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Abstract. Most state-of-the-art spatio-temporal (S-T) action localiza-
tion methods explicitly use optical flow as auxiliary motion informa-
tion. Although the combination of optical flow and RGB significantly
improves the performance, optical flow estimation brings a large amount
of computational cost and the whole network is not end-to-end train-
able. These shortcomings hinder the interactive fusion between motion
information and RGB information, and greatly limit its real-world ap-
plications. In this paper, we exploit better ways to use motion informa-
tion in a unified end-to-end trainable network architecture. First, we use
knowledge distillation to enable the 3D-Convolutional branch to learn
motion information from RGB inputs. Second, we propose a novel mo-
tion cue called short-range-motion (SRM) module to enhance the 2D-
Convolutional branch to learn RGB information and dynamic motion
information. In this strategy, flow computation at test time is avoided.
Finally, we apply our methods to learn powerful RGB-motion represen-
tations for action classification and localization. Experimental results
show that our method significantly outperforms the state-of-the-arts on
dataset benchmarks J-HMDB-21 and UCF101-24 with an impressive im-
provement of ∼ 8% and ∼ 3%.

1 Introduction

Many breakthroughs have been witnessed in spatio-temporal action localiza-
tion [1–6] mainly due to the progress of deep learning, and the emergence of
large datasets [7–9]. Spatio-temporal action localization aims to not only iden-
tify the action category, but also localize it in both time and space. Inspired by
the success of object detection, most current spatio-temporal action localization
methods utilize the popular object detection frameworks [10–17], action bound-
ing boxes are predicted in frame-level, then a dynamic linking strategy is used
to generate human action tubes.

The key to accurately recognize human actions in videos is to effectively use
both RGB information and motion information [6, 18–20], however, the 2D CNNs
can not well model motion information. Many approaches have been proposed
to extract motion. Using additional inputs, e.g. RGB difference and optical flow,
are the common practices to learn motion information. Although using optical
flow has indeed achieved good results, its disadvantages are obvious. Optical



2 Y.Liu et al.

flow needs to be calculated and stored in advance, where the computation of
optical flow is very time-consuming. Since both the training and testing phases
require optical flow, the previous optical flow based methods cannot be applied
in real-time scenarios. The dual-stream network architecture [21, 22] also makes
the network unable to be trained in an end-to-end way. Moreover, the motion
information cannot be interactively integrated with the RGB information spatio-
temporally.

To enable the network to learn motion features from RGB input and avoid
the above shortcomings, we use the knowledge distillation method to train the
network, which is effective to improve the performance of the network by learn-
ing motion features. To better fuse the long distance temporal information in
the video, we also added the non-local module at the last layer of the 3D-
Convolutional branch. For the 2D-Convolutional branch, which aims to predict
the bounding box of the key frame, we use the short-range motion informa-
tion extraction sub-network to further enhance the motion information near the
key frame, so that the final generated action tube is smoother. In summary, we
only use optical flow in the training stage of 3D-Convolutional branch, and the
pre-trained model which is obtained through knowledge transfer is used in the
spatio-temporal positioning task, and in this task optical flow is not required in
both the training and the testing stage.

Our method is superior to the existing methods in the frame-mAP and the
video-mAP with different thresholds. On the J-HMDB-21 dataset, the frame-
mAP and video-mAP under the threshold 0.5 outperforms the second place
by 5.8% and 3.9% respectively. On the UCF101-24 data set, compared to the
baseline method [4], the accuracy of our method is improved by 2.8% in Frame-
mAP (0.5), which is the current best result, and the video-mAP (0.5) is increased
by 2%, which is close to the best result. To sum up, our contributions are as
follows:

1. We use knowledge distillation to learn motion information from the optical
flow stream. Non-local block is also used to help capture accurate long range
temporal information.

2. We propose a novel motion cue called short-range-motion (SRM) module to
learn short range temporal information, which makes the 2D-Convolutional
branch to learn dynamic motion information.

3. The proposed method achieves the state-of-the-art performance by fusing
the long and short-term motion information with RGB input.

This paper is organized as follows. In Section 2, we review the related work
on S-T action localization. We introduce our method in Section 3. Section 4
presents the experimental results. We conclude our method in Section 5.

2 Related Work

Action recognition. Currently, the most successful action recognition meth-
ods [21, 23, 22, 24, 25] involve the use of optical flow in a two-stream way, which
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typically consists of two branches to learn the appearance and motion informa-
tion using RGB image and optical flow respectively. Although optical flow has
been proven to be an effective motion information, but its estimation is very
time-consuming and storage takes up a lot of space. Meanwhile, the contained
information between optical flow and RGB images are redundant. How to accu-
rately and efficiently model the motion information in the video to improve the
extraction of spatiotemporal features is still far from being solved.

Spatio-temporal action localization. Most spatio-temporal action localiza-
tion methods are expanded under the popular 2D target detection framework.
The extensions mainly include: (1) optical flow is used to capture motion cues;
(2) linking algorithms are applied to connect frame-level detections to form ac-
tion tubes [5]. Although these methods achieved promising results, the temporal
property of videos is not fully exploited. The use of pre-calculated optical flow
not only hinders the interaction between the motion information and RGB infor-
mation, but also makes the network unable to be trained end-to-end. Zhang [6]
used PWC-Net[26] as a subnet integrated into the action localization network,
so flow pre-computation is avoided. But this integration is simply placing the
optical flow network before the action positioning network, and its results on
the J-HMDB-21 and AVA datasets are not ideal. Köpüklü et al. [4] utilized
a single-stage architecture with two branches to extract temporal and spatial
information concurrently, and predict bounding boxes and action probabilities
directly from video clips in one evaluation. The unified CNN architecture they
proposed is novel, but it is unable to make full use of motion information. To
fully use temporal information, a long-term feature bank (LFB) [27] is applied
to utilize longer clip at inference time. Although the performance is significantly
improved, it also brings a lot of extra computation burden and performs poorly
on the J-HMDB-21 dataset.

Knowledge distillation. Integrating many models together and then averaging
all the results is a simple way to improve model performance. However, the
method of model integration causes multiple models to take up a lot of memory
and also leads to huge calculations. Hinton et al. [28] put forward the concept of
knowledge distillation. First, train a teacher network, and then use the output of
the teacher network and the real labels of the data to train the student network.
In this way, the small network can learn the knowledge of the large network.
When the knowledge of a network is transferred to a network, the similar effect of
model integration can be achieved. Nieves et al. [25] used the means of knowledge
distillation to pre-train the action recognition stream with optical flow as input,
then fix the network parameters, use the optical flow branch and the video
action label to jointly train the RGB input branch, so that the network can learn
from RGB. The motion information is learned from the input, which effectively
improves the accuracy of action classification.
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Fig. 1. MENet’s architecture.

3 Learning motion representation

Modeling the motion information in the video is the key to realize the analysis
and understanding of the video information. Two-stream method is the most
popular S-T action localization methods. In the two-stream architecture, RGB
images are usually used as an stream to extract RGB appearance information,
and optical flow is used as another stream to extract motion information. The
two branchs are independent, and the results are averaged at the end. Although
the two-stream methods have achieved great success, its shortcomings are also
obvious: First, Optical flow estimation is very time-consuming, and pre-saved on
the hard disk will also take up a lot of storage space, which limits its real-world
application. Second, there is a lot of redundant information between streams,
which leads to a lot of unnecessary computing overhead. Third, the two separate
branches make it impossible to train the network end-to-end, thus the motion
information and RGB information cannot be interactively fused to obtain more
robust spatio-temporal features, this leads to the video features obtained may
be sub-optimal.

For frame-level video action localization, most algorithms extract key frame
RGB information, and then use nearby consecutive n-frames of RGB input to
extract temporal information. For the prediction of action categories, motion in-
formation at different times may be equally important, but for action positioning
tasks, intuitively speaking, the importance of motion at different time distances
is obviously different, the closer the time distance is, the more important for gen-
erating accurate key frame’s action bounding box. Two-stream method ignores
this fact, thus performance maybe harmed.

So, how to avoid the use of optical flow while achieving efficient extraction of
motion information? How to strengthen motion representation at closer temporal
distances?

Now, we propose our long short-term motion enhance method to solve the two
problems. By using knowledge distillation and migration, while maintaining the
performance of the two-stream method, we avoid using optical flow on the task
of S-T action localization. At the same time, in order to enhance the motion in-
formation near the video key frames, we use a short-range-motion module(SRM)
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to extract short-range motion information. Since the motion information near
the key frame is additionally extracted and input into the network together with
the RGB information, this is equivalent to explicitly increasing the importance
of the motion with a shorter time distance. The experimental results show that
our enhancement of long short-term motion effectively improves the accuracy of
S-T action localization. We call the network enhanced by long short-term motion
as motion-enhanced network (MENet).

3.1 MENet

MENet is based on the recently popular unified network YOWO [4]. YOWO has
two branches, a 3D-CNN branch and a 2D-CNN branch, the key frame and the
previous n(n=8/16) frames are input into the 3D backbone to extract spatio-
temporal video features, key frame is input into 2D backbone to extract RGB
features. The features of the two branches are merged together through a channel
fusion and attention mechanism(CFAM) module. And then use a convolution
layer to predict the action class and bounding box in Yolov2 style. The Yolov2
trained for 2D image target detection is applied to the 2D branch, thus only RGB
appearance information can be obtained. Although the 3D-ResNeXt-101 network
used in the 3D branch uses 3D convolution to extract video spatio-temporal
information and is pre-trained in Kinetics, it does not make good use of motion
information, and it has defects in its ability to extract long-range dependencies
in videos. YOWO does not use optical flow. Good results are achieved on the
J-HMDB-21 and UCF101-24 datasets by YOWO, but there are two obvious
shortcomings: one is insufficient extraction of spatio-temporal information in
the video, and the other is not using motion information.

The architecture of our MENet is as figure 1, which enhance long range tem-
poral information in 3D-Convolutional branch and short range motion informa-
tion is strengthened in 2D-Convolutional branch. A feature fusion module(FFM)
is used to fusion 3D and 2D features to generate frame-level action detections.
FMM is the collective name of CFAM and Yolov2 head. Frame-level outputs are
then linked to generate action tubes using the same link strategy as YOWO [4].

3.2 Long range motion information

The typical application of knowledge distillation is to allow small models to learn
from large models and obtain knowledge of large models, which is one of the
ways of knowledge transfer. To enable the CNNs to learn the motion features
provided by optical flow from continuous RGB frames, we use the knowledge
distillation method to train the 3D CNN so that the network learns long range
optical-flow-like motion features. 3D-ResNeXt-101 are selected as 3D backbone
to make full use of long range motion information.As many frames as possible
are used to extract long-range motion information, here we put 16 frames of
images, which is the limit of YOWO. In video action recognition, Crasto [25]
proposed a training method that uses motion to enhance RGB flow, so that
the network can avoid calculating optical flow in the test phase. We used the
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Fig. 2. Use knowledge distillation to train 3D-ResNeXt-101.

same strategy for the human action localization task. First, separately use RGB
images and optical flow to train 3D-ResNext101 to classify videos. While the
two CNNs are fully trained, the optical flow network parameters are fixed, and
then the cross-entropy loss and the mean square error of the output of the global
average pooling layer of the RGB branch network and the output of the global
average pooling layer of the optical flow branch network are used as the joint
loss to train the RGB network, the loss function is:

LossK.D. = CrossEntropy(Crgb, ŷ) + α‖Fflow − Frgb‖
2 (1)

where Fflow is the flow feature, Frgb is the RGB feature, ŷ is the video ground
truth label, Crgb is the predict label, α is a scalar weight modulating the influence
of motion features.

In CNNs, the size of the receptive field of convolution and pooling opera-
tions is limited, so they are processing local block information, and can’t well
capture the long-range dependence in the video. Non-local module [29] is proven
to be a way to effectively enhance long-range motion information in video. We
adopted this practice and added a layer of non-local module at the last layer
of the network to enhance the network’s ability to extract long-range motion
information.

3.3 Short range motion information

An optical flow frame is generally calculated from two adjacent frames, it repre-
sents the movement of pixels in the time interval of two images. Assuming that
the time interval between the two frames is ∆t, n optical flow frames represents
the movement within n∆t. The smaller the value of n, the closer the time dis-
tance to the key frame. In the two-stream methods, n generally takes the value
16, 32, 64, which does not highlight the importance of a shorter time distance
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for positioning the motion in the key frame. Considering that the motion of
shorter time distance can help better locate the motion in the key frame, while
extracting the long-range spatiotemporal information, we explicitly extract the
motion information in the n neighboring video frames.

In order to verify that short-range motion information as input can indeed
enhance the performance of S-T action localization tasks. We first use today’s
best-performing optical flow estimation method [30] to extract a frame of optical
flow near the key frame and input it into the 2D backbone network together with
the RGB key frame. The experimental results show that using optical flow as
input can indeed greatly enhance the performance of the CNNs. But is optical
flow the most appropriate way to express motion characteristics?

Many optical flow estimation algorithms[31, 26, 32, 30] today use parameter-
sharing twin networks to extract the features of adjacent RGB video frames, and
then use the correlation operation to construct a minimum cost volume to match
the pixels in the two frames of images. With many methods such as crose-to-
fine, downsampling, warp, and parameter sharing, the speed and accuracy of the
optical flow have been greatly improved. But for video tasks that frequently input
dozens of consecutive frames, embedding the optical flow estimation network as a
sub-network in the video task will cause a large amount of graphics card memory
consumption. And the training process will be more difficult and slow. In our
practice, it will increase the training time by 2 to 3 times. Research [33] shows
that RGB difference can also effectively represent motion information, which can
be regarded as a rough representation of motion information. Although RGB
difference as one of the motion information representation methods does not
improve the performance of video tasks as well as optical flow, it can be obtained
simpliy by only performing one subtraction. Based on the above observations,
we propose our short-range motion information modeling module(SRM). In our
SRM, feature encoding network of parameter sharing is used to extract features
from RGB video frames, and then the features are subtracted to obtain motion
features.

During our review of the literature, we found that Zhang et al. [34] have
made relevant attempts. We implemented our SRM (as fig 3) based on the sug-
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gestions given in their experiments, and tested our ideas in the 2D backbone.
Experimental results show that with only a small increase in calculations, SRM
can quickly and accurately extract motion information and effectively enhance
the network’s spatiotemporal feature extraction capabilities.

4 Experiments

To evaluate the performance of the algorithm, UCF101-24 and J-HMDB-21
datasets are selected. We strictly follow the official evaluation metrics to measure
the performance of the algorithm and compare our results with other state-of-
the-art methods.

4.1 Datasets and metrics

JHMDB-21 In order to promote an in-depth understanding of action recognition
algorithms, Jhuang et al. [8] used part of the HMDB-51 [35] dataset to anno-
tate human joint points to create the JHMDB-21 dataset. Since the 928 videos
they extracted from HMDB-51 belong to 21 action categories, this dataset is
also called the JHMDB-21 dataset.The labeled data in the JHMDB-21 dataset
includes motion segmentation, dense optical flow, and human joint points. 928
video clips all contain 15 or more video frames.

UCF101-24 UCF101-24 [18] has more data than the JHMDB-21 dataset.
Based on the UCF-101 data set, 3194 video action frames are labeled. Since they
belong to 24 action categories, they are called UCF101-24 datasets. Although
the UCF101-24 dataset has not been officially released, it has been revised by
many scholars and its labels is relatively reliable.

metrics We use general indicators for target detection tasks to measure the
performance of the algorithm on the task of action positioning. This paper will
report the Frame-mAP(F-mAP) index when the IOU threshold is 0.5 and the
Video-mAP(V-mAP) index under various IOU thresholds.

4.2 Training settings

We choose 3D-ResNeXt101 as the 3D backbone and Yolov2 as the 2D backbone.
The consecutive 16 frames (including key frames) before the key frame are input
into the 3D backbone, the consecutive 4 frames (including key frames) before
the key frame are input into the SRM, the key frame will be concated with the
output of SRM into the 2D backbone. For the 3D backbone network, a non-local
module is added in the last layer, then we use the same training settings as crasto
et al. [25] for knowledge distillation training, the pre-trained weights are used to
initialize the 3D branch of MENet. For the 2D backbone network, we initialize
the network with Yolov2s pretrained weights, the number of input channels of
the first layer of convolution is modified to 6 to accommodate the input. We
use momentum stochastic gradient descent optimization algorithm for training,
the momentum value is set to 0.9, and the weight decay rate is set to 0.0005.
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For the JHMDB-21 dataset, set the initial learning rate to 0.0001 and the batch
size to 16, and the weight is decayed by half every 10000 batch iterations. For
the UCF101-24 dataset, set the initial learning rate to 0.001 and the batch size
to 32. When the number of iterations reaches 20000, 30000, 40000, and 50000
nodes, the learning rate will be reduced by half.

4.3 Ablation study

Long-Range-Motion-Enhancement. In common practice, usually 16, 32, 64 frames
of continuous images are used as input for video tasks. Limited by the require-
ments of the network architecture, only 16 frames can be input at most in
MENet. We first use knowledge distillation to enhance the motion information,
and then add a non-local layer to the last layer of the backbone network to en-
hance the long-range motion information in the network. In order to verify the
validity of the results, we separately use the 3D branch to conduct experiments
in the UCF101-24 data set, results are shown in the Table 1.

We compared various metrics, including the classification accuracy and the
localization when the IOU threshold is 0.5 on the training set, the F-score and
Frame-mAP on the validation set, and the Video-mAP on the test set. It can be
clearly seen that the knowledge distillation training significantly improves the
network perfermance. The non-local module further enhances the performance of
the network in positioning tasks. After using knowledge distillation and non-local
modules at the same time, F-mAP increased by 4.31%, and V-mAP increased by
1.9%. This proves that our method is effective and the enhancement of network
performance is continuous.

Table 1. 3D backbone performance comparison with different motion enhancement
methods. RGB only means to use only RGB training, K.D. refers to knowledge dis-
tillation training, K.D.+non-local refers to the use of non-local modules while using
knowledge distillation.

Methods Classif. local.(0.5) F-score F-mAP(0.5) V-mAP(0.5)

RGB only 96.02 92.70 91.11 77.98 44.30

K.D. 96.10 93.30 91.70 80.28 45.00

K.D.+non-local 96.10 94.0 92.40 82.29 46.20

Short-Range-Motion-Enhancement. As we all know, 2D networks are good at
extracting the apparent features of RGB images. Using optical flow and other
motion information as input can also significantly enhance network performance.
For action positioning tasks, we enhance the extraction of short-range time dis-
tance motion information by inputting the motion information close to the key
frame into the network. We use Yolov2 as the 2D backbone network to conduct
experiments on the UCF101-24 dataset, and we compare the performance of the
network under different input conditions. We first input only the RGB image,
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Table 2. 2D backbone performance comparison with different short range motion
enhancement methods. RGB only means to use only RGB training, RGB + optical
flow(n=1) refers to input RGB and 1 optical flow frame together, RGB+SRM(n=1)
refers to input RGB and 1 SRM frame together, RGB+SRM(n=3) refers to input RGB
and 3 SRM frame together.

Methods Classif. local.(0.5) F-score F-mAP(0.5) V-mAP(0.5)

RGB only 62.4 79.4 51.57 30.11 13.50

RGB+optical flow(n=1) 68.2 82.1 57.59 36.90 14.96

RGB+SRM(n=1) 75.2 87.7 68.15 50.36 29.35

RGB+SRM(n=3) 79.9 88.9 73.09 52.91 30.61

and found that the results are poor. Then we input a frame of optical flow to-
gether with the RGB image into the 2D network, the F-mAP of the network
has increased by 6.79%, and the V-mAP has increased by 1.46%. Then we in-
put a frame of SRM, which greatly improves network performance, compared
with optical flow, its F-mAP has increased by 13.46% and V-mAP has increased
by 12.9%. Taking into account the noise between the information of the two
frames of images, we finally use four frames of images to generate 3 SRM out-
put. With RGB key frames as input, the experiment results demonstrate this
further enhances the performance of the network, F-mAP increased by 22.80%,
and V-mAP increased by 17.11%.

4.4 Comparison to the state of the art

We compare with other state-of-the-art S-T action localization algorithms. It
should be noted that we did not compare with the VideoCaptureNet [36], because
its video-map calculation method is different, it doesn’t generate action tubes via
linking strategies to calculate Video-mAP. To be fair, we did not compare with
YOWO plus LFB. YOWO plus LFB use 8 LFB[27] features which extracted for
non-overlapping 8-frame clips using the pretrained 3D ResNeXt-101 backbone,
total number of 64 frames are utilized at inference time. Our nerual network
architecture is based on YOWO, since we aim to explore how to better use
motion information, we did not use the special strategy of LFB at inference
time.

As shown in Table 3, on the UCF101-24 dataset, our algorithm has achieved
advanced results in various metrics. We have achieved the current best F-mAP
83.5%. Compared with the original YOWO, our MENet has improved signifi-
cantly in all indicators. MENet without SRM, F-mAP reached 83.5%, the current
best, 3.1% ahead of second YOWO; under IOU 0.2 threshold V-mAP reached
75.9%, leading YOWO 0.1%; V-mAP reaches 49.5% under the IOU 0.5 thresh-
old, leading YOWO by 0.7%. MENet with SRM further improved V-mAP at
multiple thresholds, especially V-mAP at high threshold, V-mAP reaches 50.8%
under the IOU 0.5 threshold, leading YOWO by 2%. There is a slight drop in
frame-mAP, which may be due to the fact that the first few frames of the video
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Table 3. Perfermance comparison with state-of-the-art algorithms on the UCF101-24
dataset.

Method F-mAP(0.5)
V-mAP

0.1 0.2 0.5

Peng w/o MR [37] 64.8 49.5 41.2 -

Peng w/ MR [37] 65.7 50.4 42.3 -

ROAD [38] - - 73.5 46.3

T-CNN [39] 41.4 51.3 47.1 -

ACT [40] 69.5 - 77.2 51.4

MPS [41] - 82.4 72.9 41.1

STEP [5] 75.0 83.1 76.6 -

YOWO [4] 80.4 82.5 75.8 48.8

MENet w/o SRM (ours) 83.5 82.1 75.9 49.5

MENet w/ SRM (ours) 83.2 82.4 76.7 50.8

are reused due to too few numbers, and SRM enhances noise. MENet consid-
ers motion information and strengthens the extraction of long-range dependent
information in the video, various indicators have been significantly improved.

As shown in Table 4, on the J-HMDB-21 dataset, our algorithm has achieved
advanced results in various metrics too. We have achieved the current best F-
mAP 82.3% and best V-mAP(0.5) 61.7%. MENet without SRM, F-mAP reached
82.3%, the current best, 7.9% ahead of second YOWO; under IOU 0.2 threshold
V-mAP reached 92.7%, the current best, leading YOWO 4.9%; under IOU 0.5
threshold V-mAP reached 90.9%, the current best, leading YOWO 5.2%; V-
mAP reaches 57.9% under the IOU 0.75 threshold, within an inch of YOWO.
MENet with SRM further improved V-mAP at high threshold, V-mAP reaches
61.7% under the IOU 0.75 threshold, leading YOWO by 3.6%. The J-HMDB-21
dataset is much smaller than UCF101-24 dataset, it has a lot of shorter video
clips. It is easier to overfit, so the F-mAP and V-mAP under low threshold drop
more. But it is clear that our method has achieved the best results currently on
this data set, this proves the effectiveness of our work.

5 Conclusion

In this paper, we focus on learning motion representation efficiently without us-
ing optical flow.We use the knowledge distillation training method to enable the
network to learn motion information from RGB input, and use non-local mod-
ules to better improve the network’s ability to integrate motion information.
To emphasize the motion information closer to the key frame, we use the SRM
module to extract the motion information of the neighboring frames of the key
frame. Good results prove the effectiveness of our method. In the future, we will
explore more effective and more efficient ways to extract motion information to
boosting video analysis and understanding.
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Table 4. Perfermance comparison with state-of-the-art algorithms on the J-HMDB-21
dataset.

Method F-mAP(0.5)
V-mAP

0.2 0.5 0.75

Peng w/o MR [37] 56.9 71.1 70.6 48.2

Peng w/ MR [37] 58.5 74.3 73.1 -

ROAD [38] - 73.8 72.0 44.5

T-CNN [39] 61.3 78.4 76.9 -

ACT [40] 65.7 74.2 73.7 52.1

P3D-CTN [42] 71.1 84.0 80.5 -

TPnet [43] - 74.8 74.1 61.3

YOWO [4] 74.4 87.8 85.7 58.1

MENet w/o SRM (ours) 82.3 92.7 90.9 57.9

MENet w/ SRM (ours) 78.3 90.5 88.1 61.7
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