
Towards Locality Similarity Preserving to 3D

Human Pose Estimation

Shihao Zhou[0000−0002−9202−9761], Mengxi Jiang, Qicong Wang, and Yunqi LeiB

Department of Computer Science, Xiamen University, Xiamen 361005, China
{shzhou,jiangmengxi}@stu.xmu.edu.cn, {qcwang,yqlei}@xmu.edu.cn

Abstract. Estimating 3D human pose from an annotated or detected
2D pose in a single RGB image is a challenging problem. A successful
way to address this problem is the example-based approach. The existing
example-based approaches often calculate a global pose error to search a
single match 3D pose from the source library. This way fails to capture
the local deformations of human pose and highly dependent on a large
training set. To alleviate these issues, we propose a simple example-based
approach with locality similarity preserving to estimate 3D human pose.
Specifically, first of all, we split an annotated or detected 2D pose into
2D body parts with kinematic priors. Then, to recover the 3D pose from
these 2D body parts, we recombine a 3D pose by using 3D body parts
that are split from the 3D pose candidates. Note that joints in the com-
bined 3D parts are refined by a weighted searching strategy during the
inference. Moreover, to increase the search speed, we propose a candi-
date selecting mechanism to narrow the original source data. We evaluate
our approach on three well-design benchmarks, including Human3.6M,
HumanEva-I, and MPII. The extensive experimental results show the
effectiveness of our approach. Specifically, our approach achieves bet-
ter performance than compared approaches while using fewer training
samples.
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1 Introduction

3D human pose estimation from a single RGB image is quite an important task
in the field of computer vision with a variety of practical applications, such as
human-robot interaction, virtual reality, activity recognition, and abnormal be-
havior detection [1–6]. Estimating 3D human pose from a single image is a typical
ill-posed problem since similar projections in low dimension may be derived from
different 3D poses. To alleviate this problem, a wide range of approaches with
different strategies have been introduced in recent years.

Most of the existing literature apply discriminative strategy, with its repre-
sentative work (i.e., neural networks model) [7–11]. Generally, these learning-
based approaches intend to learn a mapping between images and 3D human
poses with plenty of 2D-3D paired examples. As a result, a large number of
training data are required to learn a satisfactory mapping function.
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Fig. 1. Impact of global matching strategy to standard example-based approach.

The other branch of discriminative strategy is example-based approaches [12–
14]. These works usually search for a 3D human pose from the source data by
calculating the global pose error rather than learning a mapping function. Such
a global matching strategy may fail to capture the deformation of the local part
in a human pose, as shown in Fig.1. In this figure, the traditional example-based
approach searches for the best match with minimum joints position error among
the library. Moreover, this issue can be aggravated if there are insufficient source
data. Intuitively, these approaches obtain a pose with a high global score, but
fails in capturing the local deformations. Of course, this issue can be alleviated by
augmenting more diverse samples (e.g., different scenes, subjects, and actions)
to the source library. However, since the deployment of capture equipment is
constrained by the outdoor environment, it is difficult to obtain 3D annota-
tions of real scenarios. Existing widely used datasets (e.g., Human3.6M [15] and
HumanEva-I [16]) collect 2D and 3D annotated poses performed by a few of
subjects with specific actions indoors. Thus, available rich source samples are
limited. Though some data augmentation strategies are proposed [17, 18] for
synthesizing the training examples, there is still a gap between the synthesized
and complex real scenario data on the diversity [19]. As a result, in order to
alleviate these issues, we propose a novel and simple example-based model to
estimate the 3D pose.

Considering the fact that a 3D pose obtained by minimizing global pose error
may mismatch in local parts (i.e., small global pose error and relatively large
error in pose local parts, as shown in Fig.1), while two poses with huge global pose
error may perfect match in a few of local parts. Inspired by these observations,
we argue that combine similar local parts from different poses could obtain pose
with similar parts preserving and further boost the performance. However, the
traditional example-based approach usually search a single pose match using
the global error, which often fails to capture similar local part. Therefore, in this
paper, instead of searching for a single best match as traditional example-based
ways, we proposed to search for multiple candidates with similar local parts.
More specifically, we split a pose into different parts and search the matched



Towards Locality Similarity Preserving to 3D Human Pose Estimation 3

Fig. 2. Overview. Our approach can be mainly divided into three parts. The first
part is about 2D pose estimation. We train a 2D detector Hourglass Network for 2D
poses estimation. After that, we take both the detected 2D pose and the original mocap
source into the reRank model. With a bone length sum constraint, we filter a lot of
poses out, and narrow the training source into a quite small candidate set. Finally, we
take the estimated 2D pose into different parts and search the best match for every
single point with a weight mechanism. Then, we group different key points from all
searched best matches into a whole 3D pose. Since we get a final pose from different
candidates, we can nearly avoid generating predictions in Fig.1.

poses for each part. Then, we use key points extracted from different parts (e.g.,
a limb or a trunk) to group a pose, as illustrated in Fig.2.

We evaluate our approach on several datasets, including indoor 3D datasets
Human3.6M [15] and HumanEva-I [16] for quantitative evaluation and outdoor
2D dataset MPII [20] for qualitative evaluation. On all the evaluation datasets,
we achieve competitive results to example-based approaches and our approach
even outperforms some learning-based ways.

The main contributions of our work include:
(1) In this study, to alleviate the pose local structure match issue, we propose

a simple example-based approach with locality similarity preserving. This work,
for the first time, introduces a novel body parts match of splitting a 2D and 3D
human pose into the body parts with kinematic priors.

(2) In our approach, a source library narrowing strategy is designed to in-
crease the searching speed, while remaining the most representative candidates.

(3) Extensive evaluated experiments are conducted on three public bench-
marks. Our approach achieves superior estimation performance than considered
comparison approaches. Especially, comparing with several approaches, our ap-
proach uses fewer training samples while obtaining better estimation accuracy.

2 Related Work

3D human pose estimation has been a well-studied problem these years. Tra-
ditionally, approaches proposed to solve this problem can be simply divided
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into two classes, generative ways [21–26] and discriminative ones [14, 13, 27, 28].
The greatest strength for generative approaches is that they need quite a small
size of the training set. While discriminative approaches generally take as in-
put plenty of 2D-3D training samples. Moreover, discriminative ways can be
classified into two subtypes, learning-based approachess [29–33] and example-
based ones [34–36]. Prior to these traditional approaches, recent works raise
interest in weak or unsupervised learning for wild human pose estimation [37–
40]. Some other approaches combine tasks for both shape and pose estimation
together [41–43].Considering the graph nature of human body, [28, 44] make a
great breakthrough by introducing graph operation. Although numerous meth-
ods have boosted the interest for 3D human pose estimation, we will focus our
review on example-based pose estimation.

2.1 Example-based Approaches

Exampled-based approaches, also called pose retrieval methods, intended to
search for the best match from the library with the goal one. Such methods
benefit in fitness on anthropology from searching in training source, composed
completely of the realistic human 3D pose. While other kinds of approaches
(i.e. learning-based approaches and generative ways) are more likely to predict
human poses as an outlier with less mean per joint position errors (MPJPE) [45,
46]. Noted the performance of the example-based ways may not as good as
learning-based approaches, but the obtained poses based on sample retrieval
are usually more in line with the physical constraints. Moreover, example-based
approaches never generate unreasonable pose, which is the main flaw of learning-
based ways. So this topic is still worth exploring.

Recently, exampled-based works have attempted to acquire better results via
introducing networks or other priors. Yasin et al. [14] utilized a dual-source ap-
proach to do 3D pose estimation from a single image and became the-state-of-art
at that time. Chen and Ramanan [13] proposed to split the task 3D poses esti-
mation apart into 2D pose estimation and matching to the 3D poses in Library.
Li et al. [34] introduced a deep-network to do pose prediction auxiliary task and
transferred the prediction problem into maximum-margin structured learning.
However, these traditional retrieval approaches usually deal with the whole hu-
man pose, which hardly captures local deformations. Therefore, we propose to
solve this by introducing a local similarity preserving strategy.

2.2 Locality Similarity Preserving for Human Pose Estimation

Many works have made efforts to keep local part preserving. For preserving local
structure in the original space, Tian et al. [47] introduced Latent Variable Mod-
els to learn latent spaces for both image features and 3D poses. Fan et al. [48]
developed a block-structural pose dictionary to explicitly encourage pose local-
ity in human-body modeling. Rogez and Schmid [12] selected different images
patches for a 3D pose in the library via keeping their 2D pose similar. Yasin [35]
learned a 3D local pose model in low Principle Component Analysis space via
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retrieving nearest neighbors. Zhou et al. [7] embedded kinematic function as part
of the network for fully exploited geometric validity. Varolet al. [17] addressed
segmentation by training a pixel-wise classifier. Tang and Wu [30] trained a part-
based branching network for leaning specific feature. ke et al. [49] proposed a
local refinement part for more compact limbs.

However, they are either greedy for plenty of training data, which without
considering unaffordable computational cost, or aiming for local compact struc-
ture in the 2D dimension [50]. Hence, our approach designs a new model for
simple and fast pose estimation with keeping local similarity. Instead of sim-
ply implementing constraints or synthesizing data for learning-based ways, we
redesign the search rule from the whole body into local parts.

Fig. 3. Skeleton. As shown in the figure, a human pose can be presented with 15
joints and divided into various five groups. Note that, joints belong to the same group
are painted with the same color.

3 Background

In this section, we introduce the background knowledge of this paper, including
the problem definition and the standard example-based approaches [14, 13].

In this paper, we represent a human body as a skeleton with N joints. The 2D
and 3D pose corresponding to the human body are denoted as X = {xi}

N

i=1 ∈

R
2×N and Y = {yi}

N

i=1 ∈ R
3×N respectively.

To estimate a 3D human pose from an annotated or detected 2D pose X,
traditional example-based ways firstly search for the best match through mini-
mizing the distance between the annotated or detected 2D pose and the retrieved
2D pose X̂ = {x̂i}

N

i=1 ∈ R
2×N . Normally, the distance function in 2D space can

be formulated as:

argmin
X̂

‖xi − x̂i‖2 (1)

where xi and x̂i denote the i-th joint position of the annotated or detected
2D pose and the retrieved pose, respectively. Then, by minimizing Eq.(1), the
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traditional example-based approach obtains a best global match 2D pose whose
corresponding 3D pose is the final 3D prediction. However, two poses with the
global minimum error may have large local differences in some body parts as
Fig.1 shown, and the estimation performance of the traditional examples-based
approach is affected since they fail to capture the local deformation.

4 Proposed Model

To alleviate the issue discussed above, we propose our solution in this paper.
Specifically, firstly, we propose to represent a whole 2D human pose as different
parts that satisfy human body kinematic constraints. Then, instead of searching
a single match 3D pose from the source library as most of the example-based
approaches, we retrieve body parts that come from different source poses. In this
work, our aim is to enable our model to preserve the locality similarity of the
local parts within human bodies for pose estimation.

4.1 Human Pose Split Using Kinematic Priors

Kinematic priors [51, 7] interpret the interrelationship between the body compo-
nents, which capture the inherent connectivity of human pose. In this paper, in
order to split the 2D human pose while preserving correlation within the local
structure, we provide local structural descriptions of an annotated or detected
2D human pose in terms of the kinematic priors. Specifically, considering that
the arms and feet of the human body belong to different local parts, a human
pose can be divided into various groups. For example, a pose with 15 joints can
be divided into five sub-groups in total, including: (1) right elbow and right
wrist, (2) left elbow and left wrist, (3) right knee and right ankle, (4) left knee
and left ankle, and (5) head, throat, right shoulder, left shoulder, pelvis, right
hip and left rip, as shown in Fig.3. As a result, to formulate such local structure,
a 2D human posture with N joint nodes can be rewritten as X = {Pk}

K

k=1,
where K indicates the number of the subgroups, Pk is the specific part. Such a
split strategy allows us to search for the best match through part by part.

4.2 The Locality Similarity Preserving for Human Pose

In our retrieval strategy, instead of searching the whole pose as traditional
example-based approaches, we retrieve parts P̂k for locality similarity preserving.

argmin
P̂k

‖Pk − P̂k‖2 (2)

By minimizing Eq.(2), we obtain the best match part P̂k for each part Pk. In
practice, Eq.(2) is too strict to be satisfied due to the annotated or detected 2D
pose is usually wild (i.e. the annotated or detected 2D pose is not included in
the indoor source library). Thus, it may leads to a inferior retrieval part.
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To further improve the parts retrieval performance, we aim to search each
joint in the part carefully rather than a whole part. To obtain each joint in the
part, we future reformulate Eq.(2) as:

argmin
x̂a

W a

k
∗ ‖Pk − P̂k‖2, ∀a ∈ {1, 2, ...,Mk} (3)

where x̂a ∈ P̂k denotes the query joint in the k-th part. W a

k
= {ωan

k
}
Mk

n=1 is
used to increase the impact of adjacent joints of x̂a, which helps to find a better
match [12]. Mk is the number of joints in the k-th part. Moreover, the weight
ωan

k
is calculated by

ωan

k
=











1

‖xa − xn‖2
+

1

‖x̂a − x̂n‖2
, a 6= n

0, a = n

(4)

where x̂n is the n-th joint in k-th part, n ∈ {1, 2, ...,Mk}. xa, xn are the
corresponding joints of x̂a, x̂n in the given 2D parts. ωan

k
is the sum of inversely

proportional to the distance between joint n-th and the a-th joint. Eq.(4) implies
that the joint closer to the a-th joint is given a higher weight.

By minimizing the Eq.(3) Mk times, we obtain a list of Mk match joints
{x̂a}

Mk

a=1. Since parts are paired (2D-3D) samples in source libary, we can acquire
another list of Mk match joints in 3D space at the same time and denote as
{ŷa}

Mk

a=1, which is illustrated in (B) of Fig.2. By combining these joints {x̂a}
Mk

a=1,
we obtain the final k-th part as

P̂k = {x̂a}
Mk

a=1 (5)

Similarly, we can obtain the final k-th part in according 3D space as:

Q̂k = {ŷa}
Mk

a=1 (6)

where Q̂k is the k-th part in 3D space, and ŷa ∈ Q̂k denotes the 3D coordinate
of query joint in the k-th part. After retrieving the all K parts Q̂k, we assemble
them into one pose as the final prediction Y .

Given a source pose library S, we can search the joints in P̂k and Q̂k. There-
fore, the speed of the workflow is largely influenced by the size of the source pose
library S. In order to increase the search speed, we propose a candidate mecha-
nism to narrow the source library S. By introducing a weak physical constraint,
we improve the retrieval speed by selecting the representative source poses from
the library S. Especially, our strategy can be formulated as:

C = argmin
S

(L(X), L(S)), S ∈ S (7)



8 S.Zhou et al.

Algorithm 1 The locality similarity preserving algorithm

Input: X, S //2D human pose,source pose libary
Output: Y //Predicted 3D human pose
Parameter: N , K, Mk //joints of a human pose, parts of the split strategy, joints
in each part

1: Calculate C by Eq.(7).
2: Split X into K parts with kinematic priors.
3: for k = 1 to K do
4: for a = 1 to Mk do
5: Calculate x̂a by Eq.(3).
6: end for
7: Calculate P̂k by Eq.(5).
8: Calculate Q̂k by Eq.(6).
9: end for
10: Calculate Y = {Q̂k}

K

k=1.

where C = {Sc
1,S

c
2, ...,S

c

Nc
} represents the candidate set including a set of

representative source poses, Sc
1 is one of the poses, Nc is the number of can-

didate pose in the C. L(X), L(S) are the sum of bones length to the anno-

tated or detected 2D pose and the retrieval 2D pose, and L(X) =
∑

N−1
i=1 ‖xi −

parent(xi)‖2, xi ∈ X. ‖xi− parent(xi)‖2 is the length of the joint xi to its par-
ent in 2D pose X. By minimizing Eq.(7), we pick up poses with similar bones
length sum from S, and these poses are combined as candidate set C. As a
result, we narrow source pose library S into a limited set, which accelerates the
searching speed.

The complete workflow of the proposed approach is described in Algorithm1.

5 Experiment

Since various datasets provide different human pose representation, we unify all
these original poses into a single one, with N = 15 points. We quantitatively
evaluate our approach on two different datasets: Human3.6M dataset [15],
one of the largest indoor human pose datasets, and HumanEva-I dataset [16].
We qualitatively verify our approach on MPII dataset [20]. In this paper, to
verity the effectiveness of the proposed approach, we conduct the experiments
using annotated and detected 2D pose as input, respectively. Following the same
setting of previous works [10, 37, 39], we apply the stacked hourglass network
(SH) [52] to obtain the detected 2D pose for the fair comparison. Note that SH is
pre-trained on the MPII dataset at first and then fine-tuned on the Human3.6M
dataset to be in line with the literature [10, 37, 39].

5.1 Datasets

Human3.6M. It is a large-scale indoor dataset with 3D annotations. For there
are many protocols proposed these years and it is quite difficult to perform
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Table 1. Mean reconstruction errors (mm) under Protocol #1 and mean per joint
errors (mm) under Protocol #2 of Human3.6M. − indicates that the result for the
specific action is not reported. ‘GT’ means ground truth (annotated) 2D input. ‘DT’
means detected 2D input. ‘IM’ means image input. † indicates learning-based approach.
Best result in bold.

Protocol #1 Dir. Disc. Eat Greet Phone Pose Purch. Sit SitD. Smoke Photo Wait Walk WalkD. WalkT. AVG

Rogez (IM) (NIPS’16) [12] - - - - - - - - - - - - - - - 88.1
†Nie et al. (DT) (ICCV’17) [8] 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5
Chen (DT) (CVPR’17) [13] 71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 195.6 83.5 93.3 71.2 55.8 85.8 62.5 82.7
†Moreno-Noguer (DT) (CVPR’17) [9] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.8 92.6 69.6 71.5 78.0 73.2 74.0
ADSA (DT) (CVPR’16) [14] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 108.3
Ours (DT) 67.9 65.4 77.7 69.3 68.9 75.9 86.5 105.3 81.5 86.3 73.6 102.3 59.1 69.8 52.6 76.1

ADSA (GT)(CVPR’16) [14] 60.0 54.7 71.6 67.5 63.8 61.9 55.7 73.9 110.8 78.9 96.9 67.9 47.5 89.3 53.4 70.5
Ours (GT) 59.1 63.3 70.6 65.1 61.2 73.2 83.7 84.9 72.7 84.3 68.4 81.9 57.5 75.1 49.6 70.0

Protocol #2 Dir. Disc. Eat Greet Phone Pose Purch. Sit SitD. Smoke Photo Wait Walk WalkD. WalkT. AVG

Li et al. (IM) (ICCV’15) [34] - 149.1 109.9 136.9 - - - - - - 179.9 - 83.6 147.2 - 135.6
†Du et al. (IM) (ECCV’16) [32] 85.1 112.7 104.9 122.1 139.1 105.9 166.2 117.5 226.9 120.0 135.9 117.7 99.3 137.4 106.5 126.5
Rogez (IM) (NIPS’16) [12] - - - - - - - - - - - - - - - 121.2
†Zhou et al. (IM) (ECCVW’16) [7] 91.8 102.4 97.0 98.8 113.4 90.0 93.9 132.2 159.0 106.9 125.2 94.4 79.0 126.0 99.0 107.3
Chen (DT) (CVPR’17) [13] 89.9 97.6 90.0 107.9 107.3 93.6 136.1 133.1 240.1 106.7 139.2 106.2 87.0 114.1 90.6 114.2
†Kudo et al. (DT) (arXiv’18) [37] 161.3 174.3 143.1 169.2 161.7 180.7 178.0 170.6 191.4 157.4 174.1 182.3 180.3 180.7 193.4 173.2
†Novotnỹ et al. (DT) (ICCV’19) [10] - - - - - - - - - - - - - - - 153.0
†Wandt et al. (DT) (CVPR’19) [39] 77.5 85.2 82.7 93.8 93.9 82.9 102.6 100.5 125.8 88.0 101.0 84.8 72.6 78.8 79.0 89.9
†Li et al. (IM) (ICCV’19) [11] 70.4 83.6 76.6 77.9 85.4 72.3 102.9 115.8 165.0 82.4 106.1 74.3 60.2 94.6 70.7 88.8
ADSA (DT) (CVPR’16) [14] 97.3 103.2 97.2 110.4 115.1 127.3 90.7 104.6 160.2 173.8 103.0 117.2 99.7 93.1 94.9 112.5
Ours (DT) 75.5 80.0 75.3 71.8 77.0 84.3 97.2 105.4 101.0 78.1 132.3 96.5 92.8 88.8 79.2 89.5

†Kudo et al. (GT) (arXiv’18) [37] 125.0 44.4 107.2 65.1 115.1 147.7 128.7 134.7 139.8 114.5 127.3 147.1 125.6 130.8 151.1 130.9
†Novotnỹ et al. (GT) (ICCV’19) [10] - - - - - - - - - - - - - - - 101.8
ADSA (GT)(CVPR’16) [14] 80.5 77.0 72.1 90.4 92.1 103.1 84.7 72.0 103.9 107.1 87.5 83.1 84.6 79.8 67.6 85.7
Ours (GT) 88.1 64.3 73.0 62.1 84.4 77.1 70.8 96.3 89.9 68.8 128.5 62.7 65.9 64.8 67.5 79.8

a comprehensive comparison to all the existing experiments. We followed the
standard protocol according to [14] noted as Protocol #1, and Protocol #2
from [33]. Under Protocol #1, training is performed on subjects (1,5,6,7,8,9),
and the valid set consists of subject (11). While the train set is made up of
subjects (1,5,6,7,8) and test on the subjects (9,11) is Protocol #2.

HumanEva-I. It is a common used benchmark with annotated 3D pose.
Following the same setting of pervious works [14, 53, 23], we take all the training
sequences as input while validate on the “walking” and “jogging” actions.

MPII. It is an in-the-wild dataset with 2D annotations. For only 2D anno-
tation is provided, we perform qualitatively validation on it.

5.2 Comparison Approaches

A dual-source approach (ADSA) proposed by Yasin et al. [14], which used
images with annotated 2D poses and accurate 3D motion capture data to do
3D pose estimation from a single image. ADSA is a standard example-based
approach, in which a single 3D pose in the source library is selected as the fi-
nal best match by minimizing the global pose error. In our approach, in order
to preserve the local part similarity, we combine a 3D pose by using multiple
candidates that are searched via a weighted similarity mechanism. Moreover,
recent three other example-based approaches [13, 34, 12] and several representa-
tive works [7–11, 23, 24, 32, 37, 39, 53, 54], including generative and discriminative
ways, are also considered in the comparison.
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Table 2. Mean reconstruction errors (mm) under Protocol #1 of Human3.6M. Com-
parison to example-based approaches with different size of training data. Best result
in bold.

Method 2D source 3D source AVG

Rogez (NIPS’16) [12] 207k 190k 88.1
Chen (CVPR’17) [13] 180k 180k 82.4
ADSA (CVPR’16) [14] 64,000k 380k 108.3
Ours 375k 375k 76.1

5.3 Evaluation Protocols

There are two popular criterions to evaluate the pose estimation accuracy, the
per joint error and the reconstruction error [21]. The per joint error
calculates the average Euclidean distance of the estimated joints to ground truth.
While the reconstruction error makes the same calculation but with a rigid
transformation. Following the same evaluation protocols in most literature [8–14,
24, 54], we take per joint error as the evaluation metric for Human3.6M Protocol
#1 while reconstruction error for HumanEva-I and Human3.6M Protocol #2.

5.4 Quantitative Evaluation on Human3.6M

We first report the results of our approach and the representative works both
under Protocol #1 and #2 in Table 1. It is easy to find out that there is a huge
promotion between our approach and the baseline (ADSA). More specifically,
under Protocol #1, we demonstrate that our pipeline on the standard bench-
mark with a relative error reduction greater than 30% to the baseline (ADSA)
and 13% on average to other compared approaches. Under Protocol #2, our
approach also outperforms the baseline (ADSA) by 20%. Moreover, as expected
our proposed approach outperforms all example-based approaches [12–14, 34]. It
should be noted that our approach can even beyond many learning-based ap-
proaches [7, 8, 32, 37], and comparative to some recent representative works [10,
39]. Even though our proposed approach performs slightly worse than learning-
based approaches [9, 39] on average, we outperform both of the two approaches
on more than half categories. While [39] trains subject-wise models relying on
multiple priors and [9] use more training data (400k), comparing to ours. More-
over, both [9, 39] report their results after a fine-tuning process while our ap-
proach needs no hyperparameter and training stage. Noted that, all compared
results are taken from original papers except for [14] under Protocol #2, which
we implement with their publicly available code.

As mentioned above, we achieve quite competitive results on both two pro-
tocols. Under Protocol #1, our approach can achieve the best results for only
several actions, while the average results show that our approach can be compet-
itive with the learning-based ways [9, 8]. We attribute this to effective of our split
strategy, which is easier to handle challenges of intricate actions comparing to
the previous approaches, as shown in Fig.2. In general, intricate actions, such as
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Table 3. Mean reconstruction errors (mm) on the HumanEva-I. ‘GT’ means ground
truth (annotated) 2D input. ‘DT’ means detected 2D input. † indicates learning-based
approach. Best result in bold.

Approaches
Walking Jogging

AVG
S1 S2 S3 S1 S2 S3

Radwan et al. (DT) (ICCV’13) [24] 75.1 99.8 93.8 79.2 89.8 99.4 89.5
Wang et al. (DT) (CVPR’14) [54] 71.9 75.7 85.3 62.6 77.7 54.4 71.3
ADSA (DT)(CVPR’16) [14] 59.5 43.9 63.4 61.0 51.2 55.7 55.8
Ours (DT) 39.1 21.2 87.5 39.1 48.2 64.5 53.2

†Simo-Serra et al. (GT) (CVPR’13) [53] 65.1 48.6 73.5 74.2 46.6 32.2 56.7
Kostrikov et al. (GT) (BMVC’14) [23] 44.0 30.9 41.7 57.2 35.0 33.0 39.6
ADSA (GT)(CVPR’16) [14] 41.1 39.9 48.4 53.4 36.0 43.1 43.6
Ours (GT) 27.3 13.2 37.6 44.0 34.1 50.2 34.4

“SitDown”, can be harder to make predictions for heavy self-occlusion than the
simple ones like “Direction” or “Discuss”. However, our proposed pipeline works
for such challenging actions, which is difficult to traditional example-based ways
[14, 13]. Under Protocol #2, beyond greater scores in most categories, we also
found out that our approach meets slight degradation in some specific actions,
such as “Sit” and “Photo”. We argue that this may be attributed to the un-
representative candidates. In our pipeline, we simply generate candidates with
similarity bones sum, which is work for most cases. While we do not take other
poses with similar shape but different scale into consideration. We believe the
proposed approach could boost the performance by a margin through consid-
ering translate poses into a similar scale. Moreover, we found that actions like
“Purchase” and “WalkDog” can not achieve the best results. This may due to
strong occlusions of these specific categories.

Moreover, we can notice that there is no great gap after replacing the esti-
mated 2D pose with ground truth. We argue that estimated 2D ground truth
rather than reprojected one can explain this phenomenon, and also this can show
that our approach still works with a slightly worse 2D estimated pose. Noted
that, some recent works [31, 28] tend to take as input 2D pose reprojected via
3D pose with responding camera parameter, while this is impractical in the real
world. Therefore we regard as input 2D pose the dataset provided, which is esti-
mated and leads to less accuracy at first as ground truth and harder for making
an accurate prediction. However, this input can be more close to a practical case.

We compare the results with different approaches take as input various size
of the training set in Table 2. For our approach can be roughly classified into
example-based ways, we are supposed to do the comparison with the same
group, e.g., [12–14, 34]. We can observe that our approach achieves the best
scores with quite a small size of data as the training source. For this, we argue
the strategy to take pose into pieces does help enlarge the search space. We
believe this module improves performance, but in the same way, could increase
the time to do the search process. Therefore, we conduct a relevant experiment
to verify our thoughts in Sec.5.7.
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Fig. 4. Examples successes on MPII. For each example, the first column is the input
image with its 2D pose, the second and the third columns are estimated 3D poses from
different views.

Fig. 5. Qualitative comparison. For each example, the images from left-to-right cor-
respond to input the image with its 2D pose, estimated 3D poses from ADSA [14]
and ours, respectively. Note that the reconstruction results of the body local parts are
highlighted by red cubes.

5.5 Quantitative Evaluation on HumanEva-I

In this section, the results of HumanEva-I are presented. Since this dataset
is quite small, few recent learning-based approaches treat it as significant as
Human3.6M and conduct experiments on it [31]. Therefore, we compare repre-
sentative learning-based ways (e.g., [53]) with lightweight architecture to avoid
overfitting. As shown in Table 3, we can outperform most works and achieve best
for several sequences, except for the “Walking” and “Jogging” sequence of S3
subject. It is easy to find out many works degrade on the “Walking” sequence of
subject S3, and this may due to inaccurate annotations that exist in the testing
data [55]. Similar to human3.6M, due to the heavy self-occlusion, the perfor-
mance of the proposed approach has also been affected (“Jogging” sequence of
subject S3). Visual inspection of these results suggests that the extremely rare
3D poses are beyond the representational capacity of the model. Noted that all
compared results are taken from original papers except for [14], which we im-
plement with their publicly available code. For a fair comparison, we report the
result with the same “CMU” skeleton [14].

5.6 Qualitative Evaluation on MPII

We also implement qualitative validation on MPII dataset. The successful results
can be viewed in Fig.4. In Fig.5, the qualitative results from ADSA [14] and our
approach are provided. It is clear observer that our approach achieve the better
local part reconstruction than ADSA. Moreover, there are some failure cases are
presented in Fig.6. This may due to great depth ambiguity and severe occlusions.
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Fig. 6. Example fails on
MPII. For this example, the
first column is the input im-
age with its 2D pose, the sec-
ond and the third column
are estimated 3D poses from
different views.

Table 4. Per joint errors (mm) under Protocol #1 of
Human3.6M. Comparison with various strategies for lo-
cal similarity preserving. ‘SH’ means detected 2D input
with Stacked Hourglass Networks. ‘GT’ means ground
truth (annotated) 2D input. Best result in bold.

Strategy MPJPE (SH) MPJPE (GT)

Pose-Pose 110.0 101.4
Part-Part 92.5 75.2
Part-Joint 76.1 70.0

Table 5. Per joint errors (mm) under Protocol #1 of
Human3.6M. Comparison with various strategies for ad-
jacent joints weight calculation. ‘SH’ means detected 2D
input with Stacked Hourglass Networks. ‘GT’ means
ground truth (annotated) 2D input. Best result in bold.

Strategy MPJPE (SH) MPJPE (GT)

Pose 93.7 86.4
Part 76.1 70.0

5.7 Ablation Study

Different size of Candidate Set. Our approach introduces a module called
reRank to narrow the searching space S into a relatively small one C, as shown
in (B) of Fig.2. Various settings of the size of the candidate Nc for C will
generate different results and take diverse seconds to complete the search process.
Therefore, we do a series of experiments to find out the best parameter for the
whole process. As shown in Fig.7, the MPJPE decreases with the growth of Nc,
while the time cost surge at the same time. Thus, we are not simply increasing
Nc, but choose a proper value for good performance with sustainable time cost,
and in this experiment, we set Nc as 35,000 for comparison in Table 1.

Different local similarity preserving strategies. We compare different
strategies to estimate 3D human pose, including: (i) searching the whole pose
via Eq.(1) as the prediction (denoted as Pose-Pose); (ii) searching pre-defined
body parts via Eq.(2) and assemble the 3D pose (denoted as Part-Part); and
(iii) searching joints via Eq.(5) from different parts to reconstruct the 3D pose
(denoted as Part-Joint). Our proposed strategy searching joints (iii) achieves
31% improvement than searching the whole pose (i) , and 7% improvement
than searching parts (ii) , which is shown in Table 4.

Different adjacent joints weights W a

k
. We take different ways to cal-

culate the weight of adjacent joints, including: (i) treating joints in the whole
pose as neighbors in Eq.(4) to calculate the similarity (denoted as Pose); (ii)
treating joints in the pre-defined body part as neighbors to do the calculation in
Eq.(4) (denoted as Part). As shown in Table 5, the results demonstrate proposed
adjacent joints weights calculation can pick up the similar local parts effectively.
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Table 6. Cross-dataset validation. Mean reconstruction error (mm) on HumanEva-I
given training source from Human3.6M (under Protocol #1). Best result in bold.

Size Strategy
Walking Jogging

AVG
S1 S2 S3 S1 S2 S3

30k
Pose-Pose 104.1 108.1 138.9 125.3 129.2 135.7 123.6
Part-Joint 65.6 74.4 94.8 85.3 87.5 88.6 82.7

375k
Pose-Pose 77.5 76.4 107.3 91.7 96.4 105.7 92.5
Part-Joint 65.4 69.7 91.9 80.5 84.0 89.2 80.1

Fig. 7. Different size of Candidate Set. Fig.7 (a) and (b) show the different parameter
C can impact the whole workflow on accuracy and time cost.

Cross-dataset validation. To further verify the generalization of the pro-
posed approach, we quantitatively evaluate the cross-dataset ability, in which
we perform accuracy evaluation on HumanEva-I given training source from Hu-
man3.6M (under Protocol #1). We take the ground-truth (annotated) 2D pose as
input. Various sizes of training sources (30k and 375k) and different local similar-
ity preserving strategies (Pose-Pose and Part-Joint) are taken into consideration.
As shown in Table 6, increasing the number of training sources would boost the
accuracy generally. However, different from the Pose-Pose strategy, our strategy
(Part-Joint) is insensitive to the training source. More specifically, though both
two strategies obtain promotion with more training sources, there is a huger gap
for the Pose-Pose strategy. Moreover, with fewer training sources, our pipeline
still performs superior. Noted that our strategy performs better with 30k training
size on “Jogging” of S3, and this may due to the representative candidates.

6 Conclusion

In our work, we propose a simple yet effective approach to estimate 3D human
pose by taking the 2D pose apart and searching a group of 3D poses to assemble
a new one. Noted, our approach has dramatically reduced reliance on massive
samples and improve the performance. Extensive experiments demonstrate the
effectiveness of our approach. For example, under Protocol #1 of Human3.6M,
we achieve a relative error reduction greater than 30% to ADSA and 13% on
average to other compared approaches. More interesting, our approach yields
competitive results with only 1% training data of ADSA.

Acknowledgement. This research was supported by the National Natural Sci-
ence Foundation of China (Grant no 61671397).



Towards Locality Similarity Preserving to 3D Human Pose Estimation 15

References

1. Wang, Y., Xiao, Y., Xiong, F., Jiang, W., Cao, Z., Zhou, J.T., Yuan, J.: 3dv: 3d
dynamic voxel for action recognition in depth video. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (2020) 508–517

2. Wang, Z., Yu, P., Yang, Z., Zhang, R., Zhou, Y., Yuan, J., Chen, C.: Learning
diverse stochastic human-action generators by learning smooth latent transitions.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Volume 34.
(2020) 12281–12288

3. Weng, J., Liu, M., Jiang, X., Yuan, J.: Deformable pose traversal convolution for
3d action and gesture recognition. In: European Conference on Computer Vision
(ECCV). (2018) 142–157

4. Tu, Z., Li, H., Zhang, D., Dauwels, J., Li, B., Yuan, J.: Action-stage emphasized
spatiotemporal vlad for video action recognition. IEEE Transactions on Image
Processing 28 (2019) 2799–2812

5. Tu, Z., Xie, W., Qin, Q., Poppe, R., Veltkamp, R.C., Li, B., Yuan, J.: Multi-
stream cnn: Learning representations based on human-related regions for action
recognition. Pattern Recognition 79 (2018) 32–43

6. Tu, Z., Xie, W., Dauwels, J., Li, B., Yuan, J.: Semantic cues enhanced multi-
modality multistream cnn for action recognition. IEEE Transactions on Circuits
and Systems for Video Technology 29 (2019) 1423–1437

7. Zhou, X., Sun, X., Zhang, W., Liang, S., Wei, Y.: Deep kinematic pose regression.
In: European Conference on Computer Vision Workshops (ECCVW). (2016) 186–
201

8. Nie, B.X., Wei, P., Zhu, S.: Monocular 3d human pose estimation by predicting
depth on joints. In: Proceedings of IEEE International Conference on Computer
Vision (ICCV). (2017) 3447–3455

9. Moreno-Noguer, F.: 3d human pose estimation from a single image via distance
matrix regression. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (2017) 1561–1570

10. Novotny, D., Ravi, N., Graham, B., Neverova, N., Vedaldi, A.: C3dpo: Canonical
3d pose networks for non-rigid structure from motion. In: Proceedings of IEEE
International Conference on Computer Vision (ICCV). (2019) 7688–7697

11. Li, Z., Wang, X., Wang, F., Jiang, P.: On boosting single-frame 3d human pose
estimation via monocular videos. In: Proceedings of IEEE International Conference
on Computer Vision (ICCV). (2019) 2192–2201

12. Rogez, G., Schmid, C.: MoCap-guided Data Augmentation for 3D Pose Estimation
in the Wild. In: Advances in Neural Information Processing Systems (NIPS). (2016)
3108–3116

13. Chen, C., Ramanan, D.: 3d human pose estimation = 2d pose estimation + match-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2017) 5759–5767

14. Hashim, Y., Umar, I., Björn, K., Andreas, W., Juergen, G.: A dual-source approach
for 3d pose estimation from a single image. In: Proceeding of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2016) 4948–4956

15. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (2014) 1325–
1339



16 S.Zhou et al.

16. Sigal, L., Balan, A., Black, M.J.: HumanEva: Synchronized video and motion
capture dataset and baseline algorithm for evaluation of articulated human motion.
International Journal of Computer Vision 87 (2010) 4–27

17. Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid,
C.: Learning from synthetic humans. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2017) 109–117

18. Chen, W., Wang, H., Li, Y., Su, H., Wang, Z., Tu, C., Lischinski, D., Cohen-Or,
D., Chen, B.: Synthesizing training images for boosting human 3d pose estimation.
In: Proceedings of International Conference on 3D Vision (3DV). (2016) 479–488

19. Wu, J., Xue, T., Lim, J.J., Tian, Y., Tenenbaum, J.B., Torralba, A., Freeman,
W.T.: Single Image 3D Interpreter Network. In: European Conference on Com-
puter Vision (ECCV). (2016) 365–382

20. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation:
New benchmark and state of the art analysis. In: Proceeding of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). (2014) 3686–3693

21. Zhou, X., Zhu, M., Pavlakos, G., Leonardos, S., Derpanis, K.G., Daniilidis, K.:
Monocap: Monocular human motion capture using a cnn coupled with a geometric
prior. IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019)
901–914

22. Jiang, M., Yu, Z.L., Zhang, Y., Wang, Q., Li, C., Lei, Y.: Reweighted sparse
representation with residual compensation for 3d human pose estimation from a
single rgb image. Neurocomputing 358 (2019) 332–343

23. Kostrikov, I., Gall, J.: Depth sweep regression forests for estimating 3d human pose
from images. In: Proceedings of the British Machine Vision Conference (BMVC).
Volume 1. (2014) page 5

24. Radwan, I., Dhall, A., Goecke, R.: Monocular image 3d human pose estimation un-
der self-occlusion. In: Proceedings of IEEE International Conference on Computer
Vision (ICCV). (2013) 1888–1895

25. Zhou, X., Zhu, M., Leonardos, S., Daniilidis, K.: Sparse representation for 3d shape
estimation: A convex relaxation approach. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39 (2017) 1648–1661

26. Jiang, M., Yu, Z., Li, C., Lei, Y.: Sdm3d: shape decomposition of multiple geometric
priors for 3d pose estimation. Neural Computing and Applications (2020)

27. Sarafianos, N., Boteanu, B., Ionescu, B., Kakadiaris, I.A.: 3d human pose estima-
tion. Computer Vision and Image Understanding 152 (2016) 1–20

28. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph con-
volutional networks for 3d human pose regression. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (2019) 3425–
3435

29. Li, S., Chan, A.B.: 3d human pose estimation from monocular images with deep
convolutional neural network. In: Proceedings of Asian Conference on Computer
Vision (ACCV). (2014) 332–347

30. Tang, W., Wu, Y.: Does learning specific features for related parts help human
pose estimation? In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2019) 1107–1116

31. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline
for 3d human pose estimation. In: Proceedings of IEEE International Conference
on Computer Vision (ICCV). (2017) 2659–2668

32. Du, Y., Wong, Y., Liu, Y., Han, F., Gui, Y., Wang, Z., Kankanhalli, M., Geng,
W.: Marker-less 3D human motion capture with monocular image sequence and
height-maps. In: European Conference on Computer Vision (ECCV). (2016) 20–36



Towards Locality Similarity Preserving to 3D Human Pose Estimation 17

33. Luo, C., Chu, X., Yuille, A.L.: Orinet: A fully convolutional network for 3d human
pose estimation. arXiv:1811.04989 (2018)

34. Li, S., Zhang, W., Chan, A.B.: Maximum-margin structured learning with deep
networks for 3d human pose estimation. In: Proceedings of IEEE International
Conference on Computer Vision (ICCV). (2015) 2848–2856

35. Yasin, H.: Towards efficient 3d pose retrieval and reconstruction from 2d land-
marks. In: Proceedings of international symposium on multimedia (ISM). (2017)
169–176

36. Yu, J., Hong, C.: Exemplar-based 3d human pose estimation with sparse spectral
embedding. Neurocomputing 269 (2017) 82–89

37. Kudo, Y., Ogaki, K., Matsui, Y., Odagiri, Y.: Unsupervised adversarial learning
of 3d human pose from 2d joint locations. arXiv: 1803.08244 (2018)

38. Tung, H.F., Harley, A.W., Seto, W., Fragkiadaki, K.: Adversarial inverse graphics
networks: Learning 2d-to-3d lifting and image-to-image translation from unpaired
supervision. In: Proceedings of IEEE International Conference on Computer Vision
(ICCV). (2017) 4364–4372

39. Wandt, B., Rosenhahn, B.: Repnet: Weakly supervised training of an adversar-
ial reprojection network for 3d human pose estimation. In: Proceedings of the
Computer Vision and Pattern Recognition (CVPR). (2019) 7782–7791

40. Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person
3d pose estimation from multiple views. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2019) 7792–7801

41. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human
shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2018) 7122–7131

42. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human
pose and shape from a single color image. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2018) 459–468

43. Xu, Y., Zhu, S., Tung, T.: Denserac: Joint 3d pose and shape estimation by
dense render-and-compare. In: Proceedings of IEEE International Conference on
Computer Vision (ICCV). (2019) 7760–7770

44. Cai, Y., Ge, L., Liu, J., Cai, J., Cham, T., Yuan, J., Thalmann, N.M.: Exploit-
ing spatial-temporal relationships for 3d pose estimation via graph convolutional
networks. In: Proceedings of IEEE International Conference on Computer Vision
(ICCV). (2019) 2272–2281

45. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3d human pose
using multi-view geometry. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2019) 1077–1086

46. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it
smpl: Automatic estimation of 3d human pose and shape from a single image. In:
European Conference on Computer Vision (ECCV). (2016) 561–578

47. Tian, Y., Sigal, L., La Torre, F.D., Jia, Y.: Canonical locality preserving latent
variable model for discriminative pose inference. Image and Vision Computing 31
(2013) 223–230

48. Fan, X., Zheng, K., Zhou, Y., Wang, S.: Pose locality constrained representation
for 3d human pose reconstruction. In: European Conference on Computer Vision
(ECCV). (2014) 174–188

49. Sun, K., Lan, C., Xing, J., Zeng, W., Liu, D., Wang, J.: Human pose estima-
tion using global and local normalization. In: Proceedings of IEEE International
Conference on Computer Vision (ICCV). (2017) 5600–5608



18 S.Zhou et al.

50. Luo, Y., Xu, Z., Liu, P., Du, Y., Guo, J.: Combining fractal hourglass network
and skeleton joints pairwise affinity for multi-person pose estimation. Multimedia
Tools and Applications 78 (2019) 7341–7363

51. Isack, H., Haene, C., Keskin, C., Bouaziz, S., Boykov, Y., Izadi, S., Khamis,
S.: Repose: Learning deep kinematic priors for fast human pose estimation.
arXiv:2002.03933 (2020)

52. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: European Conference on Computer Vision (ECCV). (2016) 483–499

53. Simo-Serra, E., Quattoni, A., Torras, C., Moreno-Noguer, F.: A joint model for 2d
and 3d pose estimation from a single image. In: Proceeding of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2013) 3634–3641

54. Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3d human
poses from a single image. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2014) 2369–2376

55. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3d human pose estimation
in video with temporal convolutions and semi-supervised training. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2019) 7745–7754


