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Abstract. The deep learning-based optical flow methods have shown
noticeable advancements in flow estimation. The dense optical flow map
offers high flexibility and quality for aligning neighbouring video frames.
However, they are computationally expensive, and the memory require-
ments for processing high-resolution images such as 2K, 4K and 8K on
resources-limited devices such as mobile phones can be prohibitive.
We propose a patch-based approach for optical flow estimation. We
redistribute the regular CNN-based optical flow regression into a two-
stage pipeline, where the first stage estimates an optical flow for a low-
resolution image version. The pre-flow is input to the second stage,
where the high-resolution image is partitioned into small patches for
optical flow refinement. With such a strategy, it becomes possible to
process high-resolution images when the memory requirements are not
sufficient. On the other hand, this solution also offers the ability to par-
allelize the optical flow estimation when possible. Furthermore, we show
that such a pipeline can additionally allow for utilizing a lighter and
shallower model in the two stages. It can perform on par with Fast-
FlowNet (FFN) while being 1.7x faster computationally and with al-
most a half of the parameters. Against the state-of-the-art optical flow
methods, the proposed solution can show a reasonable accuracy trade-
off for running time and memory requirements. Code is available at:
https://github.com/ahmad-hammad/PatchFlow
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1 Introduction

Optical flow is a long-standing problem in the computer vision field with ongo-
ing research to date. Given two consecutive frames I1 and I2, the optical flow is
per-pixel 2D motion map estimation from the first frame I1 to the next frame I2.
It has a vital role in several applications such as video stabilization [36], image
stitching [23, 24] , crowd-counting [10], super resolution [4, 31], video interpola-
tion [25], depth estimation [22], SLAM [40] and many robotics applications [40,
19].

Conventional optical flow methods [9, 37, 5] are often formulated as a hand-
crafted optimization problem. With the advances in hardware and deep learning
research, the deep learning-based optical flow methods have shown noticeable
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improvements to the previous conventional methods. In addition, deep neural
networks harness the parallel processing of modern GPUs. Thus, they surpass
the traditional methods in terms of speed and accuracy. Since the first convolu-
tional neural network-based (CNN) method FlowNet [16], many methods have
improved the architecture and the training protocols. RAFT [30] is a milestone in
optical flow estimation achieving state-of-the-art results. They compute a huge
4D cost volume and update a single high-resolution (1/8) flow iteratively with-
out warping rather than the coarse-to-fine scheme followed by previous works.
On the other hand, pyramidal coarse-to-fine models, such as PWCNet [29], have
lower computational and memory requirements. However, they perform worse
due to the warping process included in each pyramid level. Some subsequent pa-
pers [33, 18] proposed solution that builds on RAFT’s achievement to lower the
memory requirements but they are still relatively more complex than pyramidal
models. Despite the improvements introduced by the CNN-based solutions for
the optical flow task, it remains computationally expensive and memory-hungry.

The prevalence of smartphones equipped with high-end cameras capable of
recording high-resolution videos makes it tempting to use them for computa-
tional photography applications that fuse information over multiple frames. Be-
cause of sudden camera movements those applications including, for example,
deblurring, denoising, super-resolution, video stabilization, and 3D reconstruc-
tion, often require estimation of dense optical flow. However, regardless of mobile
GPUs, smartphones are resource-limited devices, both in computational power
and memory resources. Thus, the optical flow computational and memory burden
make it less attractive to import such applications on those devices. Moreover,
for high-resolution images such as 2K, 4K and 8K images, the computation and
memory requirements can be prohibitive.

To this end, we propose a patch-based framework for optical flow estimation.
We redistribute flow estimation into two stages, where the first stage estimates a
flow for a low-resolution image which serves as an initial flow for the next stage.
The second stage estimates flow on small equally-sized patches of the images
with the guidance of the low-resolution flow. Such a strategy brings double-
edged benefits. On one hand, it removes the high memory requirements for high-
resolution images. On the other hand, the patch-based strategy can be leverged
to speed up the optical flow estimation by parallel processing for applications
that have running time priority. Our contributions can be summarized as follows:

– We propose a two-stage pipeline for patch-based optical flow regression elimi-
nating high memory requirements for high-resolution images, especially when
it comes to resource-limited devices such as mobile phones. From another as-
pect, it enables parallel processing when the memory permits.

– We show reasonable speed-accuracy trade-offs against variety of heavier full-
resolution optical flow methods.

– We show that the two-stage approach enables us to incorporate a lighter and
shallower network in each stage without hurting the accuracy.
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2 Related Work

With advances in deep learning research, CNN-based optical flow methods have
become superior to the conventional methods in terms of accuracy and inference
speed. However, they draw inspiration from the steps followed in the classi-
cal pipeline. Here we review the deep learning-based optical flow estimation.
FlowNet [7] was the start of the end-to-end, CNN-based optical flow methods
that paved the way to improve the optical flow estimation. FlowNet proposed
two Unet-shaped architectures: FlownetSimple and FlownetCorr. The main dif-
ference is that the first one does not include cost (correlation) volume compu-
tation. FlowNet2 [16] builds a heavier and more complex solution by cascading
blocks of FlownetCorr and FlownetSimple for optical flow refinement. They also
showed that the accuracy results improve by carefully scheduling the dataset
training. Most of the CNN-based methods contain three main ingredients: fea-
ture extraction, cost volume computation, and feature decoder for optical flow
prediction. The supervised CNN-based solutions can be roughly divided into
two classes: the warping-based coarse-to-fine (pyramidal refinement) optical flow
and the recurrent, non-warping solutions. First, we present the warping-based
method.

PWCNet [29] first extracts pyramidal features, then in each pyramid level,
it computes a cost volume and predicts a flow which is then refined in the finer
level. In SPynet [28], they use image pyramids instead of features. In IRR [15],
they turn PWCNet [29] and FlownetSimple [7] to iterative, instead of stack-
ing blocks of large networks similar to FlowNet2 [16]. For IRR-PWCNet, the
pyramidal coarse-to-fine architecture is preserved, but it is iterative in the sense
that they, unlike PWCNet [29], share the weights of the decoder in each pyra-
mid level. Thus, the number of iterations is limited by the number of levels.
IRR improves the accuracy by bidirectional estimation of the flow, jointly es-
timating the occlusions and the bilateral filtering for more refinement for the
optical field [16]. Instead of reshaping cost volume to multi-channel 2D arrays
as in PWCnet [29] for instance, VCN [35] processes 4D cost volume with sepa-
rable 2D kernels for efficient computation and memory consumption showing a
significant improvement over previous methods. LiteFlowNet [13] was a concur-
rent work to PWCNet [29] and shared similar techniques with theirs. It has a
smaller number of parameters than PWCNet [29] but requires a higher number
of FLOPs (Floating Point Operations) while maintaining comparable accuracy.
LiteFlowNet2 [14] further improves the accuracy and running time by optimiz-
ing the architecture and training protocols of LiteFlowNet [13]. LiteFlowNet3
[12] improves the accuracy, but incurs more computational complexity, by intro-
ducing cost volume modulation and flow field deformation (correction) to better
handle the occlusion and homogeneous regions. For cost modulation, they esti-
mate affine parameters that are used to transform each pixel’s cost. To refine
the flow, they replace the flow vector with a more accurate flow vector from the
neighbouring pixels based on a confidence map and self-correlation cost volume
(correlating the first image feature map with itself). FastFlownet [19] is based on
PWCNet [29] architecture and modifies the three main ingredients to produce
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a lightweight flow network. They build a lighter feature extractor by replacing
the convolution in low-scale levels by pooling layers. For the decoder, they use
shuffling layers inspired by Shufflenet [41]. For the cost volume, they compute
the correlation in a limited search radius range (local search grid around each
pixel) and then resample the correlation grids non-uniformly such that it is dense
around the centre and dilated otherwise.
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Fig. 1. Architecture of the two-stage optical flow pipeline. In the top of the image, a
high-level overview of the full pipeline. The bottom image illustrates the details of the
Flow Network incorporated in each stage.

In IOFPL [8], they present ideas to improve the flow estimation in the pyra-
midal architectures. Among those ideas, they shift from warping to sampling-
based cost volume computation in pyramid levels, ameliorating the decline of
the performance resulting from warping artefacts. They also propose blocking
some gradient components during back-propagation for better convergence and
inference performance. Before [8], Devon [26] also proposed sampling-based cost
volume. Unlike the coarse-to-fine strategy in [8], they iteratively refine a fixed
quarter resolution flow with a shared decoder. To handle the large motion in
the fixed resolution, they used dilated search grids for the cost volume compu-
tation. Although they perform well on the Sintel [3] clean pass, they perform
worse than [8] on the Sintel final pass and KITTI 2015 dataset [27]. RAFT [30]
is a remarkable milestone which proposed sampling-based (no-warping), recur-
rent solution achieving the state-of-the-art (SOTA) results on the optical flow
benchmarks when first appeared. They build 4D cost volume by computing the
correlation between all pixel pairs on 1/8 resolution feature maps and then pool
it recursively to produce multiscale 4d cost volume. The optical flow is itera-
tively refined at a fixed 1/8 resolution using a GRU-based recurrent module [6].
In each iteration, they look up (sample) the multiscale cost volume with a lim-
ited search radius based on the current estimated flow. The RAFT model has
high computational and memory requirements. This is mainly due to the huge
4D multiscale volume and many refinement iterations performed on the fixed
resolution flow. Assuming an image with equal width and height N , the cost
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volume has a computation and memory complexity of O(N4). This limits its
ability to scale up to higher resolutions. For instance, a 4K image can cause an
out-of-memory error on a GPU with a memory of 32GB [33]. Several subsequent
methods [33, 18, 39, 17, 42] either optimized the RAFT solution while keeping
a similar performance [33, 18] or surpassed the performance of RAFT [39, 17].
However, those methods still have high computation and memory complexity.
In [33], they decrease the memory requirement by separating the 4d cost volume
into 2 3D cost volumes, leading to complexity O(N3) while achieving compara-
ble accuracy. DIP [42] is inspired by the conventional patchmatch approaches [1,
2] to deal with the high memory consumption of [30]. There is also a direction
that adopts the transformer models for optical flow estimation [34, 11].

In the pyramidal approaches, the warping causes occlusion artefacts (copies
of the occluding pixels), which may hinder the subsequent levels from picking the
correct correspondences, leading to ghosting artefacts[18]. However, the coarse-
to-fine often enjoys lower computational and memory requirements than RAFT
and its successors. The cost volume in such methods requires memory of com-
plexity O(N2R2) where R is the search radius and is much smaller than N. Our
work follows the pyramidal coarse-to-fine architecture. We redistribute the opti-
cal flow regression into two stages where the first stage estimate low-resolution
optical flow and the second stage apply patch-based refinement. The output
flow is then smoothed to produce the final result. In each stage, we incorporate
a pyramidal network that estimates flow on two pyramid levels only. The re-
sulting pipeline has lower computational complexity and memory consumption
while achieving a comparable result with FastFlowNet [19] on a modified Fly-
ingChairs dataset. Our model shows reasonable complexity-accuracy trade-offs
against the SOTA methods.

3 Proposed Method

3.1 Overview

We first estimate the optical flow on a low-resolution version which can be com-
putationally cheap compared to the full resolution. For instance, if we have 4K
resolution images, we can downsample them to 1/8 and estimate the optical
flow. The image pair and the pre-flow are divided into equally-sized patches
where each patch is going to be refined independently. The pre-flow serves as
an initial flow for the second stage. This pre-flow is utilized to warp the second
image features of the coarsest level in the second stage as detailed in Section 3.2.
After estimating the optical flow for each patch in the second stage, the patches
of optical flow are concatenated and then smoothed to produce the final optical
flow field. A high-level illustration of the whole pipeline is shown in the upper
part of Figure 1.

3.2 Network architecture

The network consists of two subnetworks or stages as shown in Figure 1. The
two stages have the same architecture. We present the details of the subnetwork
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in this section. A subnetwork has three main components: the pyramidal feature
extraction encoder, correlation (or cost) volume and optical flow decoder. The
network follows the warping-based pyramidal optical flow architectures [29, 13].

Pyramidal Feature Extraction. We extract features from the two images
separately using a lightweight 3-level pyramidal feature encoder with tied weights
as depicted in Figure 1 in the bottom part. The feature maps in each level are 1/2
resolution of the previous level. This results in feature maps of 1/2, 1/4 and 1/8
resolutions for the first, second and third levels, respectively. Each level, except
the first level, has three convolution blocks and each of them consists of a 2D
convolution layer plus an activation layer. The first level has 2 convolution blocks
only. The dimension of a pixel’s feature vector (i.e. , the number of channels in
the output feature maps) starting from the first level are 8, 16, and 32 channels
in the last level. All the convolution layers have a kernel of size 3× 3.

Computing Correlation Volume. Given the feature maps F1 and F2 of
the first image and the second image, respectively, the visual similarity between
two feature vectors F1(x) and F2(x) for a pixel located in a 2D spatial position
x in the feature maps is computed by the dot product of the two vectors as the
following:

C(x, r) = F1(x) · F2(x+ r)/M (1)

where r ∈ [R,−R]2 is a 2D offset, and R is a positive integer represents
the search radius and M is the length of the feature vector. In other words,
each pixel (feature vector) from the first image is correlated with a local square
centered at position x in the second image and has an area of D = (2R + 1)2.
A cost (correlation) volume is built by computing (1) for all pixels. This is then
arranged in a volume of size Hl ×Wl ×D [16], where Hl and Wl are the height
and width of the input feature maps in level l [16].

Feature Decoder. In level l, the decoder takes as input the concatenation
of the cost volume, feature map of the first image and the upsampled flow f↑

l−1

from the coarser level l − 1. It predicts a residual flow ∆fl which is then added
to the flow estimate from the coarser level f↑

l−1 to get the refined estimate as
follows:

fl = f↑
l−1 +∆fl (2)

The same decoder architecture is shared across all levels, but each decoder
has its own set of learning parameters (i.e. no weight sharing) [29]. The decoder
consists of seven consecutive convolution layers with a kernel of size 3 × 3. All
convolution layers are followed by an activation layer except the final one which
outputs a 2-channel flow field. The first 4 layers output 64-channel feature maps
while the subsequent two layers output 32 channels.

Flow Regression. The flow estimation from the subnetworks in our pipeline
follows warping-based coarse-to-fine architectures [29, 13, 19]. We describe the
process of predicting flow in one scale as the same process applies to all scales.
First, we warp the feature map of the second image using the upsampled flow
f↑
l−1 estimated from the coarser scale l − 1 . The flow from the coarser level
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is upsampled using a deconvolution layer (transposed convolution) [38]. The
warping module is based on a differentiable bilinear interpolation [16, 28]. Then,
the correlation volume is built by computing the visual similarity between the
first image feature map F1,l at level l and the warped second image feature map
F2→1,l. The features F1,l is convolved one more time and then concatenated

with the correlation volume and the upsampled flow f↑
l−1 and provided to the

decoder. The decoder outputs the current estimated flow fl at level l according
to (2) which is then provided to the next finer level l+1, and the process repeats
again.

In our network, we predict the optical flow for two levels. This means that
the final resulted flow is 1/4 of the original resolution. We upsample the flow to
the original resolution by bilinear interpolation.

In the first subnetwork (stage), the initial flow is zeros while in the second
subnetwork the initial flow is the pre-flow from the first stage as depicted in
Figure 1.

3.3 Smoothing Filter

The concatenated optical flow may contain discontinuities near the borders of
the small patches due to the independent regression of flow for each patch.
To deal with these discontinuities, we perform simple smoothing operation by
minimizing an energy function that has two terms:

E =
∑
i

c(i)∥u(i)− f(i)∥22 + λ
∑
i

|∇2f(i)|2 (3)

where f and u are the target and the smoothed flow to be estimated, respec-
tively, i is the pixel index, c is the confidence map and λ is the smoothing
strength. The second term represents the Laplacian of the flow field. The Lapla-
cian term encourages the flow field to be smooth while the data term encourages
the flow to keep its values unchanged based on their confidence. Since all terms
are quadratic, this minimization problem can be solved using any linear solver.
However, it is a time-consuming process due to the high number of unknowns.
Instead, we approximate the task with iterative filtering. First, we determine
a Laplacian smoothing kernel θ based on λ. The kernel size gets smaller as λ
decreases, meaning a weaker smoothing effect and vice versa. After that, we ini-
tially set u to be equal to the target flow field f . Then, in each iteration k, we
set uk+1 = gθ(cf − (c− o)uk) where gθ is 2D Convolution operator with kernel
θ, and o is the average between the max and min values of c. This process is
guaranteed to converge to the minimum of (3) as presented in [32].

3.4 Loss Function

Following [16, 29], the optical flow training is supervised using the multiscale L2
norm between the ground truth fGT

j and predicted optical flow at the jth scale
for all optical flow estimation scales (levels) as follows:
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L =

L∑
j=1

αj∥fGT
j − fj∥2 (4)

where L is the number of optical flow prediction scales, and αj is the loss
weight for the jth scale.

4 Experiments

4.1 Training details

The first stage in our pipeline estimates an optical flow on a downscaled version
of the high-resolution image pair. However, the resolution of FlyingChairs (FC)
is small (384 × 512) to be downscaled further. Thus, to train our pipeline, we
concatenate (vertically and horizontally) multiple small FlyingChairs images to
create a higher resolution image. For instance, if we want to synthesize an image
of resolution 2304×2048, we concatenate 24 small FC images. We further apply
several augmentation techniques similar to previous works [29, 30]. Particularly,
we apply geometric transformations such as random rotation, translation, scal-
ing, shear, flipping and cropping. Such transformations effectively diversify the
dataset and make the edges or the sharp discontinuities between the concate-
nated images appear spatially random in the high resolution image. This enables
the network to be less influenced by the regular discontinuities during learning.
This new modified FlyinChairs dataset (ModFC) is used to train the proposed
pipeline. The size of the high-resolution images is 2304×2048 and it is randomly
cropped to resolution 1024× 1024. The first stage works on 1/8 resolution (i.e.
128×128) while the refinement stage works on patches of size 128×128. We first
train the low-resolution stage alone. Then, the second stage is initialized with
the learned weights from the first stage, and the two stages are then trained in
an end-to-end manner. The initial learning rate is 1e − 4 and decreased by 0.5
at 108, 144 and 180 epochs. We train for 216 epochs and use batch size 1. In the
end-to-end training, the optical flow is predicted over two scales in each stage.
Therefore, the training loss weights in (4) are set to be α1 = 0.2, α2 = 0.8,
α3 = 0.008, and α4 = 0.03125 where α2 and α4 correspond to the coarsest level
in the first and the second stage, respectively.

As described in Section 3.1, our PatchFlow (PF) consists of two subnetworks
with the same architecture, where each subnetwork has its own set of learning
parameters, and the pre-flow from the first network is used to warp the second
image’s feature map in the coarsest level as shown at the bottom of Figure 1.
In the experiments, we compare our proposed pipeline with other options based
on two design aspects: weight sharing and warping level. To make it easier for
the reader to quickly grasp the training setting type, the ’S’, ’H’, ’T’ and ’I’
letters refer to weight sharing, non-shared weights, feature-level warping and
image-level warping, respectively. In image-level warping, the pre-flow is used to
warp the second image directly rather than its features. To this end, besides our
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Table 1. Ablation experiments. All models trained with ModFC. The patch size used
in the experiments is 256×256, while the values in the brackets are based on 128×128
patches.

Variation Sintel - train
clean final

Ours- Full 3.74 (3.93) 4.94
Ours- w/o 1st stage 10.22 10.60
Ours- w/o smoothing 3.74 (3.94) 4.94

Smoothed No smoothing Smoothed No smoothing

Fig. 2. Visualizing the effect of smoothing the optical flow field. The second frame is
warped using both smoothed and non-smoothed optical flow fields and overlayed on
the first frame by replacing the red channel of the second frame with its counterpart
in the first frame. The small coloured crops zoom in the marked regions in the images.

main model, which is referred to by PF-HT, we train two other models: PF-SI
and PF-ST.

4.2 Ablation Studies

We perform ablation studies on our architecture to validate the importance
of some components in our proposed pipeline. We remove the first stage to
check the performance when we apply the patching directly without the pre-
flow estimation. In Table 1, it is shown that the performance drops significantly
without the pre-flow. Also, we show the results when disabling the smoothing
component. While the smoothing seems to have no significant improvements
quantitively in terms of the end-point error (EPE) [7], it has a visual effect as
shown in Figure 2. It alleviates the artefacts resulting from the discontinuities
between the patches of a non-smoothed flow field used for warping the second
image.

4.3 Results on ModFC

As shown in Table 2, the performance of the lighter model LF is comparable
with the FFN model when trained on downscaled ModFC images (small resolu-
tion). This effectively shows that the model reduction is possible while keeping
a similar performance. We noticed that just inferring the low-resolution optical
flow using the original FFN model pretrained with FC which is provided by [19],
gives a significantly higher EPE error of 9.44. This indicates that the network is
influenced by the scale of the images used for training.
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Considering the 2-stage pipeline performance, it is shown that the perfor-
mance of the PF-ST is a bit better than PF-SI. This indicates that the feature-
level warping is better than the image-level warping. The warping of the second
image to pre-align the image pair before dividing them into patching can result in
occlusion artefacts in the warped image. Consequently, this can limit the ability
of the refinement network to pick the correct correspondence and create ghosting
artefacts. Furthermore, the performance becomes even better when each subnet-
work has its own learning parameters as shown with our model PF-HT. This
helps each network to focus on learning the scale-related features.

To show that the strategy of the two-stage pipeline offers the ability to utilize
a lighter architecture in the refinement stage of image patches, we train the
original FFN model with a similar approach to the PF-HT model. Since the
first stage estimates 1/32 resolution optical flow (1/8 × 1/4), it makes sense to
prune the 1/64 and 1/32 flow estimation scales from the second stage. Moreover,
using the first stage flow to warp such low-resolution features (1/64) wastes the
information in the pre-flow and makes it almost useless for the refinement stage.
In our experiments, if we keep those scales, it produces an EPE of 5.50. Thus, we
remove those scales from the second stage. We refer to this as the FFN2 model.
Additionally, we report the inference performance of the original FFN model on
the full resolution of ModFC (no patching and one stage). From Table 2, our PF-
HT has comparable performance with the FFN2 and FFN which demonstrates
the possibility of decreasing the computational complexity when adopting the
two-stage strategy.

4.4 Sintel and KITTI datasets

Next, we compare the performance of our two-stage model trained on ModFC
with FFN2, FFN and RAFT using the Sintel dataset [3]. The EPE values are
presented in Table 2 together with the runtime and the number of FLOPs.

The PF-HT has the best performance among the other versions (PF-ST
and PF-SI) similar to the results on the ModFC dataset. On the other hand, the
FFN2 model becomes worse than PF-HT. This shows that our model generalizes
better. The lower performance might be an indication of overfitting because of
the increased model size. Further, we test the original FFN model on the Sintel
dataset by stacking two instances of the model. The first instance estimates
the optical flow of 1/4 resolution, and the second estimates the residual motion
on patches of size 256 × 256. It is slightly inferior to PF-ST which estimates
1/8 resolution for the pre-flow while being faster and smaller. This shows that
reducing the pre-flow and refinement models does not hurt the accuracy.

Additionally, we report the accuracy on the full-resolution of Sintel (without
patching) using the FFN and RAFT methods. Our model PF-HT has about 1.5
pixles higher EPE error than the RAFT model (with 12 iterations) while being
49x computationally less expensive. In comparison to FFN, it is about 0.5 pixels
inferior in terms of accuracy, but on the other hand, 1.7 times faster. Also, note
that both FFN and RAFT operate on the full resolution while our model works
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Table 2. Performance comparison on the ModFC test set and Sintel-clean train
dataset. LF refers to the model trained with the low-resolution images of the ModFC
dataset. FFN2 is the stacking of two original FFN networks similar to the PF-HT
model. For more details about FFN2 training, please refer to the text. FFN2* is the
stacking of 2 blocks of the original FFN [19] model without training the 2 stages in
an end-to-end fashion. The RAFT computation is done with 12 iterations. In those
experiments, the Sintel dataset is cropped to a size of 384× 1024. For the patch-based
variants, we use patches of size 256 × 256 and 128 × 128 for Sintel and ModFC, re-
spectively. The running time is measured on Nvidia RTX2070 GPU. The FLOPs and
timing are based on resolution 512× 1024.

Method Training ModFC Sintel Time FLOPs Params

data test clean-train (ms) (G) (M)

Low Resolution

LF ModFC 5.86 - - - 0.39
FFN ModFC 5.66 - - - 1.37

Patches Only

FFN FC - 3.98 17 29.1 1.37

Two-stage: Low Resolution + Patches

PF-ST ModFC 3.49 3.77 10 17.0 0.39
PF-SI ModFC 3.77 3.78 10 17.0 0.39
PF-HT ModFC 3.13 3.62 10 17.0 0.78

FFN2 ModFC 3.08 3.87 19 29.2 2.23
FFN2* FC - 3.67 22 30.8 1.37

Full Resolution

FFN FC 3.09 3.11 17 29.1 1.37
RAFT FC - 2.14 227 827.2 5.30

on patches of size 256 × 256 which causes some loss of contextual information,
and makes the flow estimation problem more difficult.

We further finetune our Network (PF-HT) with the FlyingThing3D (FT)
dataset and evaluate on the Sintel [3] and KITTI [27] datasets to compare with
the SOTA optical flow methods that operate on the full resolution images. We
noticed that the FlyingThings3D is more challenging than FlyingChairs and
has more motion with many objects occluding each other. We do not get a
performance improvement when training the network with a similar strategy as
with ModFC. Therefore, we train the network with the original dataset without
concatenation and with a cropping size of 512 × 768. The first stage estimates
optical flow on 1/8 resolution, and the second stage operates on patches of size
256×256. The evaluation on the Sintel and KITTI datasets is shown in Table 3.
We also show the parameter count, timing and FLOPs for the different optical
flow methods.

As shown in Table 3, finetuning with FT leads to a slight improvement to our
model on Sintel (compared to Table 1). However, it keeps similar performance

3750
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Table 3. Performance comparison on Sintel and KITTI-2015 datasets after finetuning
with FlyingThings3D (FT) dataset. MC refers to ModFC. The RAFT computation
is done with 12 iterations. The FLOPs is based on a resolution of 512 × 1024. The
timing is done using Nvidia RTX2070, while the timing with an asterisk (after the
slash) is estimated on Nvidia 1080Ti from [19]. There are methods that have timing
presented on both GPUs, such that the reader can better grasp the idea of the relative
performance.

Training Method Sintel (train) KITTI (train) Params Time FLOPs
data clean final F1-epe F1-all (M) (ms) (G)

Patches

MC+FT Ours 3.64 4.88 15.60 34.57 0.78 10 17.0

Full

FC+FT

FFN[19] 2.89 4.14 12.24 33.10 1.37 17 /11∗ 29.1
LFlownetX[13] 3.58 4.79 15.81 34.90 0.90 -/35∗ -
LFlownet [13] 2.48 4.04 10.39 28.50 5.37 -/55∗ 327.0
VCN-small[35] 2.45 3.63 9.43 33.40 5.20 71 73.8
VCN[35] 2.21 3.62 8.36 25.10 6.20 206 193.0
Flow1D[33] 1.98 3.27 6.69 22.95 5.73 181 746,2
SPyNet[28] 4.12 5.57 - - 1.20 -/50∗ 299,6
PWCNet[29] 2.55 3.93 10.35 33.67 8.75 51/34∗ 187.1
RAFT-small[30] 2.21 3.35 7.51 26.9 1.0 71 182.2
RAFT[30] 1.43 2.71 5.40 18.12 5.3 227 827.2

gaps with FFN [19]. The Sintel final pass is more difficult than the clean pass as it
includes image degradations such as motion blur, defocus blur, and atmospheric
effects [3]. The KITTI dataset is more challenging real-world dataset with large
displacements. It becomes even more challenging when estimating the optical
flow in patches. With those difficulties, our model shows 1.47% lower accuracy
compared to FFN in terms of F1-all metric. Ours is better than SPyNet [28] and
comparable with LiteFlownetX [13] while being computationally more efficient.
In comparison to LiteFlownet [13], PWCNet [29], RAFT-Small [30], VCN-small,
VCN [35], Flow1D [33] and RAFT [30], ours shows reasonable speed-accuracy
compromise.

4.5 Real dataset with ground-truth optical flow

We also test our model on GyroFlow real dataset (GOF) [20] that has ground-
truth (GT) annotations for the optical flow. The resolution of the images is
800 × 600 and there are four types of scenes: regular, fog, rain, and dark. In
Table 4, we report the inference results of PF-HT, RAFT and FFN on regular
scenes only. We use patches of size 256 × 256 for PF-HT. As shown in Table
4, PF-HT has a similar performance as the FFN model, while not being far
from the SOTA method RAFT with 12 iterations. Figure 3 shows qualitative
comparisons between our 2-stage pipeline and the FFN and RAFT methods.
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Image 1 Ground-truth RAFTFFN 2-stage Net

Fig. 3. Qualitative results on GOF dataset [20] for FFN, RAFT, and our 2-stage
pipeline. The values indicate the EPE for each example.

Table 4. Performance comparison on GOF clean dataset in terms of EPE. For the
2-stage pipeline, the EPE value is based on patches of size 256×256, while the value in
the brackets is for patches of size 128× 128. Both FFN and RAFT (12 iters.) models
have the full resolution as input.

Method EPE

Ours 1.09 (1.09)

FFN 1.08
RAFT 0.78

4.6 Real dataset without ground-truth

In addition to the GOF dataset, we collected a dataset of high resolution images
with 2K (1080 × 1920) and 4K (2048 × 3840) resolutions using Huawei P40
Pro phone. The dataset consists of scenes where almost all the motion is due
to the camera movements. Overall, the dataset contains 8 video sequences (six
2K videos and two 4K videos). We call this dataset RealP40. Since the dataset
does not contain GT optical flow annotations, we use Root Mean Squared Error
(RMSE) for evaluation [21]. It is defined as one minus the normalized cross-
correlation (NCC) of two pixels in neighbourhood π of size 5× 5:

RMSE(I1, I2) =

√
1

Nv

∑
π

(1−NCC(p1, p2)) (5)

where Nv is the total number of valid pixels in I1 and I2 (i.e. ignoring the
black area resulted from the out-of-boundary pixels when warping I2), and p1
and p2 are the corresponding pixels in I1 and I2, respectively.
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Table 5. Performance comparison on RealP40-2K dataset in terms of RMSE. The
patch size used is 128 × 128, while FFN and Flow1D process the full resolution. The
timing and memory requirements are based on 4K resolution.

Method RMSE Time (ms) Min Memory (MB)

Ours 0.6642 120 13

FFN [19] 0.6681 213 1882

Flow1D [33] 0.6665 2885 5181

The evaluation of our model against FFN [19] and Flow1D [33] on RealP40-
2K is shown in Table 5. For a 4K resolution, ours is faster while achieving similar
performance. Note that RAFT produces out-of-memory on a GPU with 32GB
of memory for 4K resolution, and requires more than 8GB of memory for 2K
images (larger than the 8GB memory on our RTX2070) due to the huge cost
volume it computes. RAFT has an alternative implementation where they com-
pute the cost volume on-demand basis. However, it is slow in turn. Qualitative
comparisons between our PF and FFN [19] on 4K videos are provided in the
supplemental material. An advantage of the patch-based approach is that it re-
quires memory as small as the patch size. For instance, suppose that we have
only 1 GB in a GPU memory (such as in mobile phones or micro-controllers for
example), and assuming that the memory can take up to 10 patches at a time
of size 256× 256 pixels from the 120 patches of a 4K image, the device can pro-
cess the whole image in 12 sequential iterations. At the same time, the models
processing the full resolution image can not work because of the limited memory
resources. In Table 5, we show the minimum memory required (i.e. the peak
memory consumed during inference) to process an image by a corresponding
method. Ours has lower memory requirements in comparison to [19, 33].

5 Conclusion

We proposed a two-stage pipeline for optical flow estimation of high-resolution
images. The first stage takes as input a low-resolution version of the image pair.
The pre-flow from the first stage is then fed to the second stage and utilized
for warping the target frame feature patches. The second stage estimates the
residual motion on the small patches of the input images. We showed that such
pre-flow and refinement helps building a shallower model while achieving a com-
parable result with the FFN model. Thanks to the patch-based approach, the
high-resolution image can be processed in limited memory and computational
resources like mobile phones. The comparison with SOTA solution RAFT on
Sintel and GOF datasets showed that the 2-stage solution can offer a reasonable
accuracy while being significantly computationally lighter and more feasible for
high-resolution images.
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