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Fig. 1: Sample images of our proposed UTB180 benchmark dataset. The track-
ing results of some representative State-Of-The-Art (SOTA) trackers including
ATOM [8], TrTr [41], SiamRPN [26,25], TransT [5], and SiamFC [1] are shown
in terms of bounding boxes. The frame indexes and sequence names are also
shown in each row.

Abstract. Deep learning methods have demonstrated encouraging per-
formance on open-air visual object tracking (VOT) benchmarks, how-
ever, their strength remains unexplored on underwater video sequences
due to the lack of challenging underwater VOT benchmarks. Apart from
the open-air tracking challenges, videos captured in underwater envi-
ronments pose additional challenges for tracking such as low visibility,
poor video quality, distortions in sharpness and contrast, reflections from
suspended particles, and non-uniform lighting. In the current work, we
propose a new Underwater Tracking Benchmark (UTB180) dataset con-
sisting of 180 sequences to facilitate the development of underwater deep
trackers. The sequences in UTB180 are selected from both underwater
natural and online sources with over 58,000 annotated frames. Video-
level attributes are also provided to facilitate the development of robust
trackers for specific challenges. We benchmark 15 existing pre-trained
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State-Of-The-Art (SOTA) trackers on UTB180 and compare their perfor-
mance on another publicly available underwater benchmark. The trackers
consistently perform worse on UTB180 showing that it poses more chal-
lenging scenarios. Moreover, we show that fine-tuning five high-quality
SOTA trackers on UTB180 still does not sufficiently boost their tracking
performance. Our experiments show that the UTB180 sequences pose a
major burden on the SOTA trackers as compared to their open-air track-
ing performance. The performance gap reveals the need for a dedicated
end-to-end underwater deep tracker that takes into account the inher-
ent properties of underwater environments. We believe that our proposed
dataset will be of great value to the tracking community in advancing the
SOTA in underwater VOT. Our dataset is publicly available on Kaggle.

1 Introduction

Visual Object Tracking (VOT) is the task of estimating the trajectory and state
of an arbitrary target object in a video sequence [20]. Given the location of the
target in the first frame, the main objective is to learn a robust appearance
model to be used when searching for the target object in subsequent frames
[1,18]. VOT has numerous open-air applications including autonomous driving,
video surveillance, robotics, medical imaging, and sports video analysis [10,16].
In recent years, dominant deep learning trackers such as Siamese [1,26,25], corre-
lation filters [8,2] and transformers [29] have advanced the SOTA performance in
tracking. Despite the recent progress, VOT is still an open problem in computer
vision because of its challenging nature [16].

Underwater video analysis is an emerging research area where VOT has sig-
nificant importance in robotics applications including ocean exploration, home-
land and maritime security, sea-life monitoring, search and rescue operations
to name a few [14,16,4]. Over the years, considerable progress has been made
by the tracking community in the development of SOTA end-to-end open-air
trackers [16,19,21,22,19,17]. One of the main reasons behind this success is the
availability of a variety of large-scale open-air tracking benchmarks such as LA-
SOT [9], GOT-10K [15], and TrackingNet [31] to train, objectively evaluate and
compare the different trackers. For instance, as shown in Fig. 2, these datasets
exist in small and large scale from a few hundreds of video sequences such as the
VOT dataset series [13,23,24], Object Tracking Benchmark (OTB100) [37], Un-
manned Aerial Vehicle (UAV) [30], Temple Color (TC) [27] to several thousands
of video sequences such as Large-Scale Single Object Tracking (LaSOT) [9],
Generic Object Tracking (GOT-10K) [15], and TrackingNet [31]. These datasets
provide high quality dense annotations (i.e. per frame) to ensure more accurate
evaluations of open-air deep trackers [9,31]. As shown by the average sequence
duration (see Fig. 2 and Table 1), they are available for both short-term (av-
erage sequence length less than 600 frames) [37,13,23,24] and long-term [30,9]
tracking with video specific attributes to further enhance the tracking perfor-
mance. Furthermore, the large number of video sequences and span variability
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Fig. 2: Summary of open-air and underwater tracking benchmark datasets. Open-
air datasets includes OTB100 [37], TC128 [27], UAV123 [30], VOT2014 [13],
VOT2018 [24], and LaSOT [9]. Underwater datasets include UOT100 [32] and
our proposed UTB180. Span means the difference between the minimum and
the maximum number of frames per sequence.

have encouraged the direct training of deep open-air trackers for generic object
tracking in these datasets [9,15,31].

All these aforementioned characteristics have immensely contributed towards
open-air tracking. However, the same cannot be said for underwater VOT de-
spite its importance. All solutions in this context have simply deployed open-air
trackers directly on underwater visual data [32]. One of the major reasons for
such stagnation is the unavailability of high-quality benchmarks for underwater
tracking exhibiting the challenges of underwater scenes such as of poor visi-
bility, non-uniform lighting conditions, scattering, absorption, blurring of light,
flickering of caustic patterns, photometric artifacts, and color variations. To the
best of our knowledge, Underwater Object Tracking (UOT100) benchmark is
the only available dataset containing 100 underwater sequences covering diverse
categories of objects [32]. Our frame-wise evaluation on UOT100 reveals that
it belongs to the category of sparsely annotated benchmark datasets using a
semi-automatic annotation approach i.e. manual annotations performed every 20
frames and the rest are generated by a tracker. While such an approach speeds
up the annotation process, it often yields less accurate ground-truth bounding
box predictions due to the propagation and accumulation of the tracker’s predic-
tion errors in subsequent frames. All the above motivate us to propose a novel
high-quality benchmark dataset UTB180 for the tracking community.

1.1 Contributions

Following are the main contributions of this paper:

1. Creation of a dense and diversified high-quality Underwater Track-
ing Benchmark (UTB180) dataset. Our dataset consists of 180 se-

3328



4 B. Alawode et al.

(a)

(b)
Fig. 3: Zoomed-in samples from the (a) UOT100 underwater benchmark dataset
and (b) our proposed UTB180 dataset. The green rectangles show the ground-
truth annotations. The red ovals highlight annotation errors in the UOT100
dataset. Our proposed dataset provides more accurate annotations of the target
objects compared to UOT100.

quences with over 58,000 annotated frames. Each frame is carefully man-
ually annotated and then visually verified to ensure its correctness. The
dataset includes both natural and artificial videos under varying visibility
levels sourced from our local marine facilities and several online underwater
videos. Additionally, 10 underwater-adapted video-level attributes are also
provided to benchmark the tracking performance under various challenges
e.g. motion blur and occlusions etc. Although UOT100 has a larger average
sequence length and span than UTB180 (Fig. 2), our proposed UTB180 pro-
vides more accurate, precise, and reliable annotations (Fig. 3) and a higher
number of video sequences.

2. Benchmarking. We conducted an extensive benchmarking of 15 high-quality
SOTA deep learning trackers on our UTB180 and the UOT100 datasets. Our
experiments demonstrate that the majority of the SOTA trackers consis-
tently show lower performance on several underwater challenging attributes
revealing the more challenging nature of the proposed UTB180 dataset com-
pared to existing ones (details in Section 4). Visual results comparison of
some of the SOTA trackers is shown in Fig. 1 using six sequences captured
from our proposed UTB180 dataset.

3. Fine-tuning recent SOTA trackers on UTB180 benchmark. We fine-
tune five recent SOTA trackers on our dataset and show that performance
improvements are small. This experiment demonstrates that there is still
a significant performance gap of the existing trackers on underwater data
compared to open-air data. This motivates the need to develop specialized
end-to-end underwater trackers capable of handling the inherent challenges
of underwater scenes.
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2 Related Work

In recent years, the tracking community has put significant efforts towards open-
air VOT, thanks to the availability of a variety of open-air tracking benchmarks.
Since the main objective of the current work relates to underwater benchmarks,
we discuss the available underwater datasets in this section. However, we also
briefly explain the open-air datasets for comparison and completeness. Table
1 presents the summary of the available open-air and underwater VOT bench-
marks. Surprisingly, 9 out of 11 presented datasets are utilized for open-air track-
ing. This shows the lagging state of underwater VOT.

2.1 Open-Air Tracking Datasets

Several open-air VOT datasets have been proposed in the past decade as shown
in Table 1. For instance, Wu et al. proposed OTB100 that consists of 100
videos with 11 tracking attributes with an average frame resolution of 356 ×
530 pixels [37]. Liang et al. proposed TC128 to evaluate the significance of
color information for tracking [27]. This dataset consists of 128 video sequences
with 11 distinct tracking challenges with an average resolution of 461 × 737
pixels. Muller et al. proposed UAV123 dataset for short term tracking [30].
This dataset contains 123 short sequences of nine diverse object categories. The
average resolution of each sequences is 1231 × 699 with 12 tracking attributes.
The VOT2014 [13], VOT2016 [23], and VOT2018 [24] are the datasets
accompanying the VOT challenge competition to benchmark short-term and
long-term tracking performance. As described in Table 1, the VOT2014-2018
series contain 25, 60, and 60 sequences and 12 tracking attributes with an average
frame resolution of 757×480, 758×465, and 758×465 pixels, respectively. LaSOT
[9], GOT-10k [15], and TrackingNet [31] are relatively larger open-air tracking
benchmarks. LaSOT contains 1120 training sequences (2.8M frames) and 280 test
sequences (685K frames). GOT-10k contains 10, 000 sequences in which 9, 340 are
used for training and remaining 420 sequences used for testing purpose. Similarly,
TrackingNet contains a total of 30, 643 sequences where 30, 130 sequences are
used for training and remaining 511 sequences used for testing. These large-
scale datasets also contain 14-16 distinct tracking attributes with average frame
resolutions of 632 × 1089, 929 × 1638, and 591 × 1013 respectively. Due to the
large diversity in these benchmarks, many SOTA open-air trackers have been
entirely trained and tested on these datasets.

2.2 Underwater Tracking Datasets

Compared to open-air tracking benchmarks, underwater tracking datasets are
scarcely available. To the best of our knowledge, the UOT100 is the only available
underwater tracking benchmark [32]. This dataset comprises 104 underwater
sequences selected from YouTube. It contains a total of 74, 042 annotated frames
with 702 average number of frames per sequence. The dataset captures a wide
variety of underwater distortions and non-uniform lighting conditions. However,
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this dataset is not sufficiently diverse for generic object tracking in underwater
settings. Moreover, it is also sparsely annotated, containing annotation errors
that lead to inaccuracies in tracking. In contrast, our proposed UTB180 dataset
is more accurate and densely-annotated benchmark for underwater tracking.

Table 1: Summary of the existing open-air and underwater SOTA VOT bench-
mark datasets and our proposed UTB180 dataset.

Dataset/ Video Attributes Min Average Max Open- Under-
Publication Sequences Frames Frames Frames Air water

OTB100 100 11 71 598 3872 X
PAMI2015 [37]

TC128 128 11 71 431 3872 X
TIP2015 [27]

UAV123 123 12 109 1247 3085 X
ECCV2016 [30]

VOT2014 25 12 164 409 1210 X
ECCV-W2014 [13]

VOT2016 60 12 48 1507 X
ECCV-W2016 [23]

VOT2018 60 12 41 356 1500 X
ICCV-W2018 [24]

LaSOT 1.4k 14 1000 2506 11397 X
CVPR2019 [9]

GOT-10k 10k 6 51 920 X
PAMI2019 [15]

TrackingNet 30.643k 15 96 471 2368 X
ECCV2018 [31]

UOT100 104 3 264 702 1764 X
IEEE JOE
2022 [32]

Proposed 180 10 40 338 1226 X
UTB180

3 Proposed High-quality UTB180 Benchmark

In this section, we explain our proposed Underwater Tracking Benchmark (UTB180)
dataset in detail including data collection step, bounding box annotation process,
and several video-level attributes included with the dataset.

3.1 Dataset

UTB180 consists of 180 videos selected from underwater environments offer-
ing dense (i.e. frame by frame), carefully, and manually annotated frames (58K
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bounding boxes). It spans sequences for both short-term and long-term under-
water tracking. The minimum, average, and maximum number of frames per
sequence are 40, 338, and 1226, respectively (shown in Table 1). Our dataset
also contains a large variety of diverse underwater creature objects including
diverse species of fishes (e.g., dwarf lantern shark, jelly fish, juvenile frog fish,
cookie cutter shark, bristle mouths, angler fish, viper fish, grass carp, peruvian
anchoveta, and silver carp etc.), crab, sea horse, turtle, squid, octopus, and seal.
It aims to offer the tracking community a high-quality benchmark for underwater
VOT.

3.2 Data Collection

UTB180 has been sourced from several publicly available online sources such
as YouTube, pexel [33] and underwater change detection [34]. We also collected
sequences from our marine observatory pond, adding thus more diversity to the
dataset. The minimum, average, and maximum frame resolution of the sequences
are 1520 × 2704, 1080 × 1920, and 959 × 1277 at 30 frames per second.

3.3 Annotation

To annotate target ground-truth bounding boxes in a sequence, each frame un-
dergoes five sequential processes: 1) Rough estimate of the bounding box is done
using a Computer Vision Annotation Tool (CVAT) [7], 2) Each bounding box
is then manually and carefully examined, afterwards, to ensure accurate and
precise bounding box values around each target object, 3) Each bounding box is
then further inspected by a validator to ascertain the accurateness. If it fails at
this validation step, it is returned to step 2. 4) For each video sequence, its at-
tributes are labeled, and finally, 5) the sequence is validated with the attributes
to ascertain the accurateness. Using these steps, we are able to create a high-
quality error-free annotated sequences. It should be noted that each bounding
box is a rectangle of four values using the format [x, y, w, h], where x and y
denotes the top and left coordinates, w and h denotes the width and height of
the rectangle, respectively.

3.4 Underwater Tracking Attributes

Attributes, are video content’s aspects that are used to better assess the trackers
performance on specific challenges. In this work, we have carefully selected 10
underwater-adapted video-level attributes covering most of the essential varia-
tions expected in an underwater environment. These attributes are summarized
as follows:

– Unclear Water (UW): It presents the low visibility tracking challenge
indicating if the water is clear or not.

– Target Scale Variation (SV): It indicates whether or not the target varies
in scale above a certain degree across the frames.
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– Out-of-View (OV): It indicates that some portion of the target object
leaves the scene.

– Partial Occlusion (PO): Accounts for partial occlusion of the target by
other objects in the scene.

– Full Occlusion (FO): Indicates if the target is fully occluded by another
object.

– Deformation (DF): It tells if the object is deformed probably due to cam-
era angle or view.

– Low Resolution (LR): It indicates if a frame is of low resolution typically
less than 300 dots per inch (dpi).

– Fast Motion (FM): It indicates if the target moves fast across the frames
in the sequence.

– Motion Blur (MB): This indicates if the target is blurry.
– Similar Object (SO): This attribute indicates if there are object(s) similar

to the target in the frames.

Note that all attributes assume binary values, i.e. 1 (presence) or 0 (absence).
An attribute is considered present in a sequence if it is present in at least one
frame. The sequence-level and frame-level distributions of the attributes in our
proposed UTB180 dataset are shown in Fig. 4(a). Moreover, for each of the
attributes, a sample image with red colored ground truth bounding box is also
shown in Fig. 4(b) except for the UW attribute which shows three sample images
illustrating the diverse and challenging nature of underwater visual data. In the
next section, we benchmark and compare several SOTA trackers on the UTB180
dataset.

4 Experimental Evaluations

We evaluate and analyse the performance of existing trackers on our proposed
UTB180 dataset and further compare with the publicly available underwater
tracking benchmark UOT100 [32]. We also fine-tune 5 high-quality SOTA track-
ers on a training split of UTB180 dataset to improve their tracking performance.
In addition, we analyse the attributes-wise tracking performance to further test
the robustness of the trackers on specific challenges. All experiments are con-
ducted on a workstation with a 128 GB of memory, CPU Intel Xeon E5-2698 V4
2.2 Gz (20-cores), and two Tesla V100 GPUs. All the trackers are implemented
using the official source codes provided by the respective authors.

4.1 Evaluated Trackers

We evaluated the tracking performance of several popular SOTA deep tracking
algorithms. These include end-to-end Discriminative Correlation Filters (DCFs)-
based trackers such as ATOM [8], DiMP [2], and KYS [3], deep Siamese-based
trackers such as SiamFC [1,38], SiamMask [36], SiamRPN [26,25], SiamCAR
[12], DaSiamRPN [40], SiamBAN [6], and SiamGAT [11], and the recently pro-
posed transformer-driven DCFs and Siamese-based trackers such as TrSiam [35],
TrDimp [35], TrTr [41], TransT [5], and Stark [39].

3333



UTB180: A High-quality Benchmark for Underwater Tracking 9

UW SV OV PO FO DF LR FM MB SO

× 𝟏𝟎𝟐 × 𝟏𝟎𝟑

Attribute
(a)

(b)

N
um

b
er

 o
f 

F
ra

m
es

N
um

b
er

 o
f 

Se
qu

en
ce

s

Fig. 4: Proposed UTB180 dataset statistics and sample images. (a) Statistics of
sequence-level and frame-level attributes. (b) Sample images of distinct tracking
attributes. From left to right, top row shows UW, UW, UW, and SV tracking
challenges. Mid row represents OV, PO, FO, and DF attributes. Bottom row
shows sample images involving LR, FM, MB, and SO attributes. A red bounding
box shows the ground-truth target object. Three UW attribute samples are
shown to illustrate the diverse and challenging nature of underwater visual data.

4.2 Performance Metrics

Following popular tracking protocols developed in open-air tracking datasets e.g.
OTB100 [37] and LaSOT [9], we performed the One-Pass Evaluation (OPE) on
the benchmarks and measured the precision, normalized precision, and success
of different tracking algorithms. The tracking performance metrics are defined
as follows:

1. Precision: This metric is computed by estimating the distance between a
predicted bounding box and a ground-truth bounding box in pixels. Similar
to the protocols defined by Wu et al. [37], we ranked different trackers using
this metric with a threshold of 20 pixels.

2. Success: Since the precision metric only measures the localization perfor-
mance, it does not measure the scale of the predicted bounding boxes in
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relation to the ground truth. The success metric takes this into account by
employing the intersection over union (IOU) to evaluate the tracker [37].
The IOU is the ratio of the intersection and union of the predicted and the
ground truth bounding box. The success plot is then generate by varying
the IOU from 0 to 1. The trackers are ranked at a success rate of 0.5.

3. Normalized Precision: As the precision metric is sensitive to target size
and image resolution, we also used the normalized precision as defined in
[31]. With the normalized precision measure, we ranked the SOTA trackers
using the area under the curve between 0 to 0.5. More details about this
metric can be found in [31].

4.3 Evaluation Protocols

Similar to [9], we used two different protocols and evaluated the SOTA trackers
on UTB180 dataset. In Protocol I, we used all 180 videos of UTB180 and
evaluated the open-air pre-trained models of the SOTA tracking algorithms.
This protocol aims to provide large-scale evaluations of the tracking algorithms.
In Protocol II, we firstly divided the UTB180 into training and testing subsets
and then fine-tuned recent SOTA trackers on the training split. Using a 70/30
split, we select 14 out of 20 videos in each category for training and the rest for
testing. More specifically, the training subset contains 130 sequences with 41K
frames, and the testing subset consists of 50 sequences with 17K frames. The
evaluation of SOTA trackers is performed on the testing subset. This protocol
aims to provide a large set of underwater videos for training and testing trackers.

4.4 Experiments on Protocol I: Pre-trained Trackers Evaluation

Overall Performance: In this experiment, we benchmark the pre-trained mod-
els of the SOTA trackers on the UTB180 and UOT100 [32] datasets. The overall
performance in terms of success, normalized precision, and precision is shown in
Table 2. Further, the success and precision plots are shown in Fig. 5(first row)
and 5(second row) for the UOT100 and UTB180 respectively.

From the results, it can be observed that the Siamese and transformer-driven
trackers achieved the best performance on UTB180. Among the compared SOTA
trackers, TransT achieved the best results of 58.4% and 51.2% in terms of success
and precision rates. In terms of normalized precision rate, SiamBAN achieved
the best results of 67.9%. All compared trackers achieved consistently lower
performance on all metrics on the UTB180 compared to the UOT100 despite
the fact that UTB180 has fewer annotated frames compared to UOT100. The
low performance obtained by the SOTA trackers evidenced the novel challenging
scenarios in the UTB180 benchmark, and therefore, the need for the development
of more powerful underwater trackers.

4.5 Experiments on Protocol II: Fine-tuned Trackers Evaluation

Overall Performance: In this experiment, we investigated the ability of the
open-air pre-trained trackers to generalize to underwater dataset. For this pur-
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Table 2: Comparative results of pre-trained trackers on UTB180 and UOT100
benchmarks under protocol I. The best three trackers are shown in red, green,
and blue colors, respectively.

Tracker Sucess ↑ Norm Precision ↑ Precision ↑
UOT100 UTB180 UOT100 UTB180 UOT100 UTB180

SiamFC [1] 0.438 0.350 0.534 0.412 0.304 0.228
SiamRPN [26,25] 0.597 0.534 0.748 0.635 0.487 0.419
SiamBAN [6] 0.570 0.562 0.749 0.679 0.522 0.462
SiamMASK [36] 0.547 0.523 0.723 0.640 0.467 0.418
SiamCAR [12] 0.528 0.461 0.665 0.549 0.450 0.389
DaSiamRPN [40] 0.364 0.355 0.411 0.370 0.184 0.180
ATOM [8] 0.545 0.477 0.692 0.555 0.444 0.348
DiMP [2] 0.568 0.467 0.698 0.529 0.449 0.332
KYS [3] 0.585 0.529 0.729 0.613 0.480 0.401
KeepTrack [28] 0.609 0.543 0.779 0.637 0.515 0.421
Stark [39] 0.614 0.482 0.757 0.542 0.532 0.400
TrDiMP [35] 0.599 0.580 0.759 0.676 0.503 0.455
TrSiam [35] 0.598 0.566 0.752 0.656 0.492 0.438
TrTr [41] 0.535 0.500 0.713 0.601 0.486 0.406
TransT [5] 0.624 0.584 0.789 0.672 0.555 0.512

pose, we fine-tuned five SOTA trackers including SiamFC, SiamRPN, ATOM,
TrTr, and TransT using the training split (130 videos) of UTB180 dataset. We
froze the backbone of each pre-trained tracker for feature extraction and fine-
tuned their prediction heads. For the most part during fine-tuning, the default
training parameters were unchanged except for the learning rate which was re-
duced. The pre-trained and fine-tuned trackers performance evaluated on the
testing split (50 videos) are presented in Table 3. The success and precision
plots are also presented in the Fig. 6(first row) and 6(second row) respectively.

Table 3: Comparative results of the pre-trained and fine-tuned trackers on
UTB180 benchmark under protocol II. The best two trackers are shown in red
and green colors, respectively.

Tracker Pretrained ↑ Finetuned ↑
Success Norm Precision Success Norm Precision

SiamFC [1] 0.308 0.355 0.287 0.315 0.368 0.294
SiamRPN [26,25] 0.486 0.568 0.450 0.491 0.596 0.459
ATOM [8] 0.451 0.532 0.460 0.500 0.600 0.516
TrTr [41] 0.490 0.597 0.486 0.490 0.605 0.499
TransT [5] 0.492 0.562 0.508 0.494 0.570 0.510

The following conclusions are drawn from this experiment:
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Fig. 5: Evaluation results on UOT100 and UTB180 benchmarks under protocol
I using success and precision measures. The legend of precision plot contains
threshold scores at 20 pixels, while the legend of success rate contains area-
under-the-curve score for each tracker. Overall, the TransT tracker performs
better against the SOTA trackers.

1. While fine-tuning the trackers on underwater data slightly improved the
tracking performance, it is still not comparable with the performance on
open-air data. This suggests that specialized trackers are needed to be de-
veloped for underwater applications.

2. While the recent transformer-based trackers such as TrTr and TransT per-
form better, other trackers benefited more from the fine-tuning. This suggests
that with the availability of enough data, trackers can be trained longer to
achieve better performance.

4.6 Attribute-wise Evaluation

We also investigated the attribute-wise performance on the UTB180 dataset. We
selected a recently proposed TransT tracker since it achieved the best perfor-
mance shown in Tables 3- 2. We benchmark the TransT on sequences belonging
to each of the attributes discussed in section 3.4. Table 4 shows the tracking per-
formance in terms of success, normalized precision, and precision. The attribute-
wise performance plots can be found in our supplementary material. It can be
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Fig. 6: Evaluation results on UTB50 dataset under protocol I (a) and II (b) using
success and precision measure. The legend also contains area under the curve
score for each tracker..

observed from the results that each of the attributes tend to degrade the per-
formance when compared to the whole dataset. Overall, TransT achieved the
best performance on UW attribute while it could hardly achieve 50% tracking
performance on other attributes.

Conclusively, their is still a significant performance gap that needs to be filled
for reliable and robust underwater tracking. The difficult target state estimation
and several other environmental variations such as low visibility condition make
the field of underwater VOT challenging.

5 Conclusion and Future Research Directions

5.1 Conclusion

In this work, we proposed a new VOT dataset dedicated to underwater scenes. It
is a dense and diversified high-quality underwater VOT dataset with 180 video
sequences and over 58, 000 carefully and manually annotated frames. We bench-
marked and fine-tuned existing SOTA Simaese and transformer trackers on the
proposed dataset. Our results demonstrate that there is still a significant per-
formance gap between open-air and underwater VOT. We showed that UTB180
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Table 4: Attribute-wise performance of pre-trained TransT tracker on UTB180
dataset. The best three trackers are shown in red, green, and blue colors, respec-
tively. More details can be found in the supplementary material.

Attribute Acronym Number Success ↑ Norm Precision ↑
of Videos Precision ↑

UTB180 180 0.584 0.672 0.512

Unclear Water UW 64 0.636 0.743 0.586
Scale Variation SV 88 0.559 0.640 0.478
Out of View OV 7 0.566 0.660 0.475
Partial Occlusion PO 92 0.475 0.542 0.409
Full Occlusion FO 12 0.342 0.375 0.330
Deformation DF 24 0.564 0.657 0.402
Low Resolution LR 12 0.489 0.583 0.390
Fast Motion FM 33 0.515 0.593 0.486
Motion Blur MB 8 0.485 0.540 0.417
Similar Objects SO 116 0.513 0.583 0.472

presents more challenging sequences compared to the publicly available UOT100
dataset. It is expected that UTB180 will play an instrumental role in boosting
the underwater VOT research.

5.2 Future Research Directions

When compared to open-air, the available underwater datasets are still insignif-
icant. At the moment, the available underwater datasets can only be utilized for
benchmarking and fine-tuning of the designed trackers. They are insufficient for
the direct training of deep trackers. As such, we intend to extend this work to
enable not only fine-tuning but also the training and testing of deep underwater
trackers with underwater datasets.

From our experiments, we showed that recent transformer-based trackers
consistently performed better than their DCFs and Siamese-based counterparts.
While this performance still lags compared to the open-air performance, it sug-
gests that variants of transformer-based trackers could pave the way for the
development of better underwater trackers. Improved backbone feature extrac-
tion, sophisticated target state estimation, and the role of implicit or explicit
underwater video denoising approaches are required for robust end-to-end un-
derwater VOT. Such extensions could lead to more generic algorithms suited for
both open-air and underwater VOT.
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