, we simultaneously create a change mask and
label the changed object for single-label images. W-CDNet employs a W-
shaped siamese U-net to extract feature maps from an image pair which
then get compared in order to create a raw change mask. The core part
of our model, the Change Segmentation and Classification (CSC) mod-
ule, learns an accurate change mask at a hidden layer by using a custom
Remapping Block and then segmenting the current input image with the
change mask. The segmented image is used to predict the image-level
semantic label. The correct label can only be predicted if the change
mask actually marks relevant change. This forces the model to learn an
accurate change mask. We demonstrate the segmentation and classifica-
tion performance of our approach and achieve top results on AICD and
HRSCD, two public aerial imaging change detection datasets as well as
on a Food Waste change detection dataset. Our code is available at:
https://github.com/PhiAbs/W-CDNet

1 Introduction

Change detection [1, 2] is an important computer vision task. It has applications
in remote sensing [3, 4], video surveillance [5] and street view imaging [6, 7],
amongst others. It is a challenging task since one has to distinguish relevant
changes between two temporally different images from noise as well as from
irrelevant semantic changes. An image pair can belong to one of two classes:
Changed which means that there are relevant changes between the two images, or
unchanged which means that there are either no changes at all or only irrelevant
ones. The user has to define in advance what counts as relevant change.
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Many data-driven change detection methods are trained with pixel-level la-
bels [6–8]. However, creating a pixel-level change detection dataset is costly and
time-consuming since two images have to be compared by hand and labeled on
pixel-level. As a result, there is a need for change detection approaches which
can be trained with simpler labels, for example image-level labels or bounding
boxes. Additionally, many weakly supervised change detection approaches need
both changed and unchanged images for training. This reduces their usability
to datasets where unchanged images are actually available or can be generated
with image augmentation.

Fig. 1. Overview of the proposed W-CDNet solution.

In this work, we propose W-CDNet, a data-driven change detection network
that can be trained with image-level semantic labels. By image-level semantic
labels we mean that the labels describe the changed object and not only the
binary state of the image pair (changed or unchanged, as used in other works [9–
11]). Thus, the label changed is further split up into several semantic labels like
apple or bread in case of a Food Waste dataset.

In contrast to other approaches [9–11], our method can be trained in one of
two ways: (i) With changed image pairs only, meaning that every image pair in
the dataset contains at least some relevant change; (ii) With a mix of changed
and unchanged image pairs.

Fig. 1 shows a high-level overview of our W-CDNet model. We use a W-
shaped siamese network [12] based on two U-Nets [13] with shared weights for
feature extraction. A group of custom Comparison Blocks compares the feature
maps from the siamese network and creates a high-resolution feature map con-
taining information about the differences between the two images. Our custom
Change Segmentation and Classification (CSC) module remaps these features to
create a meaningful change mask which is then used to segment the current input
image. The segmented image gets encoded and, together with the feature vector
from the Residual Block, gets fed to a classifier which predicts an image-level
label.

If the change mask created within the CSC module does not contain relevant
change, the classifier is not able to predict the correct image-level label. At the
same time, the model can not simply focus on the complete image thanks to
our remapping function (part of the CSC module). Thus, the model is forced
to learn a change mask which marks relevant changes and suppresses irrelevant
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changes, with weak supervision. Moreover, we integrate a CRF-RNN layer [14]
to refine the change mask created within the CSC module. Our approach works
for single-label images. Since it is trained with image-level semantic labels, we
can directly classify the changed object.

The key contributions of our work include:

(i) W-CDNet, a novel change detection network which can be trained with weak
supervision using image-level semantic labels. To the best of our knowledge
we are the first ones to use image-level semantic labels instead of binary
labels for weak supervision.

(ii) CSC, a novel Change Segmentation and Classification module that creates
a high-resolution change mask at a hidden layer and encodes the segmented
current input image. The CSC module is crucial for W-CDNet’s performance.

(iii) We show that our W-CDNet improves the state-of-the-art for weakly su-
pervised change detection on the AICD dataset [15]. Additionally, we are
the first ones to report weakly supervised change detection results on the
HRSCD [16] dataset. We also report performance on the Food Waste dataset.

(iv) We make newly collected image-level semantic labels for the AICD dataset
publicly available.

2 Related Work

Change detection plays an important role in remote sensing [2, 17, 18, 16] and in
street view imagery [6, 19, 7]. Today, with the advent of deep learning [20, 21],
data-driven approaches are used most often as they lead to better performance
than previous approaches [22–24]. These related works can be categorized into
fully supervised, weakly supervised and unsupervised change detection data-
driven methods.

2.1 Fully Supervised Change Detection

Many methods are trained in full supervision with pixel-level labels to obtain
a good segmentation performance. Depending on the exact task, either binary
change masks or semantic change masks are used.

Guo et al . [19] proposed a siamese fully convolutional network. They sub-
tracted the features from three hidden layers, used the result to create a change
mask and proposed a new loss to punish noisy changes. Jiang et al . [25] intro-
duced a pyramid feature-based attention-guided siamese network using a global
co-attention mechanism to emphasize correlations between input feature pairs.
Daudt et al . [8] presented three fully convolutional networks for change de-
tection. Two use a siamese architecture with shared weights as an encoder. A
decoder uses features from different hidden layers from the encoder to create a
change mask. Lebedev et al . [18] created a conditional adversarial network for
fully supervised change detection.

Bu et al . [26] proposed a method for change detection in unregistered images.
A first module roughly predicts change areas and matching information for an
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image pair and a second one refines the change areas. Daudt et al . [16] proposed
four methods to perform semantic change detection, all of which use the same
encoder-decoder structure with residual connections. They either directly predict
a semantic change mask or an individual change mask and semantic labels which
are then combined in a second step.

2.2 Weakly Supervised and Unsupervised Change Detection

Sakurada et al . [27] proposed a siamese network which first creates a change mask
and then performs semantic segmentation of the changed regions. Both model
parts are trained with pixel-level labels. They use separate change detection and
semantic segmentation datasets for training. Jiang et al . [10] used a siamese
network in combination with a conditional random field (CRF) [28]. They only
use image-level labels for training. Additionally, they proposed a weighted global
average pooling layer (WGAP) which allows them to jointly predict pixel-level
and image-level labels.

Yu et al . [17] used active learning and markov random fields to reduce the
number of needed ground truth change masks. Jong et al . [29] trained their model
on a standard segmentation dataset. They then compared extracted features of
two images in order to create a difference image.

Minematsu et al . [11] proposed a convolutional neural network (CNN) which
uses a simple pixel-wise subtraction of the two input images as an additional
constraint. Their model is trained with image-level labels only. Chianucci et

al . [30] used spatial transformer networks [31] and a sliding window to detect
changes between two images. They did not perform change segmentation but
rather simple change detection with bounding boxes. Khan et al . [9] used a
CNN in combination with a CRF in order to simultaneously perform binary
classification and create a change mask. They use a CNN to predict a first
change mask and a CRF to refine the change mask. They trained their model
with image-level binary labels.

In contrast to the existing weakly supervised change detection approaches,
our method can be trained with image-level semantic labels which describe the
changed object. Our proposed Change Segmentation and Classification (CSC)
module allows us to create a change mask and simultaneously label the changed
object for single-label images. As a result, our method can be trained with
datasets which contain changed image pairs only or with datasets which con-
tain a mix of changed and unchanged image pairs. Additionally, in contrast to
other works [11, 10, 9], our model creates a change mask and segments the im-
age containing change at a hidden layer. The resulting segmented image is then
refined using a CRF-RNN [14] layer and used to predict an image-level seman-
tic label. Akin to [25, 19, 8, 27, 10], we too employ a siamese network to extract
feature maps from an image pair. However, we propose a W-shaped siamese
network based on two U-Nets [13] and introduce a custom Comparison Block
to compare these feature maps before our novel CSC module to jointly segment
and classify the change.
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3 Proposed Method

In this section we introduce our proposed W-CDNet. We start by providing an
overview of the processing pipeline and architecture, then we provide the details
for each of the major components. We also explain how the Change Segmentation
and Classification (CSC) module lets the model learn an accurate change mask
at a hidden layer.

3.1 W-CDNet overview

We introduce W-CDNet (see Fig. 2), a weakly supervised convolutional network
which detects and segments relevant pixel-level changes in an image pair. The
proposed method was trained with image-level semantic labels, as explained in
introductory section 1. The model takes two temporally different, co-registered
RGB images as input (called previous image and current image). If the image
pairs were not yet co-registered, we aligned them in a pre-processing step.

A siamese model (shared weights), which consists of two U-Nets [13], extracts
feature maps from the image pair. These feature maps get compared by a chain
of Comparison Blocks. By comparing features from several hidden layers, we
leveraged both high-level and low-level information which allowed us to filter
out unwanted changes while still creating an accurate high-resolution change
mask.

The output of the last Comparison Block is a raw change mask, which gets
processed by the CSC module. The CSC module is the core of W-CDNet: It
lets the model learn a change mask at a hidden layer. The CSC module and the
individual blocks are described in more detail in the following sections.

3.2 Siamese Network

The Siamese Network is based on U-Net [13] which uses a VGG16 [32] model
as feature extractor. An image pair is used as model input. The U-Nets ex-
tract high-level and low-level feature maps from the two images. The feature
maps generated before every up-sampling layer are passed on to the Comparison
Blocks.

3.3 Comparison Block

This block compares feature maps from the two U-Nets. It highlight differences
of relevant features between the two images. Fig. 3 shows the different layers
of a single Comparison Block. We used a total of six Comparison Blocks, each
of which compares features from a different U-Net layer. This allows the model
to use both high-level and low-level information to create a change mask. The
feature maps created by one Comparison Block get up-sampled and are fed to
the next Comparison Block. The feature maps from the last block get processed
by three convolutional layers with ReLU [33] activation, which then output a
single-channel raw change mask.
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Fig. 2. W-CDNet model architecture.

3.4 CSC module

The CSC module is the core of W-CDNet. It is split up into two independent
branches. One branch, consisting only of a Residual Block, extracts features
which help to decide whether the image pair contains any relevant change at all.

The other branch further processes the raw change mask in the Remapping
Block which assumes that the highest mask activations always correspond to
relevant change, independent of whether there actually is relevant change in the
image pair or not. The Remapping Block creates a change mask which gets
refined by the CRF-RNN [14] layer. The resulting final change mask is used to
segment the current input image. The segmented image then gets encoded by
the VGG16 [32] model. The Fusion Block concatenates the feature vectors from
the two branches and predicts an image-level label. The model has to highlight
relevant changes, else the Fusion Block will not be able to predict the correct
image-level label. We now describe the blocks from the CSC module in more
detail.

Remapping Block. The Remapping Block receives the raw change mask from
the Comparison Blocks. The change mask pixels with a high activation (relative
to the other pixels) are assumed to mark relevant change. This is enforced by
the following formulas:

X̂map =

(

X̂ −min(X̂)

max(X̂)−min(X̂)
· α

)

−
α

2
(1)

Ŷ = sig
(

X̂map

)

(2)
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where X̂ is the raw change mask which can contain values from the interval
[0,∞], α is a hyper-parameter, sig() is the sigmoid function and Ŷ is the in-
termediate predicted change mask which now contains values from the interval
[0, 1].

Equation (1) shows the intermediate result of the remapping process. In-
dependent of the input range, the values of X̂map lie in the interval

[

−
α
2 ,

α
2

]

where min(X̂) gets mapped to −
α
2 and max(X̂) gets mapped to α

2 (Exception:

All features in X̂ have the exact same value). Since these values are then fed
into a sigmoid function, the hyper-parameter α influences how strongly the val-
ues marking relevant change get separated from the values marking irrelevant
change. The smaller α is, the smoother the distribution of the change mask val-
ues will be. We set α to 32 for training (without CRF-RNN layer) and to 16 for
finetuning (including CRF-RNN layer).

The intermediate change mask can now be further refined with a CRF-
RNN [14] layer. The final change mask then gets multiplied element-wise with
the current input image, which results in an image where only regions with
relevant change are visible. This step, combined with the remapping explained
above, forces the model to learn an accurate change mask. The segmented image
is then fed to a VGG16 [32] model which creates a feature vector describing the
region marked by the change mask.

Residual Block. While the Remapping Block assumes that there is always
some relevant change between the two input images, the Residual Block helps
to decide if this is actually true or not. To this end the Residual Block takes the
raw change mask as input and creates a feature vector which helps the model to
distinguish between changed and unchanged image pairs. Without the Residual
Block, the model is not able to do this distinction due to the Remapping Block.
It can, however, still learn to segment changes when trained on changed images
only. Fig. 3 shows the different layers of the Residual Block.

Fusion Block. The Fusion Block concatenates the feature vectors created by
the VGG16 model and the Residual Block and classifies them into N classes,
from which N − 1 describe the changed object and one is the unchanged class.
Fig. 3 shows the different layers of the Fusion Block.

3.5 Model Variations

W-CDNet can be trained with a combination of changed and unchanged image
pairs. By removing the Residual Block from the CSC module, the model can be
trained with changed image pairs only. In this case, the Fusion Block has only
one input and simply serves as a classifier. It is also possible to train our model
with full supervision in a multitask learning setting [34]. In this case, one uses
both the change mask and the image-level label as model outputs.
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Fig. 3. Comparison Block, Residual Block and Fusion Block in more detail. The colors
of the block inputs and outputs refer to the ones in Fig. 2.

3.6 Training

In order to speed up training, we leveraged transfer learning and used publicly
available pre-trained weights for U-Net [35]. For the VGG16[32] model we used
publicly available pre-trained weights from a training on ImageNet [36]. All other
weights were initialized by sampling from a normal distribution.
The model has to be trained in two steps:
(1) Training: The CRF-RNN layer [14] is removed from the model. The model
has to learn to correctly label the image pairs (image-level labels). During this
process, it learns to create an unrefined change mask at a hidden layer. The
boundaries of change objects are not accurately segmented yet, as one can see
in Fig. 4.
(2) Finetuning: In a second step, the CRF-RNN layer is inserted into the
model and the weights from step 1 for all other layers are loaded. The model
is then trained again end-to-end, but with a reduced learning rate. After this
training step, the changed objects get segmented more accurately thanks to the
segmentation refinement by the CRF-RNN layer, as one can see in Fig. 4.

Fig. 4. Influence of CRF-RNN layer on change segmentation performance, shown for an
image pair from the AICD dataset. From left to right: Previous image, Current image
with change object, change mask without refinement, change mask with refinement by
CRF-RNN layer, ground truth change mask.

Loss Function. We used categorical crossentropy loss to train our weakly su-
pervised model. For fully supervised training we combined two losses: Categorical
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crossentropy loss for image-level semantic labels LIL and a custom Conditional
Loss LCM for the pixel-level change mask. LCM takes on the form of a standard
binary crossentropy loss if max(Y ) > 0, else it is set to 0. Y is the ground truth
change mask. This Conditional Loss is needed since the model branch, which
predicts the change mask, assumes that there is always at least some relevant
change in the image pair. Thus, if the image pair does not contain any change, we
do not want to induce any loss for the change mask, but only for the image-level
semantic label. LIL and LCM are summed up to the final loss L.

4 Experiments and Results

In this section we describe the experimental benchmark (datasets and perfor-
mance measures), the conducted experiments, and discuss the achieved results in
relation to the reported results from the literature. There is only a very limited
number of weakly supervised change detection methods which report their re-
sults on publicly available datasets. Since the code for these methods is often not
publicly available, we compare our results to the ones provided by the authors,
by using the performance measures also used by them.

4.1 Datasets

Most change detection datasets contain pixel-level binary labels [37, 15, 38, 6].
In our work, however, we used image-level semantic labels. We could also ex-
tract them from pixel-level semantic labels. HRSCD [16], PSCD [27] and SCPA-
WC [39] contain pixel-level labels for semantic change detection, but only HRSCD
is publicly available. We refer to [1] for an extended review of datasets and related
literature. In this work we validated our approach on HRSCD, AICD [15] for
which we collected image-level semantic labels, and on the Food Waste dataset.

Food Waste Dataset. The Food Waste dataset contains 57,674 image pairs of
which 3,447 pairs have the image-level label unchanged. The changed image pairs
are spread over 20 classes, which results in a dataset with 21 classes, including
the unchanged class. Since the Food Waste dataset is very new, most images only
contain image-level labels. A total of 145 images also contain pixel-level binary
labels. They were used to evaluate segmentation performance. The image-level
labels of 1,050 image pairs was double-checked by hand. These pairs were used to
evaluate semantic and binary classification performance (50 of which belonged
to the unchanged class).
The images were resized from 3,280×2,464 pixels to 512×512 pixels for training
and testing. The model was trained with image augmentation.

AICD Dataset. The Aerial Image Change Detection (AICD) dataset [15] is a
synthetic dataset consisting of 1,000 image pairs (600×800 pixels), 500 of which
include hard shadows. For our experiments we only used the image pairs with
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hard shadows. For each image pair, there is only one object which is considered
as relevant change. Since these objects are very small, we split up the images
into 48 patches of size 122×122 pixels with minimal overlap, which results in
24,000 image pairs. The patches were resized to 128×128 pixels for training. We
manually annotated the image pairs with image-level semantic labels. We will
make the labels publicly available for further research.

HRSCD Dataset. The High Resolution Semantic Change Detection (HRSCD)
dataset [16] is a very challenging dataset that contains 291 high-resolution aerial
images pairs (10,000×10,000 pixels). The dataset contains pixel-level semantic
labels for 5 classes (Artificial surfaces, Agricultural surfaces, Forests, Wetlands,
Water). Additionally, there is a ground truth change mask available for every
image pair. We extracted image-level semantic labels from pixel-level semantic
labels for the changed regions.

We used 146 image pairs for training and 145 image pairs for testing. We work
on image crops of size 1,000×1,000 pixels which were further resized to 512×512
pixels for training and testing. The original images were cropped without any
overlap, which resulted in 29,100 image pairs.

Since our model only works with single-label image pairs but HRSCD con-
tains multi-labels, we created one label for each possible combination of the 5
semantic labels. This resulted in 31 unique semantic labels, plus the additional
unchanged label. We oversampled the underrepresented classes and made sure
that every class had at least 600 training samples.

Fig. 5. Qualitative results of the predicted change masks. Row 1: Previous image. Row
2: Current image. Row 3: Predicted change mask. Row 4: Ground truth change mask.
Columns 1-3: AICD dataset. Columns 4-6: Food Waste dataset. Columns 7-10: HRSCD
dataset.
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4.2 Performance Measures

For assessing the performance we use standard measures from the literature. For
classification performance we employ:

average precision (AP ) =
∑

n

(Rn −Rn−1)Pn, accuracy =
T

N

where Pn and Rn are precision and recall at the n-th threshold, T is the number
of all true predictions and N is the total number of samples.

For change segmentation performance we use the standard:

mIoU = mean(
TP

TP + FP + FN
), Kappa =

po − pe

1− pe
,

Dice =
2 · TP

2 · TP + FP + FN
, Total accuracy =

TP + TN

TP + TN + FP + FN

where TP - true positive, TN - true negative, FP - false positive, FN - false
negative, po - observed agreement between ground truth and predictions, pe -
expected agreement between ground truth and predictions given class distribu-
tions. Cohen’s Kappa [40], the Sørensen-Dice coefficient [41] and Total accuracy
are defined as in [16].

4.3 Influence of Residual and Comparison Blocks on Performance

We study the importance of the Residual Block in our CSC module by training
our W-CDNet with and without that Block. Since the Residual Block is needed
to decide whether an image pair contains any relevant change at all, the model
without this block must be trained with changed images only. Thus, we compare
the change detection and segmentation performance of the full model (dataset
contains also unchanged image pairs) to the model without a Residual Block
(trained with changed images only). Additionally, we studied the influence on
performance of different numbers of filters in the Comparison Blocks. We com-
pare two models where the number of filters was kept constant at either 64 or
256 and a model where the number of filters decreased (256, 128, 64, 32, 16, 16
filters, from first to last Comparison Block).

We show numerical results for tests on the Food Waste dataset in Tab. 1.
The models without a Residual Block were trained on changed images only. The
models with a Residual Block were trained on unchanged images plus the same
changed images as the models without a Residual Block. We show that both
models, with and without Residual Block, learn to create a change mask. They
achieve similar segmentation performances. However, the influence on perfor-
mance of the number of filters is very different for the two models. The model
with a Residual Block shows the best segmentation results for 64 filters while
the model without a Residual Block performs best with a decaying number of
filters.
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Additionally, the model with a Residual Block and 256 filters did not learn to
segment any changes at all. We argue that while the Residual Block is crucial for
the model to distinguish between changed and unchanged images, it increases
the model complexity which made training unstable for too many filters in the
Comparison Blocks.

We also show that change segmentation performance for the model without
the Residual Block (and thus for a dataset without unchanged images) is on par
with the performance for the model with the Residual Block. This shows that
our model learns to distinguish relevant from irrelevant changes already from
changed images only.

Table 1. Results on Food Waste dataset for training a model with or without the
Residual Block and with different numbers of filters in the Comparison Blocks.

With Residual Block Without Residual Block

Number
of filters

mIoU AP
Top-1-
acc.

Top-5-
acc.

mIoU AP
Top-1-
acc.

Top-5-
acc.

64 46.5 74.9 68.2 91.7 45.5 77.7 72.2 93.0
256 0.0 14.3 16.9 49.9 47.4 81.9 74.4 95.5
Decaying 43.2 68.9 63.9 89.3 47.7 79.4 72.4 94.6

4.4 Influence of CRF Refinement on Performance

In Tab. 2 we compare the change segmentation performance and the binary
classification performance of our W-CDNet model without any refinement to a
model with a standard CRF [42] as post-processing step and to a model with
an integrated CRF-RNN layer [14] for segmentation refinement. The standard
CRF was only applied after training the model without any refinement. The
CRF-RNN layer was included in the training process.

We observe a significant segmentation performance increase for our model
with CRF-RNN layer. The standard CRF (without parameter optimization)
applied as post-processing shows only a marginal performance improvement on
the AICD dataset and even significantly decreases performance on the Food
Waste and HRSCD datasets. This was to be expected, as the CRF-RNN layer
learns its parameters during training and adapts to each dataset individually.

4.5 Comparison Results on AICD Dataset

In Tab. 3 and Fig. 5 we report change segmentation and binary as well as seman-
tic change classification results on the AICD dataset [15]. We directly compare
our results to the ones reported by Khan et al . [9] and Chianucci et al . [30]. Ad-
ditionally, we trained our W-CDNet model with full supervision in a multi-task
learning setting as described in section 3.5.



W-CDNet 13

Table 2. Influence on segmentation and classification performance of refining the
change mask with a standard CRF or with a CRF-RNN layer.

AICD Food Waste HRSCD

mIoU AP Acc. mIoU AP Acc. mIoU AP Acc.

No refinement 51.6 98.8 99.2 43.3 97.3 98.2 8.4 75.9 81.7
Post-processing with CRF 52.5 98.8 99.2 30.3 97.3 98.2 4.5 75.9 81.7
Integration of a CRF-RNN layer 66.2 98.7 99.2 46.5 89.8 92.9 9.5 75.1 81.0

On AICD, we improved the state-of-the-art for weakly supervised change
segmentation. However, the model from Khan et al . performs slightly better
for full supervision. The qualitative results show that our model successfully
suppresses irrelevant changes while highlighting relevant change.

Our model had the most difficulties with objects at the edge of the images.
Also, our weakly supervised model interpreted hard shadows from changed ob-
jects as part of the object itself while the ground truth masks excluded these
shadows.

Table 3. Change segmentation and classification results on the AICD dataset [15].

Weak supervision Full supervision

Semantic
classification

Binary
classification

Segmentation Segmentation

AP
Top-1
acc.

Top-5
acc

AP Acc. mIoU mIoU

Khan et al . [9] - - - 97.3 99.1 64.9 71.0
Bu et al . [26] - - - - - - 64.9
Chianucci et al . [30] - - - - - 57.0 -
W-CDNet (ours) 99.5 98.9 99.8 98.7 99.2 66.2 70.3

4.6 Comparison Results on HRSCD Dataset

In Tab. 4 and Fig. 5 we report change segmentation and classification results
on the HRSCD dataset [16]. We are the first ones to report weakly supervised
change detection performance on HRSCD.

For full supervision we compare our results to the ones from Daudt et al . [16].
We compare to the performance of the change detector from their strategy 3

which is trained with pixel-level binary labels. Our fully supervised model shows
better performance than strategy 3 and our weakly supervised model’s perfor-
mance is slightly better. Daudt et al . reported better results than us for their
strategy 4.2, but it was additionally trained with pixel-level semantic labels and
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thus was stronger supervised than our method. We refer to their work [16] for
the results of all strategies trained by Daudt et al .

The change segmentation results on HRSCD are significantly lower than
the ones on Food Waste or AICD. There are three main reasons for that: (i)
The HRSCD ground truth change masks are generally too large: they not only
contain the changed objects but they mark complete building zones; (ii) HRSCD
is highly imbalanced, even more so than the AICD dataset; (iii) A part of the
classes are visually very similar, which makes classification, in combination with
the high class imbalance, very difficult.

Table 4. Change segmentation and classification results on the HRSCD dataset [16].

Weak supervision Full supervision

Semantic
classification

Binary
classification

Segmentation Segmentation

AP
Top-1
acc.

Top-5
acc.

AP Acc. Kappa Dice
Total
acc.

Kappa Dice
Total
acc.

Daudt et al . [16],
strategy 3

- - - - - - - - 12.5 13.8 94.7

W-CDNet (ours) 83.0 79.9 98.0 75.1 81.0 13.3 14.1 98.4 15.9 16.8 98.0

5 Conclusion

This paper presented W-CDNet, a novel data-driven convolutional network for
change detection which can be trained with weak supervision using image-level
semantic labels. The proposed Change Segmentation and Classification (CSC)
module enables W-CDNet to learn a change mask at a hidden layer by using the
custom Remapping Block and then segmenting the current input image with the
predicted change mask. The segmented image is then used to predict the image-
level semantic label which is used for training. In ablative studies we showed the
importance of our Residual Block and of the integrated CRF-RNN layer and
their impact on the W-CDNet overall performance.

We improved the state-of-the-art for weakly supervised change detection on
AICD and are the first to report weakly supervised change detection results
on the HRSCD dataset. On HRSCD the performance of our weakly supervised
approach is on par with a related work using full supervision.

For future work we propose to try multi-label change detection. Since our
model uses image-level semantic labels for training, one could predict an individ-
ual change mask for each label. One could also try to improve information sharing
within the model to improve performance. Another interesting task would be to
perform change detection on unregistered images. Additionally, we hope that
the fact that our model can be trained with or without unchanged image pairs
opens new applications for weakly supervised change detection methods.
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