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Abstract. Jaywalking is an abnormal pedestrian behavior which significantly in-
creases the risk of road accidents. Owing to this risk, autonomous driving appli-
cations should robustly estimate the jaywalking pedestrians. However, the task
of robustly estimating jaywalking is not trivial, especially in the case of visi-
ble camera-based estimation. In this work, a two-step hierarchical deep learn-
ing formulation using visible and thermal camera is proposed to address these
challenges. The two steps are comprised of a deep learning-based scene classi-
fier and two scene-specific semantic segmentation frameworks. The scene classi-
fier classifies the visible-thermal image into legal pedestrian crossing and illegal
pedestrian crossing scenes. The two scene-specific segmentation frameworks es-
timate the normal pedestrians and jaywalking pedestrians. The two segmentation
frameworks are individually trained on the legal or illegal crossing scenes. The
proposed framework is validated on the FLIR public dataset and compared with
baseline algorithms. The experimental results show that the proposed hierarchical
strategy reports better accuracy than baseline algorithms in real-time.

1 Introduction

Autonomous driving and ADAS applications, which aim to increase the safety of road
users, have received significant attention from the research community [1-3]. Envi-
ronment perception is a key task for autonomous driving. Examples of environment
perception include pedestrian detection [4], road surface segmentation [3], pedestrian
behavior estimation [5] etc. Jaywalking is an example of abnormal pedestrian behavior
which occurs when pedestrians walk or cross the road at locations, disregarding traffic
rules.

Owing to the risk of accidents associated with this behavior, autonomous driving
applications should robustly estimate jaywalking pedestrians. However, jaywalking es-
timation is not a trivial task with several challenges, especially when the visible camera
is used. The challenges include variations in illumination, appearance similarity be-
tween normal pedestrian behavior and abnormal pedestrian behavior (Fig 1), appear-
ance variations in legal pedestrian crossing points or scenes (Fig 2]), environmental
noise etc.



2 V. John et al.

2 - M - |
(a) Normal Behavior: Legal Pedestrian Cross- (b) Jaywalking: Illegal Pedestrian Crossing
ing Scene Scene

Fig. 1. Appearance similarity in legal and illegal crossing scene.

A naive vision-based approach to solving this problem involves segmenting or de-
tecting pedestrians and legal-illegal crossing image regions, and using the segmentation
results to estimate the pedestrian behavior. However, such an approach is limited by the
appearance similarity between the normal and abnormal pedestrian behavior in certain
scenes (Fig 1. In such scenes, the pedestrian crossing segmentation can be used to clas-
sify the pedestrian behavior. But as shown in Fig 2, the pedestrian crossing estimation
is by itself a challenging problem owing to varying pedestrian crossing regions.

Fig. 2. Challenges in jaywalking estimation due to variations in the pedestrian crossing markers.

To address these challenges, a two-step hierarchical framework is proposed using
the visible and thermal camera. The sensor fusion of the thermal and visible camera
address the challenges associated with the visible camera such as illumination variations
and sensor noise [6]. The other challenges are addressed by the hierarchical framework.

The hierarchical framework is comprised of a classification step and a semantic
segmentation step. The classification step is formulated using a single deep learning-
based scene classifier which classifies the driving scene into a legal pedestrian crossing
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(a) Legal Pedestrian Crossing Scenes

Fig. 3. Scene Partitions for the Hierarchical Framework.

scene or a illegal pedestrian crossing scene (Fig 3). The semantic segmentation step
is formulated using two scene-specific semantic segmentation frameworks. The first
semantic segmentation framework is trained on the legal pedestrian crossing scene. The
second semantic segmentation framework is trained on the illegal pedestrian crossing
scenes. These semantic segmentation frameworks estimate the normal and jaywalking
pedestrians in a given image. The proposed framework is validated on the FLIR public
dataset, and is compared with baseline algorithms. The experimental results show that
the hierarchical fusion framework is better than the baseline algorithms (Sec 4), while
reporting real-time computational complexity.
To the best of our knowledge, the main contribution of our work are as follows:

— A hierarchical learning framework for jaywalking estimation
— Visible and thermal camera fusion for jaywalking estimation

The reminder of the paper is structured as follows. In Section 2 we review the lit-
erature in jaywalking estimation. The hierarchical learning framework is presented in
Section 3, and the experimental results are presented in Section 4. Finally, we summa-
rize our work in Section 5.

2 Related Work

Pedestrian detection is an important precursor for pedestrian behavior estimation, and
has been well-researched [7-10]. Pedestrian detection methods are categorized into
methods based on hand-crafted features [7-9] or methods based on deep learning [10,
11]. Pedestrian spatial, contextual or temporal information obtained from pedestrian
detection is used for pedestrian behavior estimation [12-14]. Pedestrian behavior esti-
mation is based on probabilistic modeling [12, 15-17], deep learning models [18-20],
and traditional frameworks that incorporate spatial contextual cues [14]. The differ-
ent pedestrian behavior estimation frameworks are surveyed in the work of Santosh et
al. [5].

Probabilistic and traditional frameworks model pedestrian behaviour using extracted
pedestrian features. The modeled pedestrian behavior are used to identify anomalous
behavior [12, 14-17]. Roshtkari et al. [14] model the pedestrian spatial-temporal infor-
mation within a bag-of-words framework, which are then used to identify anomalous
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Fig. 4. Architecture of the Classification and Semantic Segmentation Network.
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Fig. 5. 2D Convolutional layer parameters: C(filters, kernel size, stride), D(dilation rate), Pad(S)
“same” padding; Max pooling layer parameters: P (kernel size); 2D transpose convolutional layer
parameters: TC (filters, kernel size, stride).

behavior. In the work of Bera et al. [17] where the pedestrian global and local features
are extracted and used within a Bayesian framework to identify anomalous behavior. In
recent years, deep learning models report state-of-the-art accuracy for different percep-
tion tasks [2,3,21]. Medel et al. [19] use an end-to-end composite Convolutional Long
Short-Term Memory (LSTM) to estimate anomalous behavior. A similar approach is
proposed by Xu et al. [22] using the Resnet and LSTM.

Compared to literature, in our work, we adopt a hierarchical deep learning frame-
work using thermal and visible cameras to estimate jaywalking.

3 Algorithm

A two-step hierarchical framework using visible and thermal camera is proposed to
identify jaywalking pedestrians. The initial step is formulated using a single deep learning-
based classification network, while the second step is formulated using two semantic
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Fig. 7. Hierarchical Framework Step 2: Semantic Segmentation.

segmentation networks. The hierarchical framework is formulated to reduce the follow-
ing pedestrian behavior estimation errors: a) appearance similarities between jaywalk-
ing pedestrians and pedestrians in legal crossing scenes (Fig 1); b) appearance variations
across different legal pedestrians crossing scenes (Fig 2).

3.1 Classification Step

The first step in the hierarchical framework is a classification step, which categorises
the driving scene into either a legal pedestrian crossing scene or a illegal pedestrian
crossing scene (Fig 3). An illustration of the classification step is shown in Fig 6.

Architecture A deep learning-based visible and thermal camera fusion architecture is
used for the classification step. The architecture comprises of feature extraction, clas-
sification and output layers. The feature extraction layer contains three branches with
two branches for visible camera and thermal camera feature extraction and one branch
for fusion.

The two feature extraction branches contain 5 blocks. The first four blocks each
contain a 2D convolutional layer with batch-normalization followed by a max-pooling
layer. The fifth block contains a 2-dilated convolutional layer with batch-normalization.

The fusion branch also has 5 blocks. The first three blocks each contain a 2D con-
volutional layer with batch-normalization followed by a max-pooling layer. The fourth
block contains a 2-dilated convolutional layer with batch-normalization. The final block
contains a 1x1 convolutional layer functioning as a feature map reducing layer. The out-
put of the feature map reducing layer is given as an input to the classification layer.

The classification layer contains two fully connected layers with 512 and 256 neu-
rons and relu activation function. The final output layer contains 1 neuron and performs
binary classification using the sigmoid activation.



6 V. John et al.
3.2 Semantic Segmentation Step

This step contains two multi-class semantic segmentation networks. The first network
is trained on the legal pedestrian crossing scenes, while the second network is trained
on the illegal pedestrian crossing scenes. The trained semantic segmentation frame-
work categorizes the image pixels as normal pedestrian, jaywalking pedestrian or back-
ground. An illustration of the semantic segmentation is shown in Fig 7.

Architecture A deep learning-based encoder-decoder architecture is utilized for the
visible and thermal fusion and semantic segmentation. The encoder layers are the same
as the feature extraction layers in the aforementioned classification network. This layer
contains three feature extraction branches for visible camera feature extraction, thermal
camera feature extraction and feature fusion.

The decoder layers contain 4 transpose convolutional layers and 5 convolutional
layers. The transpose convolutional layers with batch-normalization upsample the en-
coder feature maps from the fusion branch. A skip connection is used to transfer the
encoder feature maps to the decoder branches.

The output of the last decoder layer is fed into the output layer which performs the
multiclass semantic segmentation using the softmax activation.The detailed architecture
and the parameters are given in Fig 4 and Fig 5.

3.3 Hierarchical Framework: Training

The hierarchical framework is trained on the FLIR public dataset. Manually selected
frames from the dataset are manually partitioned into /egal pedestrian crossing and
illegal pedestrian crossing scenes. The visible and thermal camera images for these
frames are manually registered to ensure pixel-to-pixel correspondence.

During training, the single classification network is trained with all the frames (both
legal and illegal pedestrian crossing scenes). On the other hand, the first semantic seg-
mentation network is trained on the legal pedestrian crossing scenes, and the second
semantic segmentation network is trained on the illegal pedestrian crossing scenes.

3.4 Hierarchical Framework: Testing

During testing, the registered thermal and visible camera images are first given as an
input to the trained classification network. The classification network classifies the input
images as either legal or illegal pedestrian crossing scene, assigning scene label c.

The estimated c-th scene label is used to retrieve the corresponding trained c-th
scene-based semantic segmentation network (illegal or legal) for jaywalking estima-
tion. Following the semantic segmentation network retrieval, the registered thermal and
visible camera images are re-given as the network input and the jaywalking pedestrians
are estimated. An overview of the testing is shown in Fig 8.
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Fig. 8. Hierarchical Framework.

4 Experimental Results

We validate the proposed framework on a manually selected subset from the FLIR pub-
lic dataset. Our dataset contains 2799 training frames and 313 testing frames. Our al-
gorithm was implemented using Tensorflow 2 on an Ubuntu 18.04 machine with two
Nvidia 1080 GPUs. The algorithm was compared with six baseline algorithms and vali-
dated on the dataset. The proposed framework and the baseline algorithms were trained
with batch size 4 for 30 epochs. The performance is measured using the pixel segmen-
tation accuracy, the intersection-over-union (IOU) measure and classification accuracy.
The IoU measure is the calculated from the overlap between the prediction and segmen-
tation divided by the area of their union. We next briefly review the different baseline
algorithms.

Hierarchical MFNet: The first baseline is a hierarchical framework based on the MFNet [23].
The MFNet is a visible-thermal camera based semantic segmentation framework with
encoder-decoder architecture.

For comparative analysis, the MFNet encoder was used for feature extraction in
the classification network. On the other hand, the entire MFNet was used for the two
semantic segmentation networks.

Hierarchical Fusenet: The second baseline is a hierarchical framework based on the
Fusenet [21]. The original Fusenet is a visible-depth based semantic segmentation frame-
work with encoder-decoder architecture. For the comparative analysis, the original Fusenet
input layers were modified for visible-thermal camera input.
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The modified Fusenet’s encoder was used for feature extraction in the classifica-
tion network. The entire modified Fusenet was used for the two semantic segmentation
networks in the second step.

Hierarchical with Single Encoder: The third baseline is a hierarchical framework where
the classification network feature maps are reused for the semantic segmentation net-
work.

The classification network is first trained on the dataset, and the feature maps for the
dataset are obtained. The classification network feature maps are used for the semantic
segmentation network training. The feature maps are the outputs of the DC1 — F'R block
or the final fusion encoder block. Since the feature maps are re-used, there is no encoder
layer in this baseline’s semantic segmentation networks. The classification feature maps
are directly given as input to the decoder branches and network is trained.

Hierarchical Visible: The fourth baseline is a hierarchical framework using the visible
camera input as the sole input. The encoder branch of the proposed network for both the
classification and segmentation networks contain a single branch for the visible camera.

Hierarchical Thermal: The fifth baseline is a hierarchical framework using the ther-
mal camera as the sole input. The encoder branch of the proposed network for both
the classification and segmentation networks contain a single branch for the thermal
camera.

End-to-End Semantic Segmentation: The sixth baseline is a naive end-to-end seman-
tic segmentation framework, formulated to evaluate the hierarchical framework. The
performance of the hierarchical framework is compared with the end-to-end semantic
segmentation framework.

In this baseline network, the jaywalking pedestrians are directly estimated using a
“single” semantic segmentation framework. Unlike, the hierarchical semantic segmen-
tation networks, this ”single” semantic segmentation framework is trained with entire
dataset, both legal and illegal pedestrian crossing scenes.

4.1 Comparative Analysis

The performance of the different algorithms are tabulated in Table 1-Table 3. The results
are illustrated in Fig 9 and Fig 10.

Hierarchical Framework with Varying Base Deep Learning Models: In Table 1, the
results of the hierarchical framework with varying base deep learning models are tabu-
lated. The results show that the hierarchical framework with the proposed deep learning
architecture is better than the hierarchical framework with the MFNet and the Fusenet.

Hierarchical Framework with Varying Sensors: The results of the hierarchical frame-
work with varying sensors are tabulated in Table 2. As expected, the advantages of the
visible-thermal camera sensor fusion are clearly demonstrated.
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Fig. 9. Results of the different algorithms illustrating normal pedestrian behavior.

Varying Estimation Approaches: Apart from the hierarchical formulation, we also in-
vestigate two different jaywalking estimation approaches namely end-to-end seman-
tic segmentation and hierarchical with single encoder. The results of the different ap-
proaches are tabulated in Table 3. The results show that the proposed hierarchical ap-
proach is better than the other two approaches. The reuse of the classification feature
maps (hierarchical with single encoder) or the use of a naive end-to-end segmentation
network doesn’t improve the accuracy.
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Fig. 10. Results of the different algorithms illustrating abnormal or jaywalking pedestrian behav-
ior.

5 Summary

A hierarchical deep learning framework is proposed for jaywalking estimation using
thermal and visible cameras. The hierarchical framework is proposed to address the
challenges in this perception task. The hierarchical framework contains two steps, an
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Table 1. Comparative analysis of the proposed hierarchical framework with different hierarchical
frameworks.

Proposed Pixel Acc.% IOU (Unit scale) Class. Acc|Time

Algo. Normal Ped|Jaywalk Ped. Normal Ped|Jaywalk Ped. % (ms)
Proposed Hier. 80.05 82.75 0.71 0.73 99 47
Hier. MFNet 84.42 68.10 0.69 0.59 96 38
Hier. Fusenet 51.40 59.08 0.46 0.52 96 35

Table 2. Comparative analysis of the sensor fusion of the proposed hierarchical framework.

Proposed Pixel Acc.% 10U (Unit Scale) Class. Acc|Time

Algo. Normal Ped|Jaywalk Ped. Normal Ped|Jaywalk Ped. % (ms)
Hier. Fusion 80.05 82.75 0.71 0.73 99 47
Hier. Visible 41.32 60.43 0.37 0.48 93 32
Hier. Thermal 55.18 40.90 0.47 0.35 89 31

Table 3. Comparative analysis of the proposed hierarchical framework with different estimation
approaches.

Proposed Pixel Acc.% 10U (Unit Scale) Time

Algo. Normal Ped|Jaywalk Ped. Normal Ped|Jaywalk Ped.| (ms)
Proposed Hier. 80.05 82.75 0.71 0.73 47
End-to-End Seg. 78.99 71.58 0.70 0.64 36
Hier. Single Encoder||  60.04 32.23 0.50 0.29 50

initial step with a single classification network and second step with two semantic seg-
mentation networks. In the first step, the classification network classifies the scene into
a legal or illegal pedestrian crossing scenes. In the second step, scene-specific semantic
segmentation networks are used to estimate the jaywalking pedestrians. The proposed
framework is validated on the FLIR public dataset, and a comparative analysis with
baseline algorithms is performed. The results show that the proposed hierarchical ap-
proach reports better accuracy than baseline algorithm, while reporting computational
complexity. In our future work, we will investigate the framework with a much larger
dataset in varying countries.
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