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Abstract. Jaywalking is an abnormal pedestrian behavior which significantly in-

creases the risk of road accidents. Owing to this risk, autonomous driving appli-

cations should robustly estimate the jaywalking pedestrians. However, the task

of robustly estimating jaywalking is not trivial, especially in the case of visi-

ble camera-based estimation. In this work, a two-step hierarchical deep learn-

ing formulation using visible and thermal camera is proposed to address these

challenges. The two steps are comprised of a deep learning-based scene classi-

fier and two scene-specific semantic segmentation frameworks. The scene classi-

fier classifies the visible-thermal image into legal pedestrian crossing and illegal

pedestrian crossing scenes. The two scene-specific segmentation frameworks es-

timate the normal pedestrians and jaywalking pedestrians. The two segmentation

frameworks are individually trained on the legal or illegal crossing scenes. The

proposed framework is validated on the FLIR public dataset and compared with

baseline algorithms. The experimental results show that the proposed hierarchical

strategy reports better accuracy than baseline algorithms in real-time.

1 Introduction

Autonomous driving and ADAS applications, which aim to increase the safety of road

users, have received significant attention from the research community [1–3]. Envi-

ronment perception is a key task for autonomous driving. Examples of environment

perception include pedestrian detection [4], road surface segmentation [3], pedestrian

behavior estimation [5] etc. Jaywalking is an example of abnormal pedestrian behavior

which occurs when pedestrians walk or cross the road at locations, disregarding traffic

rules.

Owing to the risk of accidents associated with this behavior, autonomous driving

applications should robustly estimate jaywalking pedestrians. However, jaywalking es-

timation is not a trivial task with several challenges, especially when the visible camera

is used. The challenges include variations in illumination, appearance similarity be-

tween normal pedestrian behavior and abnormal pedestrian behavior (Fig 1), appear-

ance variations in legal pedestrian crossing points or scenes (Fig 2]), environmental

noise etc.
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(a) Normal Behavior: Legal Pedestrian Cross-

ing Scene

(b) Jaywalking: Illegal Pedestrian Crossing

Scene

Fig. 1. Appearance similarity in legal and illegal crossing scene.

A naive vision-based approach to solving this problem involves segmenting or de-

tecting pedestrians and legal-illegal crossing image regions, and using the segmentation

results to estimate the pedestrian behavior. However, such an approach is limited by the

appearance similarity between the normal and abnormal pedestrian behavior in certain

scenes (Fig 1. In such scenes, the pedestrian crossing segmentation can be used to clas-

sify the pedestrian behavior. But as shown in Fig 2, the pedestrian crossing estimation

is by itself a challenging problem owing to varying pedestrian crossing regions.

Fig. 2. Challenges in jaywalking estimation due to variations in the pedestrian crossing markers.

To address these challenges, a two-step hierarchical framework is proposed using

the visible and thermal camera. The sensor fusion of the thermal and visible camera

address the challenges associated with the visible camera such as illumination variations

and sensor noise [6]. The other challenges are addressed by the hierarchical framework.

The hierarchical framework is comprised of a classification step and a semantic

segmentation step. The classification step is formulated using a single deep learning-

based scene classifier which classifies the driving scene into a legal pedestrian crossing
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(a) Legal Pedestrian Crossing Scenes (b) Illegal Pedestrian Crossing Scenes

Fig. 3. Scene Partitions for the Hierarchical Framework.

scene or a illegal pedestrian crossing scene (Fig 3). The semantic segmentation step

is formulated using two scene-specific semantic segmentation frameworks. The first

semantic segmentation framework is trained on the legal pedestrian crossing scene. The

second semantic segmentation framework is trained on the illegal pedestrian crossing

scenes. These semantic segmentation frameworks estimate the normal and jaywalking

pedestrians in a given image. The proposed framework is validated on the FLIR public

dataset, and is compared with baseline algorithms. The experimental results show that

the hierarchical fusion framework is better than the baseline algorithms (Sec 4), while

reporting real-time computational complexity.

To the best of our knowledge, the main contribution of our work are as follows:

– A hierarchical learning framework for jaywalking estimation

– Visible and thermal camera fusion for jaywalking estimation

The reminder of the paper is structured as follows. In Section 2 we review the lit-

erature in jaywalking estimation. The hierarchical learning framework is presented in

Section 3, and the experimental results are presented in Section 4. Finally, we summa-

rize our work in Section 5.

2 Related Work

Pedestrian detection is an important precursor for pedestrian behavior estimation, and

has been well-researched [7–10]. Pedestrian detection methods are categorized into

methods based on hand-crafted features [7–9] or methods based on deep learning [10,

11]. Pedestrian spatial, contextual or temporal information obtained from pedestrian

detection is used for pedestrian behavior estimation [12–14]. Pedestrian behavior esti-

mation is based on probabilistic modeling [12, 15–17], deep learning models [18–20],

and traditional frameworks that incorporate spatial contextual cues [14]. The differ-

ent pedestrian behavior estimation frameworks are surveyed in the work of Santosh et

al. [5].

Probabilistic and traditional frameworks model pedestrian behaviour using extracted

pedestrian features. The modeled pedestrian behavior are used to identify anomalous

behavior [12, 14–17]. Roshtkari et al. [14] model the pedestrian spatial-temporal infor-

mation within a bag-of-words framework, which are then used to identify anomalous
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Fig. 4. Architecture of the Classification and Semantic Segmentation Network.
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Fig. 5. 2D Convolutional layer parameters: C(filters, kernel size, stride), D(dilation rate), Pad(S)

“same” padding; Max pooling layer parameters: P (kernel size); 2D transpose convolutional layer

parameters: TC (filters, kernel size, stride).

behavior. In the work of Bera et al. [17] where the pedestrian global and local features

are extracted and used within a Bayesian framework to identify anomalous behavior. In

recent years, deep learning models report state-of-the-art accuracy for different percep-

tion tasks [2, 3, 21]. Medel et al. [19] use an end-to-end composite Convolutional Long

Short-Term Memory (LSTM) to estimate anomalous behavior. A similar approach is

proposed by Xu et al. [22] using the Resnet and LSTM.

Compared to literature, in our work, we adopt a hierarchical deep learning frame-

work using thermal and visible cameras to estimate jaywalking.

3 Algorithm

A two-step hierarchical framework using visible and thermal camera is proposed to

identify jaywalking pedestrians. The initial step is formulated using a single deep learning-

based classification network, while the second step is formulated using two semantic
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Fig. 7. Hierarchical Framework Step 2: Semantic Segmentation.

segmentation networks. The hierarchical framework is formulated to reduce the follow-

ing pedestrian behavior estimation errors: a) appearance similarities between jaywalk-

ing pedestrians and pedestrians in legal crossing scenes (Fig 1); b) appearance variations

across different legal pedestrians crossing scenes (Fig 2).

3.1 Classification Step

The first step in the hierarchical framework is a classification step, which categorises

the driving scene into either a legal pedestrian crossing scene or a illegal pedestrian

crossing scene (Fig 3). An illustration of the classification step is shown in Fig 6.

Architecture A deep learning-based visible and thermal camera fusion architecture is

used for the classification step. The architecture comprises of feature extraction, clas-

sification and output layers. The feature extraction layer contains three branches with

two branches for visible camera and thermal camera feature extraction and one branch

for fusion.

The two feature extraction branches contain 5 blocks. The first four blocks each

contain a 2D convolutional layer with batch-normalization followed by a max-pooling

layer. The fifth block contains a 2-dilated convolutional layer with batch-normalization.

The fusion branch also has 5 blocks. The first three blocks each contain a 2D con-

volutional layer with batch-normalization followed by a max-pooling layer. The fourth

block contains a 2-dilated convolutional layer with batch-normalization. The final block

contains a 1x1 convolutional layer functioning as a feature map reducing layer. The out-

put of the feature map reducing layer is given as an input to the classification layer.

The classification layer contains two fully connected layers with 512 and 256 neu-

rons and relu activation function. The final output layer contains 1 neuron and performs

binary classification using the sigmoid activation.
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3.2 Semantic Segmentation Step

This step contains two multi-class semantic segmentation networks. The first network

is trained on the legal pedestrian crossing scenes, while the second network is trained

on the illegal pedestrian crossing scenes. The trained semantic segmentation frame-

work categorizes the image pixels as normal pedestrian, jaywalking pedestrian or back-

ground. An illustration of the semantic segmentation is shown in Fig 7.

Architecture A deep learning-based encoder-decoder architecture is utilized for the

visible and thermal fusion and semantic segmentation. The encoder layers are the same

as the feature extraction layers in the aforementioned classification network. This layer

contains three feature extraction branches for visible camera feature extraction, thermal

camera feature extraction and feature fusion.

The decoder layers contain 4 transpose convolutional layers and 5 convolutional

layers. The transpose convolutional layers with batch-normalization upsample the en-

coder feature maps from the fusion branch. A skip connection is used to transfer the

encoder feature maps to the decoder branches.

The output of the last decoder layer is fed into the output layer which performs the

multiclass semantic segmentation using the softmax activation.The detailed architecture

and the parameters are given in Fig 4 and Fig 5.

3.3 Hierarchical Framework: Training

The hierarchical framework is trained on the FLIR public dataset. Manually selected

frames from the dataset are manually partitioned into legal pedestrian crossing and

illegal pedestrian crossing scenes. The visible and thermal camera images for these

frames are manually registered to ensure pixel-to-pixel correspondence.

During training, the single classification network is trained with all the frames (both

legal and illegal pedestrian crossing scenes). On the other hand, the first semantic seg-

mentation network is trained on the legal pedestrian crossing scenes, and the second

semantic segmentation network is trained on the illegal pedestrian crossing scenes.

3.4 Hierarchical Framework: Testing

During testing, the registered thermal and visible camera images are first given as an

input to the trained classification network. The classification network classifies the input

images as either legal or illegal pedestrian crossing scene, assigning scene label c.

The estimated c-th scene label is used to retrieve the corresponding trained c-th

scene-based semantic segmentation network (illegal or legal) for jaywalking estima-

tion. Following the semantic segmentation network retrieval, the registered thermal and

visible camera images are re-given as the network input and the jaywalking pedestrians

are estimated. An overview of the testing is shown in Fig 8.
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Fig. 8. Hierarchical Framework.

4 Experimental Results

We validate the proposed framework on a manually selected subset from the FLIR pub-

lic dataset. Our dataset contains 2799 training frames and 313 testing frames. Our al-

gorithm was implemented using Tensorflow 2 on an Ubuntu 18.04 machine with two

Nvidia 1080 GPUs. The algorithm was compared with six baseline algorithms and vali-

dated on the dataset. The proposed framework and the baseline algorithms were trained

with batch size 4 for 30 epochs. The performance is measured using the pixel segmen-

tation accuracy, the intersection-over-union (IOU) measure and classification accuracy.

The IoU measure is the calculated from the overlap between the prediction and segmen-

tation divided by the area of their union. We next briefly review the different baseline

algorithms.

Hierarchical MFNet: The first baseline is a hierarchical framework based on the MFNet [23].

The MFNet is a visible-thermal camera based semantic segmentation framework with

encoder-decoder architecture.

For comparative analysis, the MFNet encoder was used for feature extraction in

the classification network. On the other hand, the entire MFNet was used for the two

semantic segmentation networks.

Hierarchical Fusenet: The second baseline is a hierarchical framework based on the

Fusenet [21]. The original Fusenet is a visible-depth based semantic segmentation frame-

work with encoder-decoder architecture. For the comparative analysis, the original Fusenet

input layers were modified for visible-thermal camera input.
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The modified Fusenet’s encoder was used for feature extraction in the classifica-

tion network. The entire modified Fusenet was used for the two semantic segmentation

networks in the second step.

Hierarchical with Single Encoder: The third baseline is a hierarchical framework where

the classification network feature maps are reused for the semantic segmentation net-

work.

The classification network is first trained on the dataset, and the feature maps for the

dataset are obtained. The classification network feature maps are used for the semantic

segmentation network training. The feature maps are the outputs of the DC1−FR block

or the final fusion encoder block. Since the feature maps are re-used, there is no encoder

layer in this baseline’s semantic segmentation networks. The classification feature maps

are directly given as input to the decoder branches and network is trained.

Hierarchical Visible: The fourth baseline is a hierarchical framework using the visible

camera input as the sole input. The encoder branch of the proposed network for both the

classification and segmentation networks contain a single branch for the visible camera.

Hierarchical Thermal: The fifth baseline is a hierarchical framework using the ther-

mal camera as the sole input. The encoder branch of the proposed network for both

the classification and segmentation networks contain a single branch for the thermal

camera.

End-to-End Semantic Segmentation: The sixth baseline is a naive end-to-end seman-

tic segmentation framework, formulated to evaluate the hierarchical framework. The

performance of the hierarchical framework is compared with the end-to-end semantic

segmentation framework.

In this baseline network, the jaywalking pedestrians are directly estimated using a

“single” semantic segmentation framework. Unlike, the hierarchical semantic segmen-

tation networks, this ”single” semantic segmentation framework is trained with entire

dataset, both legal and illegal pedestrian crossing scenes.

4.1 Comparative Analysis

The performance of the different algorithms are tabulated in Table 1-Table 3. The results

are illustrated in Fig 9 and Fig 10.

Hierarchical Framework with Varying Base Deep Learning Models: In Table 1, the

results of the hierarchical framework with varying base deep learning models are tabu-

lated. The results show that the hierarchical framework with the proposed deep learning

architecture is better than the hierarchical framework with the MFNet and the Fusenet.

Hierarchical Framework with Varying Sensors: The results of the hierarchical frame-

work with varying sensors are tabulated in Table 2. As expected, the advantages of the

visible-thermal camera sensor fusion are clearly demonstrated.
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Fig. 9. Results of the different algorithms illustrating normal pedestrian behavior.

Varying Estimation Approaches: Apart from the hierarchical formulation, we also in-

vestigate two different jaywalking estimation approaches namely end-to-end seman-

tic segmentation and hierarchical with single encoder. The results of the different ap-

proaches are tabulated in Table 3. The results show that the proposed hierarchical ap-

proach is better than the other two approaches. The reuse of the classification feature

maps (hierarchical with single encoder) or the use of a naive end-to-end segmentation

network doesn’t improve the accuracy.
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ior.

5 Summary

A hierarchical deep learning framework is proposed for jaywalking estimation using

thermal and visible cameras. The hierarchical framework is proposed to address the

challenges in this perception task. The hierarchical framework contains two steps, an
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Table 1. Comparative analysis of the proposed hierarchical framework with different hierarchical

frameworks.

Proposed Pixel Acc.% IOU (Unit scale) Class. Acc Time

Algo. Normal Ped Jaywalk Ped. Normal Ped Jaywalk Ped. % (ms)

Proposed Hier. 80.05 82.75 0.71 0.73 99 47

Hier. MFNet 84.42 68.10 0.69 0.59 96 38

Hier. Fusenet 51.40 59.08 0.46 0.52 96 35

Table 2. Comparative analysis of the sensor fusion of the proposed hierarchical framework.

Proposed Pixel Acc.% IOU (Unit Scale) Class. Acc Time

Algo. Normal Ped Jaywalk Ped. Normal Ped Jaywalk Ped. % (ms)

Hier. Fusion 80.05 82.75 0.71 0.73 99 47

Hier. Visible 41.32 60.43 0.37 0.48 93 32

Hier. Thermal 55.18 40.90 0.47 0.35 89 31

Table 3. Comparative analysis of the proposed hierarchical framework with different estimation

approaches.

Proposed Pixel Acc.% IOU (Unit Scale) Time

Algo. Normal Ped Jaywalk Ped. Normal Ped Jaywalk Ped. (ms)

Proposed Hier. 80.05 82.75 0.71 0.73 47

End-to-End Seg. 78.99 71.58 0.70 0.64 36

Hier. Single Encoder 60.04 32.23 0.50 0.29 50

initial step with a single classification network and second step with two semantic seg-

mentation networks. In the first step, the classification network classifies the scene into

a legal or illegal pedestrian crossing scenes. In the second step, scene-specific semantic

segmentation networks are used to estimate the jaywalking pedestrians. The proposed

framework is validated on the FLIR public dataset, and a comparative analysis with

baseline algorithms is performed. The results show that the proposed hierarchical ap-

proach reports better accuracy than baseline algorithm, while reporting computational

complexity. In our future work, we will investigate the framework with a much larger

dataset in varying countries.
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