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Abstract. Medical image segmentation is a fundamental and challenge
task in many computer-aided diagnosis and surgery systems, and attracts
numerous research attention in computer vision and medical image pro-
cessing fields. Recently, deep learning based medical image segmentation
has been widely investigated and provided state-of-the-art performance
for different modalities of medical data. Therein, U-Net consisting of
the contracting path for context capturing and the symmetric expanding
path for precise localization, has become a meta network architecture for
medical image segmentation, and manifests acceptable results even with
moderate scale of training data. This study proposes a novel attention
modulated network based on the baseline U-Net, and explores embed-
ded spatial and channel attention modules for adaptively highlighting
interdependent channel maps and focusing on more discriminant regions
via investigating relevant feature association. The proposed spatial and
channel attention modules can be used in a plug and play manner and
embedded after any learned feature map for adaptively emphasizing dis-
criminant features and neglecting irrelevant information. Furthermore,
we propose two aggregation approaches for integrating the learned spatial
and channel attentions to the raw feature maps. Extensive experiments
on two benchmark medical image datasets validate that our proposed
network architecture manifests superior performance compared to the
baseline U-Net and its several variants.

1 Introduction

In modern and clinic medicine, medical images have played an important role for
conducting accurate disease diagnosis and effective treatment. A large number
of medical images using different imaging technologies, such as X-ray, computed
tomography (CT), ultrasound, and magnetic resonance imaging (MRI) and so
on, have made great contributions to research evolution for developing computer-
aided diagnosis (CAD) systems [1] using image processing and machine learning
[2–5]. On the contrary, the developed CAD system is prospected to conduct
rapid analysis and understanding of large amount of medical data to reduce the
doctor’s interpretation time, and further extends the wide use of medical images
in clinic medicine. The CAD systems can not only conduct fast screening for
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supporting doctors but also provide quantitative medical image evaluation to
assist more accurate treatment. There proposed a lot of CAD systems in recent
decades of years. Therein automatic medical image segmentation that extracts
specific organs, lesion or regions of interest (ROI) [6–8] in medical images is a
crucial step for the downstream tasks of medical image analysis systems. Tra-
ditional medical image segmentation methods mainly rely on hand engineered
feature for classifying pixels independently. Due to large variation of uncontrol-
lable and complex geometric structures in medical images, traditional methods
usually lead to unsatisfied segmentation results. Inspired by the great success of
deep convolutional neural network for image classification in recent years, deep
learning [9] based methods has been widely investigated and provided impressive
performance for different vision tasks including semantic image segmentation. In
the last few years, numerous CNN [10] models have been proposed and validated
that deeper networks generally result in better performance for different recog-
nition and segmentation tasks. However, it is mandatory to prepare large scale
of annotated samples for training very deep models, which is difficult in medical
application scenario. Further the training procedure for a very deep model is
usually unstable due to the vanishing or explosive gradient problems and needs
rich experience for hyper-parameter turning.

In semantic medical image segmentation scenario, simple network architec-
tures are most preferred due to small scale of annotated training samples. In
2015, a simple and easily implemented CNN architecture: U-Net [11] was pro-
posed specifically for medical image segmentation, and has become a very pop-
ular meta architecture for different modalities of medical data segmentation.
To boost segmentation performance, different variants of U-Net via integrating
more advance modules such as recurrent unit, residual block or attention mech-
anism, have been widely investigated. Among them, the attention mechanism
manifests promising performance for segmentation task on different CNN archi-
tectures including U-Net. Many existing attention approach usually investigate
spatial attention via focusing on salient regions, which aid at better estimation
of the under-studying target greatly while may neglect the possible different con-
tribution in the learned feature maps. Thus it still deserves the further studying
of exploring different attentions not only on spatial domain but also on channel
direction.

This study proposes a novel attention modulated network based on the base-
line U-Net, and explores embedded spatial and channel attention modules for
adaptively highlighting interdependent channel maps and focusing on more dis-
criminant regions via investigating relevant feature association. The two explored
attention modules: spatial attention module (SAM) and channel attention mod-
ule (CAM) can be employed to any feature map for emphasizing discriminant
region and selecting important channel maps in a plug and play manner, and
further can be combined as spatial and channel attention module (SCAM) for
simultaneously conducting spatial and channel attention. In addition, we pro-
pose two aggregation approaches for integrating the learned spatial and channel
attentions into the raw feature map. Extensive experiments on two benchmark
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medical image datasets validate that our proposed network architecture mani-
fests superior performance compared to the baseline U-Net and its several vari-
ants.

2 Related Work

In the past few years, semantic medical image segmentation has been actively
researched in computer vision and medical image processing community, and
substantial improvement have been witnessed. This work mainly concentrates on
the medical image segmentation using deep learning methods. Here, we briefly
survey the related work.

2.1 Medical image segmentation

Semantic segmentation of medical images is a crucial step in many downstream
medical image analysis and understanding tasks, and has been extensively stud-
ied for decades of years. Traditional medical image segmentation approaches
generally employ hand engineered features for classifying pixels independently
into semantic regions, and lead to unexpected results for the images with large
variation in intensities. In the last few years, with the rapid evolution of deep
learning technique, many medical image segmentation models based on con-
volutional neural network (CNN) have been proposed. Via replacing the fully
connected layers of standard classification CNNs with convolutional layers, fully
CNN (FCN) [12] has been proposed to conduct dense pixel prediction at one
forward step, and successfully applied for generic object segmentation. Further,
FCN employs skip connection among network for reusing the intermediate fea-
ture maps to improve the prediction capabilities. Later many variants inspired
from the FCN such as SegNet [13], DeepLab [14] have been investigated for
boosting segmentation performance and made great progress for generic image
segmentation in computer vision applications.

On the other hand, U-Net architecture was firstly proposed specifically for
semantic medical image segmentation, and has become very popular due to its
simple implementation and efficiency for network training. In this architecture,
there have contractive and expansive paths, where contractive path is imple-
mented using the combination of convolutional and pooling layers for learning
different scales of contexts while expansive path employs the combination of
convolutional and upsampling layers for mining semantic information. Then,
similarly as in FCN [12], skip connections are used to concatenate the context
and semantic information from two paths for accuracy prediction. To further
improve segmentation results, different variants of U-Net models have been pro-
posed. Kayalibay et al. [10] proposed to integrate multiple segmentation maps
and forward feature maps from different paths, and then predict the final seg-
mentation results from the integrated maps. Drozdzal et al. [15] explored and
evaluated the importance of skip connections for biomedical image segmenta-
tion while Reza Azad et al. [16] proposed to employ convLSTM unit to inte-
grate the feature maps from two paths instead of simple skip connection. Chen
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et al. [17] proposed a deep contour-aware network (DCAN) to extract multi-
level contextual features with a hierarchical architecture while McKinley et al.
[18] designed a deep dig-like convolutional architecture, named as Nabla-Net
for biomedical image segmentation. Further, several works [19, 20] embedded
recurrent and residual structures into the baseline U-Net model, and showed
impressive performance.

The other research direction is to extend the conventional U-Net to 3D coun-
terpart for 3D medical image segmentation tasks. V-Net: a powerful end-to-end
3D medical image segmentation model [21], has firstly been proposed via com-
bining FCN [12] and residual connections while a deeply supervised 3D model
[22] was explored attempting to employ multi-block features for final segmenta-
tion prediction. To refine the segmentation results from CNN model, Kamnitsas
et al. [23] integrated fully connected CRF into a multi-scale 3D CNN for brain
tumor segmentation. Residual structure in the 3D CNN model was also exten-
sively studied for medical image segmentation such as High-Res3DNet [24] and
Voxresnet [25].

2.2 Deep Attention Network

Attention mechanisms are capable of emphasizing important and relevant ele-
ment of the input or the under-studying target via learning strategy, and thus
have become a very popular component in deep neural network. The integration
of these attention modules have made great progress in many vision tasks such
as image question-answering [26], image captioning [27] and classification [28].
Attention mechanisms have also been integrated into semantic image segmenta-
tion networks, and proven performance beneficial for this pixel-wise recognition
tasks [29–34]. For instance, Zhao et al. [30] proposed a point-wise spatial at-
tention network (PSANet), which allows a flexible and dynamic aggregation of
different contextual information by connecting each position in the feature map
with all the others through adaptive attention maps. Fu et al. [31] investigated a
dual attention network for scene segmentation. Despite the growing interest on
exploring attention mechanisms for image segmentation of natural scenes, there
are still limited work for adopting to medical images segmentation. The existed
study for integrating attention mechanisms into medical image segmentation net-
works [35–39], generally employ simple attention models, and the improvement
are limited.

3 Spatial and channel modulate network

This study aims to explore a novel spatial and channel modulate network. We
combine attention mechanism with U-Net to propose a attention modulate net-
work for semantic segmentation of medical images. The schematic concept of the
proposed SCAM-Net is given in Fig. 1. The mainstream of the proposed SCAM-
Net follows the encoder-decoder architecture, and various feature maps, which
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3.2 Spatial attention module (SAM)

The simple up-sampling process of the decoding path in the mainstream archi-
tecture may lead to un-expected spatial information and detail structure lost. To
solve this problem, U-Net employs skip connections to combine (concatenate)
the feature map with detail spatial information in the encoding path and the
feature map of the decoding path. However, this simple concatenation brings
many redundant low-level features. Therefore, we leverage a spatial attention
module (SAM) in the decoding path to effectively suppress the activation re-
gions with little discriminant information and thereby reduce the number of
redundant features. The structure of the proposed SAM is shown in Fig. 2(a).

Given a feature map extracted by a block of the decoder asX ∈ ℜW×H×C , we
implement the spatial attention mechanism via firstly employing a convolutional
layer with 1*1 kernel and output channel 1, being formulated as:

XSAM = fConv1∗1(X) (2)

where XSAM ∈ ℜW×H has the same spatial size with X. Then a non-linear
transformation is conducted to generate the spatial attention map with mag-
nitude range [0, 1] using an activation function, where a coefficient close to 1
indicates more relevant features. The activation operation is expressed as:

ASAM = σ(XSAM ) (3)

where σ(·) is sigmoid activation function. Finally, the extracted spatial attention
map is employed to the raw feature map X for emphasizing discriminant regions:

X̄SAM = X⊗ fSAM (X) = X⊗ fCh
Ext(ASAM ) (4)

where fCh
Ext(·) extends the spatial attention map in channel direction to the same

size of X for being combined with the raw feature map. After that, it is passed
normally into the mainstream.

3.3 Channel attention module (CAM)

Recently, the channel attention module has attracted a lot of interest and has
shown great potential for improving the performance of deep CNN. The core idea
is to automatically learn the indexed weights for each channel of feature map, so
that the feature maps with more important information for final result prediction
have larger weights while the feature maps with invalid or less discriminant
information have small weights.

We implement the channel attention via exploring the correlations between
different channels of features. The learned feature maps X in the decoder’s block
are aggregated to generate channel contribution index by employing global av-
erage pooling, formulated as:

mk =
1

W ×H

W∑

w=1

H∑

h=1

xk(w, h) (5)
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where xk(w, h) denotes the feature value on the spatial position (w, h) and the
channel k of the feature map in X, and mk represents the global information
of the k − th channel of feature map. Then the channel-wise dependencies are
investigated via using two fully connected (FC) layers. The first FC layer encodes
the channel global vectorm = [m1,m2, · · · ,mK ]T to a dimension-reduced vector
with reduction ratio while the second FC layer recovers it back again to the raw
channel K as an the channel attention vector XCAM , which is expressed as the
following:

XCAM = W2(W1m) (6)

where W1 ∈ ℜ
K

r
×K and W2 ∈ ℜK×

K

r represent the parameters of the two
FC layers, respectively, and the r represents the ratio of scaling parameters.
In our experiment, there is a compromise between accuracy and parameter
amount(r=16).

Then, similar as in the SAM, a non-linear transformation is conducted to gen-
erate the attention map with magnitude range [0, 1] using a sigmoid activation
function σ(·), which is expressed as:

ACAM = σ(XCAM ) (7)

Finally, the channel attention modulated feature map is formulated as:

X̄CAM = X⊗ fCAM (X) = X⊗ f
Spa
Ext (ACAM ) (8)

where fSpa
Ext (·) extends the channel attention map in spatial direction to the same

size of X. Similar as in SAM, it will be passed normally into the mainstream.

3.4 Spatial and channel attention module (SCAM)

In view of the above two attention modules, it naturally leads to the considera-
tion of combining these two attention modules to generate a spatial and channel
attention module for simultaneously emphasizing discriminant regions and se-
lecting useful channel features. We explore two aggregation strategies, and the
conceptual diagrams of the two methods are shown in Fig. 2(c) and Fig. 2(d),
respectively.

The flowchart of the first aggregation method, called as attention fusion
based SCAM (SCAM-AF), is shown in Fig. 2(c), which intuitively integrates
the extended spatial and channel attention maps using element-wise addition,
as expressed in the following:

ASCAM = fCh
Ext(ASpatial) + f

Spa
Ext (ASpectral) (9)

Then, the attention map is added to the raw feature map for generating attention
modulated feature map:

X̄SCAM = X⊗ASCAM (10)
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Table 1. Performance comparison of the proposed attention modulated networks and
the state-of-the-art methods on LUNA dataset.

Models F1-Score Sensitivity Specificity Accuracy AUC

U-Net 0.9658 0.9696 0.9872 0.9872 0.9784
RU-Net 0.9638 0.9734 0.9866 0.9836 0.9800
R2U-Net 0.9832 0.9944 0.9832 0.9918 0.9889

SAM 0.9736 0.9890 0.9955 0.9922 0.9918
CAM 0.9634 0.9936 0.9860 0.9873 0.9898

SCAM-AF 0.9841 0.9823 0.9971 0.9946 0.9897
SCAM-AMFF 0.9800 0.9902 0.9938 0.9932 0.9920

lung and air region segmentation, it is very easy to get the lung region due the
complete separation by other body tissues between the two regions. The used
ground-truth mask for network training in our experiment are shown in Fig. 3

Skin Segmentation dataset: the ISIC dataset is a large-scale dermoscopy im-
age dataset, which was released by the International Dermatology Collaboration
Organization (ISIC). This dataset is taken from a challenge on lesion segmenta-
tion, dermoscopic feature detection, and disease classification. It includes 2594
images, in which we used 1815 images for training, 259 for validation and 520 for
testing. The training subset consists of the original images and corresponding
ground truth annotations. The original size of each sample is 700 × 900, and
was resized to 256 × 256 in our experiments.

Table 2. Performance comparison of the proposed attention modulated networks and
the state-of-the-art methods on ISIC dataset.

Models F1-Score Sensitivity Specificity Accuracy Precision

U-Net 0.647 0.708 0.964 0.890 0.779
Attention U-Net 0.665 0.717 0.967 0.897 0.787
RU-Net 0.679 0.792 0.928 0.880 0.741
R2U-Net 0.691 0.726 0.971 0.904 0.822

SAM 0.773 0.699 0.970 0.913 0.866
CAM 0.851 0.779 0.986 0.942 0.938

SCAM-AF 0.870 0.817 0.983 0.948 0.931
SCAM-AMFF 0.869 0.809 0.986 0.948 0.940

4.2 Evaluation Results

We evaluate the experimental results using several quantitative metrics including
accuracy (AC), F1-Score, sensitivity (SE), specificity (SP), precision (PC) and
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area under the curve (AUC). The true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) values are needed for calculating the
evaluation metrics, which is expressed as:

AC =
TP + TN

TP + TN + FP + FN
(12)

PC =
TP

TP + FP
(13)

SE =
TP

TP + FN
(14)

SP =
TN

TN + FP
(15)

F1− score =
2SE ∗ PC

SE + PC
(16)

To evaluate the effectiveness of the proposed SCAM-Net, we provide the com-
pared results with several state-of-the-art methods including the baseline U-
Net[11], Recurrent Residual U-Net[19], Attention U-Net[40], R2U-Net[20], and
our proposed network with SAM or CAM for both skin lesion segmentation
(ISIC) and lung segmentation dataset.

Table 2 and Table 1 provides the compared quantitative evaluations on two
datasets, which demonstrates improved results compared with the baseline U-
Net and its variants. At the same time, the proposed network with only one
attention module can also achieve better performance than the baseline U-Net
method, and better or comparable results with the extended version of U-Net.
Meanwhile, it can be seen from Table 1 and 2 that CAM performs better than
SAM in the ISIC dataset regard with the quantitative evaluation while SAM
performs better than CAM in the LUNA lung segmentation dataset. Thus dif-
ferent attention models may be applicable to different datasets and deserved to
be further investigated. Next, we conducted experiments on both datasets us-
ing the combined attention modules (SCAM-AF and SCAM-AMFF), and the
compared results are also provided in Table 1 and 2, which manifests that the
quantitative evaluation with the proposed SCAMs is better than not only the
baseline U-Net but also the proposed networks with only one attention module
(SAM or CAM). Finally, the visualization results of segmentation for two exam-
ple images on both the LUNA and ISIC datasets, are shown in the Fig. 4, which
manifests the segmentation results using the proposed networks with different
attention modules are very similar to the ground-truth annotation.

5 Conclusion

This study proposed a novel spatial and channel attention modulated network
for effective segmentation of medical images. module. To emphasize discrimi-
nate regions and adaptive select more important channel of feature maps, we
explored both spatial and channel attention modules for integrating into the
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