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Abstract. Hyperspectral (HS) imaging is a promising imaging modal-
ity, which can simultaneously acquire various bands of images of the same
scene and capture detailed spectral distribution helping for numerous ap-
plications. However, existing HS imaging sensor can only obtain images
with low spatial resolution. Thus fusing a low resolution hyperspectral
(LR-HS) image with a high resolution (HR) RGB (or multispectral) im-
age into a HR-HS image has received much attention. Conventional fu-
sion methods usually employ various hand-crafted priors to regularize
the mathematical model formulating the relation between the observa-
tions and the HR-HS image, and conduct optimization for pursuing the
optimal solution. However, the politic prior would be various for different
scenes and is difficult to hammer out for a specific scene. Recently, deep
learning-based methods have been widely explored for HS image resolu-
tion enhancement, and impressive performance has been validated. As it
is known that deep learning-based methods essentially require large-scale
training samples, which are hard to obtain due to the limitation of the ex-
isting HS cameras, for constructing the model with good generalization.
Motivated by the deep image prior that network architecture itself suffi-
ciently captures a great deal of low-level image statistics with arbitrary
learning strategy, we investigate the deep learned image prior consist-
ing both spatial structure and spectral attribute instead of hand-crafted
priors for unsupervised multispectral (RGB) and HS image fusion, and
propose a novel deep spatial and spectral prior learning framework for
exploring the underlying structure of the latent HR-HS image with the
observed HR-RGB and LR-HS images only. The proposed deep prior
learning method has no requirement to prepare massive triplets of the
HR-RGB, LR-HS and HR-HS images for network training. We validate
the proposed method on two benchmark HS image datasets, and exper-
imental results show that our method is comparable or outperforms the
state-of-the-art HS image super-resolution approaches.
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1 Introduction

In recent decades of years, imaging technique has been witnessed significant
progress for providing high-definition images in different applications from agri-
culture, astronomy to surveillance and medicine, to name a few. Although the ac-
quired images with the existing imaging systems can provide the high-definition
information in a specific domain such as spatial-, temporal- or spectral- domain
according to the application requirement, it is difficult to simultaneously offer
all-possible required detail distribution in all domains such as the high-resolution
hyperspectral (HR-HS) images to meet the demand of the resolution enhance-
ment in both spatial- and spectral- domains. It is well known that hyperspectral
(HS) imaging employs both traditional two-dimensional imaging technology and
spectroscopic technology for obtaining a three-dimensional cubic data for a scene,
and enriches greatly the spectral information for being successfully applied in
remote sensing [1], [2], medical image analysis [3], and many computer vision
tasks, such as object recognition and classification [4], [5], [6], tracking [7], seg-
mentation [8]. However, the detail distribution in spectral domain (high spectral
resolution) implies less radiant energy being able to be collected for each band of
narrow spectrum. For guaranteeing acceptable signal-to-noise ratio, photo collec-
tion has to be performed in a much larger spatial region via sacrificing the spatial
resolution. On the other hand, ordinary RGB cameras usually produce RGB im-
ages with high-resolution in spatial domain. Thus fusing the low-resolution HS
image (LR-HS) with a corresponding high-resolution RGB (HR-RGB) image
to generate a HR-HS image (called as multispectral and hyperspectral image
fusion) has attracted remarkable attention.

Multispectral and hyperspectral image fusion is a challenging task due to
its ill-posed nature in reality. Most existing methods mainly employ various
hand-crafted priors to regularize the mathematical model formulating the rela-
tion between the observations and the HR-HS image, and conduct optimization
for pursuing the optimal solution. Therein, one research line explores different
spectral representation methods according to physical property of the observed
spectrum such as matrix factorization and spectral unmixing motivated by the
fact that the HS observations can be formulated as a weighted linear combination
of the reflectance function basis and their corresponding fraction coefficients [8].
On the other hand, many work investigated sparse-promoted representation [9]
as the prior knowledge for modeling the spatial structure and local spectral
characteristic based on a dictionary trained on the observed HR-RGB and LR-
HS images, and proved feasibility for HR-HS image reconstruction. Beside sparse
constraint on spectral representation, low-rank technique has also been exploited
to encode the intrinsic spectral correlation prior on the underlying HR-HS im-
age for reducing spectral distortion [10]. There are also several work to explore
the global spatial structure and local spectral similarity priors for further boost-
ing the performance of the HS image reconstruction [11], [12]. Although the
promising performance with the hand-crafted priors such as mathematical spar-
sity, physical property of spectral unmixing, low-rank and similarity has been
achieved, different scenes with highly diverse configurations both along space
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and across spectrum should have various effective priors for modeling and to
figure out a proper prior for a specific scene is still difficult.

Recently, deep learning (DL) based methods have popularly been applied
for the HS image reconstruction, and evolved into three research directions: 1)
conventional spatial resolution enhancement with the observed LR-HS image,
2) traditional spectral resolution enhancement with the observed HR-RGB im-
age, 3) fusion method with both LR-HS and HR-RGB images. Compared with
the traditional prior-promoted methods, DL based methods do not need to rely
on any assumption on the prior knowledge and can automatically capture the
intrinsic characteristics of the latent HS images via data-driven learning. How-
ever, the DL based methods are generally used in a fully supervised way, and
it is mandatory to previously collect large amount of training triplets consisting
of the observed LR-HS and HR-RGB images, and their corresponding HR-HS
images for learning optimal network parameters [13], [14], [15]. It is known that
in the HS image reconstruction scenario, it is extremely hard to obtain large-
scale training samples especially the HR-HS images as the label samples. In spite
of the prospected advantage, the fully supervised DL scheme suffers from less
generalization in real applications due to small number of the available training
triplets. On one hand, Ulyanov et al. [16] advocated that the architecture of a
generator network itself can capture quite a lot of low-level image priors with
arbitrary learning strategy, and proposed deep image prior (DIP) learning with
the deep network. The DIP method has successfully been applied to different
natural image restoration tasks and manifested excellent results without any
additional training samples.

Motivated by the fact that the deep network architecture itself carries large
amount of low-level prior knowledge as explored in the DIP work [16], we propose
a novel deep spatial and spectral prior (DSSP) learning farmework for HS image
reconstruction. With a random noisy input, we attempt to learn a set of optimal
parameters via searching the network parameter space to recover the latent
HR-HS image, which is capable of approximating the observed HR-RGB and
LR-HS images under a degradation procedure. In the network training step,
we leverage both observed LR-HS and HR-RGB images of the under-studying
scene to formulate the loss functions for capturing the underlying priors of the
latent HR-HS image. Via employing the deep learned spatial and spectral priors,
our proposed DSSP method can effectively recover the underlying spatial and
spectral structure of the latent HR-HS image even only with the observed HR-
RGB and LR-HS images, and it is not mandatory to prepare massive triplets of
the HR-RGB, LR-HS and HR-HS images.

The main contributions of this work are three-fold:

1) We propose a novel unsupervised framework for fusing the observed LR-
HS and HR-RGB (multispectral: MS) images to generate a HR-HS image, called
as MS/HS fusion, in deep learning scenario.

2) We propose a deep spatial and spectral prior learning network for the
MS/HS fusion, which is expected to effectively characterize the spatial structure
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and the spectral attribute in the latent HR-HS image without manually analysis
of the content in the under-studying scene.

3) We leverage both modality data of the observed LR-HS and HR-RGB
images, and construct the loss functions of our proposed DSSP network for
learning more reliable priors in the latent HR-HS image.

We validate our method on two benchmark HS image datasets, and experi-
mental results show that our method is comparable or outperforms the state-of-
the-art HS image super-resolution approaches.

The rest of this paper is organized as follows. Section 2 surveys the re-
lated work including traditional pan-sharpening and prior-promoted methods
and deep learning based methods. Section 3 presents the proposed deep spatial
and spectral prior learning framework for HS image reconstruction. Extensive
experiments are conducted in Sec. 4 to compare our proposed framework with
state-of-the-art methods on two benchmark datasets. Conclusion is given in Sec.
5.

2 Related Work

2.1 Traditional Methods

Multispectral and hyperspectral (MS/HS) image fusion is closely related mul-
tispectral (MS) image pan-sharpening which aims at merging a low-resolution
MS image with a high-resolution wide-band panchromatic image [17], [18], [19].
There are many developed methods for MS pan-sharpening, which can be mainly
divided into two categories: component substitution [18] and multiresolution
analysis. Although MS/HS image fusion can intuitively be treated as a num-
ber of pan-sharpening sub-problems with each band of HR-MS (RGB) image as
a panchromatic image, it cannot make full use of the spectral correlation and
always suffers from the high spectral distortion.

Recently, many methods formulate MS/HS image fusion as an inverse opti-
mization problem, and leverage the hand-crafted priors in the latent HR-HS im-
age for boosting reconstruction performance. How to design the appreciate priors
plays a key role in finding the feasible solutions for the optimization problem.
The existing methods extensively investigated the prior knowledge for spatial
and spectral representation such as physical spectral mixing, sparsity, low-rank,
and manifest impressive performance. Yokoya et al. [14] proposed coupled non-
negative matrix factorization (CNMF) to fuse a pair of HR-MS and LR-HS im-
ages and gave a convincing spectral recovery result. Lanaras et al. [15] exploited
the coupled spectral unmixing method for HS image reconstruction, and uti-
lized near-end alternating linearization method to optimize. The other research
effort concentrated the sparsity promoting approaches via imposing sparsity con-
straints on the representative coefficients [20]. Grohnfeldt et al. [21] employed
a joint sparse representation via firstly learning the corresponding HS and MS
(RGB) patch dictionary, and then using the sparse coefficients in each individual
band image to reconstruct the spatial local structure (patch). Akhtar et al. [22]
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conducted another sparse coefficient estimation algorithm and designed the gen-
eralized simultaneous orthogonal matching pursuit (G-SOMP) by assuming that
the same atoms are used to reconstruct the spectrum of pixels in the local grid
region. In order to use the prior more effectively in the inherent structure of
the HR-HS image, Dong et al. [23] investigated a non-negative structured sparse
representation (NSSR) method, whose principle is to use spectral similarity in
local regions to limit sparse representation learning in order to restore HR-HS
images closer to the real. Han et al. [24] extended to employ both local spec-
tral and global structure similarity in the sparse-promotion scenario for further
improving the robust recovery of HR-HS images. For now, although these hand-
crafted prior algorithms have already achieved promising performance, seeking
the suitable prior for a specific scene is still a challenging task.

2.2 Deep learning based methods

Motivated by the success of deep learning in the field of nature RGB image
enhancement, deep convolutional neural network has been applied for MS/HS
image fusion, and does not need to model the hand-crafted prior. Han et al. [25]
conducted a pilot study to use a simple 3-layer CNN for fusing the LR-HS and
HR-RGB images with large difference of spatial structures, and further extended
to more complex CNN for pursuing better performance. Palsson et al. [26] pro-
posed a 3D-CNN based MS/HS fusion method by using PCA to reduce the
computational cost. Dian et al. [27] proposed to combine the optimization- and
CNN- based methods together, and validated promising HR image reconstruc-
tion results. All the above deep learning based methods are implemented under
a fully supervised way, and require to previously prepare a lot of training triplets
including the LR-HS, HR-RGB (MS) and the label HR-HS images for network
training. However, large amount of training samples especially the HR-HS im-
ages in the HS image reconstruction scenario are difficult to be collected. Thus,
Qu et al. [28] investigated an unsupervised encoder-decoder architecture to solve
the MS/HS fusion problem which dose not need for any training by using a HS
image dataset. Although the prospected applicability using a CNN-based end-to-
end network in an unsupervised way, this method needs to be carefully optimized
for the two subnetworks in an alternating way, and still has much potential for
performance improvement. This study also aims at proposing an unsupervised
MS/HS fusion network via automatically learning both the spatial and spectral
priors in an end-to-end learning way.

3 Proposed Method

In this part, we firstly describe the formula expression for the problem of the
MS/HS image fusion, and then investigate the proposed unsupervised MS/HS
image fusion with the deep spatial and spectral priors (DSSP) including the
generator network architecture, which automatically learns the underlying priors
of the latent HR-HS image from the observed image pair of LR-HS and HR-RGB
images only, and the constructed loss function for network training.
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3.1 Problem Formulation

Given an observed image pair: a LR-HS image X ∈ R
w×h×L and a HR-RGB

image Y ∈ R
W×H×3, where w, h and L stands for the width, height and the

spectral channel number of the LR-HS image, W and H denotes the width
and height of the HR-RGB image, our goal is to reconstruct HR-HS image:
Z ∈ R

W×H×L via merging X and Y. The degraded model of the observed X
and Y from the latent Z can be mathematically formulated as:

X = ZDB+ n,Y = CZ+ n (1)

where B and D stand for the spatial blurring filter and down-sampling function
to transform Z to X, and C denotes the spectral sensitivity function (CSF)
of a RGB sensor and n represents the observed noise. The heuristic approach
to utilize the observed X and Y for estimating Z is usually to minimize the
following reconstruction errors:

Z⋆ = argmin
Z

‖X− ZBD‖
2
F
+ ‖Y −CZ‖

2
F

(2)

where ‖·‖
F
represents the Frobenius norm. Eq. (2) trys to find out an optimized

Z⋆ which can minimize the reconstruction error of the observations. The terms
in Eq. (2) rely on the observed data. According to the degradation procedure of
the observed images X and Y, it is known that the total number of unknown
variables in Z is much more than the known variables in X and Y, and thus
results in ill-posed nature in this task. To address this problem, most existing
methods popularly explores various hand-crafted priors for modeling the un-
derlying structure of the HR-HS image to regularize the reconstruction error
minimization problem, which is formulated as a regularization term:

Z⋆ = argmin
Z

‖X− ZBD‖
2
F
+ ‖Y −CZ‖

2
F
+ φR(Z) (3)

where φ represents hyper-parameter to make a balance between the contribution
of the regularization term and the reconstruction error. As we know that seeking
an appropriate prior for a specific scene is difficult technically. This study advo-
cates that a large amount of low-level image statistics can be captured by the
deep network architecture itself, and it is prospected to generate a more plausible
image according to the possessed low-level priors in the deep network. In the HS
image scenario, we employ a deep network architecture to automatically learn
the spatial and spectral priors in the latent HR-HS image, and then reconstruct
a reliable HR-HS image constrained by the learned priors.

3.2 The Proposed Deep Spatial and Spectral Priors (DSSP)

The deep learning based methods such as DCGAN [29] and its variants verified
that high-definition and high-quality images with a specific concept can be gen-
erated from a random noise, which means that to search the network parameter
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space from the initial random state can learn the inherent structure (prior) in
the latent image of a specific concept. In addition, DIP [16] explored image prior
possessing capability of network architecture for different restoration tasks of
natural RGB images, and manifested impressive results. This study investigates
the deep learned prior in the latent HR-HS image including HR spatial struc-
ture and spectral attribute, and aims at generating the HR-HS image with the
observed LR-HS and HR-RGB images only. We design an hourglass network ar-
chitecture consisting of encoder and decoder subnets, each with 4-blocks (levels).
The network schematic in detail is shown in Fig. 1. The input of the network
is a noise cube n ∈ R̂

W×H×L with the same size of the required HR-HS image,
and we expect that the network output: fθ(n) (θ: network parameters) should
approach the required HR-HS image: Z. The goal of this work is to search the
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Fig. 1. Our generative network with an hourglass architecture, which generates the
latent HR-HS image from a noisy input via automatically exploring the underlying
spatial and spectral priors.

network parameter space to pursue a set of optimal parameters for satisfying
the above criteria. However, due to the unknown Z, it is impossible to construct
quantitative criteria directly using Z for this task.

With the availability of the LR-HS and HR-RGB images, we turn to X and
Y to formulate quantitative criteria (loss function) for network learning. Since,
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as in Eq. (1), the LR-HS image X is a blurred down-sampled version of Z,
and HR-RGB image Y is a transformed version of Z in channel direction using
CSF: C, we implement the two operations as two convolutional layers with pre-
defined weights (non-trainable) after the output layer of the baseline hourglass-
like network. The convolutional layer for blurring/down-sampling operator has
the kernel size and stride according to the spatial expanding factor W/w and
the kernel weights are pre-calculated according to Lanczos2 filter. The output
of this layer is denoted as f̂BD(fθ(n)), which has the same size and should be
approximated to X. Thus according to X, the first loss function is formulated
as:

L1(n,X) =
∥

∥

∥
X− f̂BD(fθ(n))

∥

∥

∥

2

F

(4)

While the spectral transformation operation (from Z to Y) is implemented as
the convolutional layer with 1× 1 kernel size, input and output channels: L and
3, where the kernel weight is fixed as the CSF: C according to the used RGB
camera. Then the output of this layer should be an optimal approximation of
Y. Denoting it as f̂C(fθ(N)), the second loss function is formulated as:

L2(n,Y) =
∥

∥

∥
Y − f̂C(fθ(n))

∥

∥

∥

2

F

(5)

Via combining the L1 and L2 loss functions, we finally minimize the following
total loss for searching a set of network parameter from the initialed random
state:

L(n,X,Y) = argmin
θ

L1(n,X) + L2(n,Y) (6)

From Eq. (6), it can be seen the network is learned with the available observations
only without any additional training samples. After completing training, the
baseline network output: fθ(n) is our required HR-HS image.

4 Experiment Result

We validate our proposed DSSP network on 32 indoor HS images in CAVE
dataset and 50 indoor and outdoor HS images in Harvard dataset. The images
in CAVE dataset including paintings, toys, food, and so on, are captured un-
der controlled illumination, and their dimensions are 512×512 pixels, with 31
spectral bands of 10 nm wide, covering the visible spectrum from 400 to 700nm.
The Harvard dataset has 50 images under daylight illumination, both outdoors
and indoors, using a commercial hyperspectral camera (Nuance FX, CRI Inc.).
The images in Harvard dataset are of a wide variety of real-world materials and
objects. We firstly took the top-left 1024×1024 regions from the raw HS images,
and down-sampled them to size 512 × 512 as the ground-truth HS images. For
experiment conducting, we synthesized the low-resolution HS image with the
down-sampling factors of 8 and 32 using the Bicubic interpolation, and then the
observed LR-HS images have sizes of 64× 64× 31 and 16× 16× 31, respectively.
We generated the HR-RGB images via multiplying the spectral channels of the
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Fig. 2. The schematic concept of our proposed DSSP framework, which leverages the
observed LR-HS and HR-RGB image to formulate the loss function for network train-
ing. The spatial down-sampling operation is implemented using a convolutional layer:
’Conv1: KT (F )×SF ×C31’, with kernel size, stride and kennel number: T(F), F (spatial
expanding factor) and 31, respectively while the spectral linear transformation from
the HR-HS image to the HR-is image, is implemented using the convolutional layer:
’Conv2: K1 × S1 × C3’, with the kernel size, stride and kennel number: 1, 1 and 3,
respectively.

ground truth HR-HS images with the spectral response function of Nikon D700
camera.

We conducted experiments with our proposed deep spatial and spectral prior
(DSSP) framework using the observed LR-HS and HR-RGB images only, which
means that the combined loss function in Eq. (6) is used for network parameter
learning. Since our proposed method is evolved from the deep image prior for
natural image restoration problems, which was further extended to enhance hy-
perspectral image for deep spatial prior (DSP) learning with the loss function in
Eq. (4) [30], we compare the experimental results with our DSSP framework and
the conventional DSP method. The experiments were conducted under the same
experimental setting with 12000 iterations and learning rate 0.001 for both DSSP
and DSP learning. Further, to avoid that the predicted HR-HS image drops down
a local minimized point, we added a vibrated random noise with much smaller
deviation to the network noise input on each iteration in the experiments. We
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evaluate experimental results with five commonly-used quantitative metrics: root
mean square error (RMSE), peak signal to noise ration (PSNR), structure sim-
ilarity (SSIM), spectral angle mapper (SAM) and relative dimensional global
error (ERGAS). We calculate the mean metric values of all images in the CAVE
and Harvard datasets for comparison.

The compared experimental results on CAVE dataset using our proposed
DSSP and the conventional DSP methods are given in Table 1 for both expanding
factors 8 and 32 in spatial domain. From the results of Table 1, it can be seen
that our proposed method can greatly outperform the conventional DSP method
on all five metrics. Table 2 manifests the compared results on Harvard dataset,
which also demonstrates much better performance of our DSSP method.

Table 1. Quantitative comparison results of our proposed DSSP framework and the
conventional DSP method [30] on the CAVE dataset.

Factor Method RMSE PSNR SSIM SAM ERGAS

8
DSP [30] 7.5995 31.4040 0.8708 8.2542 4.2025
DSSP 2.0976 42.5251 0.9780 5.2996 1.1190

32
DSP [30] 16.0121 24.7395 0.7449 13.0761 8.5959
DSSP 3.1279 39.0291 0.9619 7.6520 1.6366

Table 2. Quantitative comparison results of our proposed DSSP framework and the
conventional DSP method [30] on the Harvard dataset.

Factor Method RMSE PSNR SSIM SAM ERGAS

8
DSP [30] 7.9449 30.8609 0.8029 3.5295 3.1509
DSSP 2.1472 42.6315 0.9736 2.3204 1.0089

32
DSP [30] 13.2507 26.2299 0.7186 5.6758 5.6482
DSSP 2.8366 40.3152 0.9602 3.5171 1.5809

Finally, we compare the experimental results with other state-of-the-art meth-
ods. Since our DSSP method is an unsupervised MS/HS fusion strategy, for fair
comparison we provide the results of the unsupervised methods including opti-
mization based approaches: MF [31], CMF [14], BSR [32] and unsupervised deep
learning based method: uSDN [28] in Table 3 with the expanding factor 32 of spa-
tial domain for both CAVE and Harvard datasets, which manifests the promising
performance using our proposed DSSP framework. The visual examples in both
CAVE and Harvard datasets with our DSSP method, the conventional DSP and
the uSDN methods are shown in Fig. 3 and Fig. 4.
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Fig. 3. The predicted LR-HR image of ‘chart and stuffed toy’ sample in the CAVE
dataset for both spatial expanding factors: 8 and 32, which visualizes the 16-th band
image. The first column shows the ground truth HR image and the input LR image,
respectively. The second to fourth columns show results from DSP [16], uSDN [28],
our proposed method, with the upper part showing the predicted images and the lower
part showing the absolute difference maps w.r.t. the ground truth.
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Fig. 4. The predicted LR-HR image of ‘img1’ sample in the Harvard dataset for both
spatial expanding factors: 8 and 32, which visualizes the 16-th band image. The first
column shows the ground truth HR image and the input LR image, respectively. The
second to fourth columns show results from DSP [16], uSDN [28], our proposed method,
with the upper part showing the predicted images and the lower part showing the
absolute difference maps w.r.t. the ground truth.
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Table 3. The compared average RMSE, SAM and PSNR with the state-of-the-art
unsupervised methods on both CAVE and Harvard datasets.

Method
CAVE Harvard

RMSE SAM PSNR RMSE SAM PSNR

MF [31] 3.47 8.29 38.61 2.93 3.99 40.02
CMF [14] 4.23 7.71 37.98 2.86 4.46 39.97
BSR [32] 3.79 9.12 35.25 3.7 4.26 38.52
uSDN [28] 3.89 7.94 37.46 3.02 3.98 38.08

DSSP 3.1279 7.652 39.0291 2.8366 3.5171 40.3152

5 Conclusion

This study proposed a deep unsupervised prior learning network for the fusion
of multispectral and hyperspectral images. Motivated that a generative network
architecture itself can capture large amount of low-level image statistics, we
attempted to construct a simple network for learning the spatial and spectral
priors in the latent HR-HS images. The proposed prior learning network can ef-
fectively leverage the HR spatial structure in HR-RGB images and the detailed
spectral properties in LR-HS images to provide more reliable HS images re-
construction without any training samples. Experimental results on both CAVE
and Harvard datasets showed that the proposed method has achieved impressive
performance.
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