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Abstract. Blood loss estimation during surgical operations is crucial in
determining the appropriate transfusion decisions. More practical emerg-
ing solutions, e.g. the Triton System, use image processing and artificial
intelligence (AI) in quantifying blood loss from images of blood-soaked
sponges. Triton utilizes an infrared or depth camera that’s used to iden-
tify the region of color (RGB) image corresponding to a surgical textile.
However, calculating depth is computationally expensive and can provide
only the shape information. In this research, we propose a multispectral-
based imaging and machine learning approach to directly quantify blood
loss from images of surgical sponges. Near-infrared (NIR) and Visible
(Vis) light sources in conjunction with an RGB imaging sensor without
a NIR filter are used. With this, in addition to the improved focus and
reduced background interference on the gauze image due to blood’s IR
absorption capacities, the color as well as the shape information may
be utilized. Results show that the multispectral-based imaging approach
rendered a +28.30%, +48%, +27.97%, and 25.72% improvement on the
MAE, MSE, RMSE, and MAPE, compared to using a single Vis wave-
length or RGB image.

Keywords: Multispectral Imaging · Machine Learning · Blood Loss.

1 Introduction

The estimation of blood loss in a patient during surgery is essential in determin-
ing the appropriate transfusion decision or it might lead to costly, invasive, and
unnecessary treatments. Currently, there is a lack of a standardized approach to
practically and accurately measure intraoperative blood loss [16, 19]. The most
frequently practiced method used by physicians in determining blood loss is a vi-
sual estimation. However, aside from demanding expertise, the visual judgment
may have been occluded or affected by other fluids, such as urine, amniotic fluid,
or sterile water, that combine with blood [13].
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2 Ambita et al.

Other alternatives to blood loss estimation is the gravimetric and the pho-
tometric/colorimetric method. While the gravimetric method is more accurate
than visual estimation, it is time-consuming, laborious, and also heavily affected
by the combined nonsanguineous fluids that cause overestimation [12]. On the
other hand, the photometric/colorimetric analysis is the reference standard but
the complexity of the clinical procedure and increased medical costs also limit
the use of this method in clinical practice [15].

More recent blood loss estimation methods use computer vision and arti-
ficial intelligence (AI). An example is a US FDA-approved mobile application
(Triton System, Gauss Surgical Inc, Los Altos, CA) that captures images of
surgical sponges and then uses advanced algorithms to distinguish blood and
non-sanguineous fluids [1]. Triton System utilizes an infrared or depth camera in
conjunction with a color (RGB) image. From the depth image, an image mask
may be generated using to identify a region of the color image that is corre-
sponding to a surgical textile. This information from the color image may then
be used to estimate a blood component characteristic [3]. However, calculating
the depth as well as transforming the infrared image to the geometry perspec-
tive of the color image is computationally expensive. Moreover, the low light
performance can be poor, and the accuracy of the depth is influenced by the
baseline distance. True enough, in Triton, there are plenty of parameters in the
depth image that must be passed in order to process the color image, i.e. perime-
ter classifier, planarity classifier, normality classifier, distance classifier, texture
classifier, and color classifier. But, while there are IR cameras that can generate
depth without calculation, they can only provide shape information. Moreover,
since Triton estimates the hemoglobin (Hgb) loss per sponge using the patient’s
pre-procedure Hgb value, systemic biases from rinsing and the Hb analyzer could
not be eliminated.

A direct measurement of blood loss on sponge using AI was also conducted
(Li et al, 2020 [14]). Their research did not consider blood mixed with other
non-sanguineous fluids, which is primarily the issue that impedes an accurate
estimation. Moreover, the blood-soaked sponge was fully expanded in order to
see all the details in the gauze, which generally costs 5x the time of capturing
a folded gauze. As this is both time-consuming and inefficient, this may not be
sustainable for the personnel in the long run.

Motivated by the discussed risks of inaccurate estimation and the shortcom-
ings of each existing method to estimate blood loss, we aim to develop a direct,
cost-effective approach for the accurate and real-time estimation of intraopera-
tive well as the post-operative blood loss volume absorbed in surgical gauze and
sponge. Triton uses optical systems that can provide depth information such as
range-gated time-of-flight (ToF) cameras, RF-modulated ToF cameras, pulsed
light ToF, and projected light stereo cameras [3]. Whereas, we propose that in-
stead of using an infrared or a depth camera, a typical RGB imaging sensor
without an infrared filter is used. With this, in addition to the improved focus
and reduced background interference on the gauze image due to blood’s IR ab-
sorption capacities [6], the color as well as the shape information may be utilized.
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We aim to improve (1) blood detection, (2) direct and non-invasive quantifica-
tion of the blood volume absorbed on the gauze, and (3) distinguishing blood
from non-blood samples or fluids.

More specifically, our proposed method is multispectral-based imaging that
utilizes light sources with varying wavelengths. We employ an 850 nm near-
infrared (NIR) in addition to the white visible (Vis) light, for which we term
the dual Vis-NIR method. Additionally, we compare its estimation performance
to models using only a Visible (white) light or NIR light. Also, because we aim
to deploy the application in small devices, we utilize machine learning which
requires less computational resources than traditional deep learning methods.

2 Methodology

The general flow of the method or research is presented in Figure1. The dataset is
composed of surgical gauze RGB images captured using different lighting sources
- Visible (Vis) / white light, 850 nm Near Infrared (NIR), and combined white
light and NIR light (dual Vis-NIR). Before extracting features, the images are
first converted to HSV. These images are the inputs for the model composed
of three general steps: feature extraction, machine learning, and performance
evaluation.

Fig. 1: Proposed Methodology

2.1 Hardware Setup

To lessen the varying lighting conditions, the device is enclosed in a box where
no external light can seep in. This creates a controlled environment that has
consistent lighting despite the different settings where the device can be used.

Table 1 shows the proposed dual Vis-NIR configuration inside the controlled
environment. It contains an Infrared LED (850 nm), White LED (Visible Light),
and (4) Imaging Sensor that can switch between an RGB mode and RGB-IR
mode.
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Table 1: Dual Vis-NIR Imaging Sensor and LED Configurations
Sensor Conditions

Vis NIR Vis-NIR
IR (LED 850nm) On - On

Vis (LED) - On On
Vis (Cam) - On -
IR (Cam) On - On

Table 2: Dataset Distribution
Setup # Images

Pure Blood (Dry) 397
Pure Blood (Wet) 260
Blood + Water 355
Total 1012

2.2 Dataset

During surgical operations, the dry gauze may be soaked in water before use
to avoid grazing the internal organs or may be rinsed with water and reused.
We prepared pure blood solutions as well as different dilution ratios for the
blood+water setup. These setups are summarized in Table 2. For the Pure Blood
(Dry Gauze), we varied weights from 0.5-10.5 grams (g), 0.5 intervals, each with
10 repetitions. Since the gauze is folded, there are differences in the spread
and color of blood on the two sides of the gauze. To augment our dataset, we
take images of both sides as different samples. Meanwhile, in Pure Blood (Wet
Gauze), the weights are limited to 7 g. Since the gauze was rinsed with water,
it already contains water and therefore limits the blood capacity of the gauze.
Lastly, for the Blood + Water (Dry Gauze) setup, we collected samples from
1-10 total g, with a 1 g interval. For each total weight, we took samples with
varying blood + water ratio by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and
90%.

Fig. 2: NIR, Vis, and Dual Vis-NIR of a Gauze (With 2g Blood)
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Each gauze sample will have a set of three images of different configurations
captured using : (1) a Vis light, (2) an NIR light, and (3) dual Vis-NIR light. An
example of a 2g blood is shown in Figure 2. The resulting dataset is composed of
gauze images with three channels (H, S, V), each two spatial (x, y) dimensions
and one λ wavelength dimension, where the λ = VIS, VIS-NIR, NIR.

2.3 Feature Extraction Techniques (FET)

The color of blood appears desaturated as it gets diluted with more water and
the volume is directly proportional to the surface area. In order to differentiate
gauze with varying volumes and setups (e.g. dry vs wet gauze, pure blood vs
blood + water), we often look at indicators such as color, texture, and as well
as the surface area covered by the blood. We exploit color moments to represent
colors, local binary patterns represent texture, Fourier transform descriptors for
spatial information, and thresholding to compute for the surface area.

Color Moments The color composition of an image can be viewed as a color
distribution where the dominant features from this distribution can be extracted.
These dominant features, the color moments, are measures that can be used to
differentiate images based on their features of colors. The basis of this idea lies
in the assumption that the color distribution in an image can be interpreted as
a probability distribution, characterized by its moments, resp. central moments.
Thus, it follows that if we interpret the color distribution of an image as a prob-
ability distribution, the color distribution can be characterized by its moments
as well [21].

The feature descriptor will then be composed of the first four (4) moments
of an image’s color distribution - the mean, standard, deviation, skewness, and
kurtosis. We define the mean as the average color of the image and the standard
deviation as the square root of the variance. In the third and fourth moments,
the skewness and kurtosis both provide an idea about the shape of the color
distribution. The skewness measures how asymmetric the color distribution is
while the kurtosis measures how extreme the tails are in comparison to the
normal distribution. These moments are calculated independently for every color
channel. Thus, if we compute for the moments of an HSV image, then will obtain
a 12-dimensional feature vector - 4 features for each channel.

Local Binary Patterns Local Binary Patterns (LBP) are based on the as-
sumption that texture is based on a pattern and its strength, as proposed by
Ojala et. al [17,18]. To compute for the LBP, a neighborhood of size r surround-
ing a center pixel is defined. Originally, LBP is defined in a 3x3 neighborhood
with the gray value of the center pixel set as a threshold. Neighbors with in-
tensities higher or equal to the value of the center pixel are given a value of 1,
otherwise, they are set as 0. The thresholded values (0 or 1), are weighted, and
by summing up the result, an LBP code that contains information about the
local features of the texture of the image is obtained [20].
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Surface Area We define the surface area as the area of the gauze covered by the
blood. In order to compute the area, we follow the process in Figure 3 where we
apply thresholding to segment the blood from the unused sections of the gauze
and the background. We first compute the ”C” (chroma) channel by finding the
difference between the largest and smallest of the RGB values (for each pixel
independently). A simple threshold of the chroma leads to finding the regions
with blood.

Fig. 3: Surface Area

However, the issue with Otsu thresholding is it cannot filter the regions with
only a minimal amount of blood and has a lighter shade of red. To overcome
this problem, the threshold value returned by the Otsu binarization algorithm
is multiplied by a certain factor or bias before using it in regular binary thresh-
olding. After the thresholding, we have an image with black pixels that coincide
with the blood and white pixels which we consider as the background. We simply
compute for the number of the black pixels divided by the total number of pixels
to compute for the surface area.

Fig. 4: Fourier Transform
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Fourier Transform Descriptors We compute the two-dimensional fast Fourier
transform of the input image. Since the result is a complex number array that
is difficult to visualize directly, we take the absolute values of the output to be
displayed as an image. We, therefore, transform it into a 2-dimensional spec-
trum. The output frequency domain image tells us how much each frequency
component is included in the original image. The 2d may be converted to a sum-
marized 1d by computing the Welch signal (Power Spectral Density). From this
simplified representation, we can easily obtain statistical features such as the
mean, standard deviation, skewness, kurtosis, minimum, and maximum value.
The flowchart for computing these features is displayed in Figure 4.

FET Keywords As a standard, the keywords and acronyms used to represent
features are listed in Table 3.

Table 3: Feature Summary. n refers to the number of components extracted per
channel

Feature Keyword Components n

Local Binary Patterns LBP - 40
Color Moments CM mean, std, skew, kurtosis 4
Power Spectral Density PSD mean, std, skew, kurtosis, min, max 6
Surface Area SA - 1
LBP of Fast Fourier Transform LBP-FFT mean, std, skew, kurtosis, min, max 6

2.4 Regression Modelling

Regression predictive modeling involves predicting a numeric variable given some
input, often numerical input. Primarily, XGBoost was used as the model to
predict the blood absorbed in surgical sponges using features discussed in Section
2.3. XGboost is an optimized scalable machine learning algorithm that uses a
gradient boosting framework, like Adaboost [4]. Gradient boosting [9] refers to an
ensemble of many decision trees, each of which is a weak learner because it only
learns from several attributes from the dataset [8]. The boosted regression will
obtain a strong predictor from this ensemble of multiple weak learners [23]. Each
weak learner is based on random subsamples of the training set through several
iterations, created one by one so that each subsequent learner is trained using
the residuals of the previous learner. In other words, the new learner corrects the
errors made previously by the previous learner and then predicts the outcome.
In XGboost, each ensemble uses the sum of K functions to predict an output yi
using Eq. 1.

ŷi = θ(xi) =

K∑
k=1

fk(xi) (1)
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where fk is the kth independent decision tree in the sample, fk(xi) represents
the prediction score generated by that tree for the ith sample. To train the
weak learner, the set of fks is then used to minimize the objective function (loss
function and regularization) at iteration t. Loss function, e.g. mean squared error
(MSE) for regression measures the difference between the observed response and
predicted response. Meanwhile, the tree pruning parameter that regulates the
depth of the tree reduces the size and complexity of the decision tree, hence,
preventing overfitting.

Its performance is compared to other state-of-the-art machine learning al-
gorithms such as multilayer perceptron (MLP), K nearest neighbors (KNN),
support vector machines (SVM), random forest (RF), linear regression, Huber
regression, and AdaBoost.

2.5 Model Evaluation

To evaluate the performance of the regression model, the Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), R2, and Mean Absolute Percentage
Error (MAPE) are computed. The correlation only measures the linear associ-
ation between the association of two sets of observations. Since this technique
may be inadequate and misleading when assessing an agreement between two
methods, the Bland-Altman method [10] is also included as an evaluation metric.

3 Results and Discussion

In this experiment, the performance of every single wavelength (visible (Vis),
infrared (IR), and dual Vis-IR) is evaluated in order to determine the most ef-
fective wavelength for the detection and estimation of blood volume absorbed
in gauze. Figure 1 displays the general overview of the setup involving a single
wavelength training. Note that each dataset with a corresponding wavelength
is trained independently. For each wavelength, different feature combinations
(listed in Table 3) are extracted that serve as input to machine learning regres-
sors. Five-fold cross-validation on the dataset was applied where we computed
the R2, MAE, and RMSE per split. Each train-test subset is comprised of 1012
and 203 images, respectively.

The result of running this experiment is displayed in Table 4 and Figure 5.
Note that we prefer a higher R2 and a lower result for other metrics (MAE, MSE,
RMSE, MAPE). Consistent on all the evaluation metrics and regardless of the
feature set used, combining dual Vis-NIR wavelengths has dramatically reduced
the errors in the prediction, as seen in the large difference between the dual
Vis-NIR and just using the Vis or IR wavelength. For instance, simply using the
CM (or the color moments extracted) as a feature, the improvements recorded
a +28.30% improvement on the MAE, +48% on the MSE, +27.97% on RMSE,
and 25.72% when using the dual-wavelength approach compared to just using
visible (white) lighting.
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(a) R2 (b) MAE

(c) MSE (d) RMSE

(e) MAPE

Fig. 5: Performance Comparison of Light Sources with Varying Wavelengths

From a spectroscopy perspective, specific molecular absorptions in a certain
chemical or fluid cause NIR absorptions and therefore provide more information
about a sample’s chemical structure [7]. Since NIR wavelength then has been
widely explored in blood-related medical or forensic applications, the result of
this experiment further confirms the effectiveness of infrared lighting in medical
imaging. Specifically, the proposed dual-wavelength technique that takes advan-
tage of infrared lighting was proven to improve blood detection and estimation.

In addition, lower volumes and overly diluted blood are a source of spec-
tral variations, where the absorbed light may be dominated by the background,
hampering the quality of Vis images. The background interference may be re-
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Table 4: Performance Comparison of Different Feature Combinations and Wave-
lengths on the Merged Dataset. Values in red indicate the best result for each
metric. Highlighted in bold indicates the best wavelength.

Metric W Feature Combination

CM
CM+
LBP

CM+
SA

CM+
LBP+
SA

CM+
LBP+
SA+
PSD

CM+
LBP+
SA+
PSD+
LBP-FFT

CM+
LBP+
PSD+
LBP-FFT

CM+
PSD+
LBP-FFT

NIR 0.954 0.959 0.956 0.961 0.964 0.964 0.961 0.956
Vis 0.948 0.955 0.957 0.962 0.967 0.966 0.959 0.961R2

Vis-NIR 0.974 0.972 0.973 0.972 0.974 0.976 0.974 0.975

NIR 0.543 0.536 0.530 0.520 0.504 0.512 0.524 0.547
Vis 0.570 0.534 0.533 0.499 0.470 0.478 0.506 0.510MAE

Vis-NIR 0.409 0.414 0.405 0.411 0.401 0.399 0.406 0.401

NIR 0.638 0.580 0.617 0.552 0.506 0.510 0.554 0.623
Vis 0.713 0.623 0.598 0.526 0.470 0.487 0.569 0.545MSE

Vis-NIR 0.371 0.390 0.372 0.388 0.366 0.351 0.363 0.347

NIR 0.796 0.758 0.779 0.741 0.707 0.713 0.740 0.786
Vis 0.842 0.788 0.770 0.723 0.682 0.696 0.752 0.736RMSE

Vis-NIR 0.607 0.623 0.607 0.619 0.601 0.590 0.600 0.586

NIR 19.560 19.044 19.052 18.472 17.935 18.342 18.939 19.379
Vis 16.562 15.689 15.392 14.723 13.718 13.836 14.713 15.100MAPE

Vis-NIR 12.302 12.250 12.136 12.102 11.799 11.846 11.902 12.014

duced with the addition of infrared lighting [6, 7]. Since blood absorbs infrared
light, it then appears darker when compared to using Vis (white) light alone, as
observed in the samples. The contrast between the blood and the background
(unused sections of the gauze and the green platform) is more pronounced, essen-
tially due to blood/water absorbing the IR light than the platform. Therefore,
a small amount of blood or diluted blood (with high water content) absorbed in
the gauze, that is hardly visible to the naked eye becomes more evident.

3.1 FET Results

We also evaluate the performance of local binary pattern (LBP), color moments
(CM), statistical features (SF) from the power spectral density (PSD), and sta-
tistical features (SF) from the Fourier-transformed LBP (LBP-FFT) image used
as the feature input. The features are extracted from at least one channel of an
HSV image and concatenated to form one feature vector.

Both the experiments trained independently using the Vis (white) or the
infrared wavelengths have achieved the best results with CM + LBP + SA +
PSD, which are features that represent the color, texture, surface area, and spa-
tial information in the image. The dual Vis-NIR configuration on the other hand
has produced the best results with a similar feature set but with the addition of
LBP-FFT.

2248



Multispectral-Based Imaging and ML for Noninvasive Blood Loss Estimation 11

Fig. 6: Feature Importance Plots

While color representations are the primary indicators of blood detection and
estimation, other features have also largely improved the estimations. Volume
changes also result to change in the thickness of the blood which consequently
influences the spectral variation [24]. However, based on our sample observa-
tions, volume changes also results to change in the pattern of blood spread. Spa-
tial information then can also reveal useful information when estimating blood
volume. This further highlights another contribution where we combine spec-
troscopy with imaging, thereby obtaining both spatial and spectral information
in our gauze images.

In the Triton System approach, the infrared image is only used to gener-
ate depth that will be used as a mask to determine the surgical textile in an
RGB image. But in our method, we utilize an RGB-IR image, taken under both
white and IR lighting. Essentially, not only do we take advantage of the shape
information, but also of the enhanced blood color due to the addition of the
IR light. This claim is apparent in Figure 6 where we visualize the importance
scores for each feature. The score provides how useful or valuable each feature
was in the construction of the boosted decision trees within the model. The more
a feature is used to make key decisions with decision trees, the higher its rela-
tive importance. The importance score is calculated explicitly for each feature,
allowing the features to be ranked and compared to each other. From Figure 6,
we plot the importance scores of each model independently trained on a spe-
cific wavelength. We cite a similar observation on all the wavelengths, i.e. the
color moments (CM), which have highly contributed to the prediction. But, in
the dual Vis-NIR setup, the model also takes advantage of texture and spatial
features such as PSD - in contrast to Vis and NIR which focus on color as their
primary indicator.

3.2 Machine Learning Algorithms Performance

We also evaluate the performance of other machine learning algorithms. As seen
in Table 7, XGboost has outperformed other ML models on all the metrics. While
we have shown only performances of the models trained on the dual Vis-NIR,
we note that this result is consistent regardless of the wavelength and feature
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combination used. Similarly, apparent in Figure 7, there’s a substantial difference
between XGboost and other models.

Fig. 7: Performance of Machine Learning Models using LBP+ CM+ PSD SF +
LBP-FFT as Feature and dual Vis-NIR as the Selected Wavelength

Table 5: Performance of Machine Learning Models using LBP+ CM+ PSD +
LBP-FFT as Feature and dual Vis-NIR as the Selected Wavelength

Model R2 MAE MSE RMSE MAPE

XGB 0.97526* 0.39946* 0.35082* 0.59018* 11.84578*
Adaboost 0.947 0.745 1.149 1.069 18.620
Random Forest 0.866 1.008 1.883 1.36 28.339
SVR 0.935 0.674 0.892 0.942 22.979
Linear Regression 0.932 0.683 1.061 1.024 18.198
Huber Regression 0.939 0.645 0.919 0.954 17.871
KNN 0.947 0.554 0.722 0.846 19.798
MLP 0.943 0.601 0.851 0.905 16.930

3.3 Sample Results

Lastly, we examine sample results using LBP+ CM+ PSD + LBP-FFT as fea-
tures and XGBoost as predictor on the five (5) test sets generated using cross-
validation. Each test set is comprised of at most 204 instances, with varying
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weights from 0.5 to 10.5 from varying blood/gauze setups. The average differ-
ence between the actual and predicted test sets is -6.6182 g which signifies that
the majority of test sets resulted in an underestimation.

# samples 204
Total (Actual) 747.7

Total (Predicted) 739.588
Difference -8.112

% of Error 1.09%

(a) Test Set 1

# samples 204
Total (Actual) 794.0

Total (Predicted) 791.84
Difference -2.16

% of Error 0.27%

(b) Test Set 2

# samples 203
Total (Actual) 811.1

Total (Predicted) 817.109
Difference 6.009

% of Error 0.74%

(c) Test Set 3

# samples 203
Total (Actual) 811.17

Total (Predicted) 791.668
Difference -20.112

% of Error 2.48%

(d) Test Set 4

Fig. 8: Cross-validation bland alt-man plots Best Features (CM + LBP + SA +
PSD + LBP-FFT) and Best ML Model (XGBoost)

The Bland-Altman plots of actual and the predicted volume (in g) per cross-
validation subset are also shown in Figure 8. This plot is a graphical method
to analyze the quality of the predictions based on a bias between the mean
differences and an agreement interval, within which 95% of the differences of
the predicted, compared to the actual, fall [10]. In Figure 8, md is the mean
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of the differences, and the limits of agreements are expressed in terms of the
standard deviation (sd) of those differences, plotted as md sd limit *sd. We
would expect most of the differences to lie between md 2sd, or more precisely,
95% of differences will be between md 1.96sd [2].

As observed, the test sets have a mean difference close to 0 and the limits are
very narrow. The highest upper and lower limit of agreement so far is generated
by Test Set 5 with md -0.05 + sd*1.12 and Test Set 1 with md -0.05 - sd*1.22,
respectively. While the majority of the test sets have underestimated with an
average of 1.25% error difference, Test Set 3 has resulted in an overestimation
with a 0.74% difference between the actual and predicted total values.

As in previous studies, an acceptance criterion of 30 g of Hgb per case was
set a priori as the clinically acceptable maximum bias. This difference represents
approximately 5% of the total blood volume of an average adult (Hgb content of
250 mL [approximately 1/2 unit] of whole blood) [5]. Moreover, while we have
recorded an average of 11.48% Mean Absolute Percentage (%) Error (MAPE) for
all the test sets, it is still lower than the recorded underestimations of 46-75%,
40-49%, and 32% (using visual estimation) in several literatures [11]. Also, our
result may be acceptable given that the maximum allowable error is 20% in some
studies [22]. However, as our objective is to have results as close as possible to
the standard method, the spectrophotometric analysis having a 10 % error, we
still have to make re-adjustments with our model as well as data collection. Our
results show that the blood loss estimations on the 4x8 gauze do not go over the
acceptance threshold.

4 Conclusion

We have evaluated a dual-wavelength approach to estimating the blood volume
absorbed in a 4x8 surgical gauze. Specifically, we compared the performances of
classic feature extraction techniques and machine learning models trained with
different lighting configurations. Results show that combining visible (white)
light with infrared (IR) light outperforms the predictive capacities of machine
learning models trained on images with just white or IR light.

While we have achieved a considerable performance, the proposed solution
must be further validated with the addition of more datasets with varying setups.
We want to also perform experiments further, e.g., combining features of images
with different lighting configurations, fine-tuning the machine learning models,
investigate possible overfitting and how to curb these, and optimizing the feature
extraction process.
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and support.
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