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Abstract. Recently, deep neural networks (DNNs) have become the de
facto standard to achieve outstanding performances and demonstrate sig-
nificant impact on various computer vision tasks for real-world scenarios.
However, the trained networks can often suffer from overfitting issues due
to the unintended bias in a dataset causing inaccurate, unreliable, and
untrustworthy results. Thus, recent studies have attempted to remove
bias by augmenting the bias-conflict samples to address this challenge.
Yet, it still remains a challenge since generating bias-conflict samples
without human supervision is generally difficult. To tackle this problem,
we propose a novel augmentation framework, Adaptive Augmentation
(A2), based on a generative model that help classifiers learn debiased
representations. Our framework consists of three steps: 1) extracting
bias-conflict samples from a biased dataset in an unsupervised manner,
2) training a generative model with the biased dataset and adapting the
learned biased distribution to the extracted bias-conflict samples’ dis-
tribution, and 3) augmenting bias-conflict samples by translating bias-
align samples. Therefore, our classifier can effectively learn the debiased
representation without human supervision. Our extensive experimental
results demonstrate that A2 effectively augments bias-conflict samples,
mitigating widespread bias issues. The code is available in here5.

Keywords: Computer Vision · Debiasing · Image Translation.

1 Introduction

Recently, deep neural networks (DNNs) have achieved great success across var-
ious research fields, including image classification [21], object detection [34], se-
mantic segmentation [22], and even image generation [8]. Nonetheless, overfit-
ting, a well-known problem in DNNs, causes the models to produce inaccurate

⋆ Corresponding author
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Fig. 1: Illustration of our A2 framework. A2 projects bias-align samples xb, and
outputs translated bias-conflict samples xd. The classifier trained with Dbiased

produces 33.36%, while the classifier trained with Daugmented produces 67.47%
accuracy on bias-conflict samples in Colored MNIST dataset.

and unreliable results leading to failure in making proper decisions [31]. This
phenomenon is closely related to “dataset bias,” where unintended bias exists in
the training dataset. In particular, unintended bias indicates that a large number
of samples appear with similar task-irrelevant features in a visual context.

Consider the case where we need to classify frog images with different back-
grounds. As such, frogs and the background is assigned as task-relevant feature
and task-irrelevant feature, respectively. Most of the frogs could be located in a
green pond background (bias-align), while a few could be positioned in a swamp
or an asphalt road against the green pond (bias-conflict). Since the models tend
to learn task-irrelevant features (easy-to-learn) as a cue for the labels [19], the
models fail to properly learn the task-relevant features, raising questions on the
actual performance in the presence of different biases.

To handle such aforementioned bias issue, numerous research has been pro-
posed to ‘debias’ the dataset bias by defining specific bias types [16, 20, 27] or
learning debiased representation without explicitly defining bias types [2, 30,
3, 5, 6]. Recent advancements in debiasing have demonstrated that augmenta-
tion is one of the most promising approaches for mitigating dataset bias [19].
However, augmenting bias-conflict samples without human supervision remains
challenging due to the complex properties of different biases, such as texture or
shape [19]. Therefore, given the difficulties, we aim to build a practical debiasing
method that generates bias-conflict samples without any prior knowledge.

In this paper, we first conduct a set of preliminary experiments to illustrate
the importance of augmenting bias-conflict samples, when applying augmen-
tation in biased settings. We find that augmenting only bias-conflict samples
significantly improves the classification performance. Based on this finding, we
propose a novel augmentation framework, Adaptive Augmentation (A2), for aug-
menting bias-conflict samples in an unsupervised manner. Figure 1 illustrates our
approach, an end-to-end debiasing pipeline to prevent dataset bias by translat-
ing bias-align samples into bias-conflict samples which effectively increases the
number of bias-conflict samples to prevent overfitting to task-irrelevant features.
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Note that our proposed framework can also be seen as a pre-processing method
that effectively mitigates dataset bias.

Adaptive Augmentation (A2) consists of three main components: 1) extract-
ing a few numbers of bias-conflict samples from any biased dataset without hu-
man supervision, 2) training a biased generative model with bias-align samples
and adapting the learned model’s parameters to the extracted samples’ distribu-
tion, and 3) augmenting bias-conflict samples by translating bias-align samples
with the trained generative models. These augmented images contribute to learn-
ing task-relevant features for a biased classifier. We demonstrate that our A2 out-
performs the baselines in comprehensive debiasing benchmark datasets through
extensive experiments. Moreover, we confirm that our method performs effec-
tively in an extremely biased setting, where we have very few bias-conflict sam-
ples in each dataset. The contributions of our work are summarized as follows:

– We propose a novel debiasing augmentation framework, A2, which leverages
an unsupervised algorithm for extracting bias-conflict samples and exploits
few-shot adaptation by adjusting the distribution of the biased generative
model to bias-conflict distribution.

– We evaluate the performance of our A2 through quantitative and qualitative
analysis for both synthetic and real-world datasets. We demonstrate that
our method achieves the state-of-the-art performance in biased settings.

– We investigate the reason for performance improvement through comprehen-
sive and carefully constructed ablation studies. We believe that our approach
has a broader impact by presenting a new application of generative models
to solve challenging bias issues for a variety of computer vision applications.

2 Related Work

2.1 Benchmark Datasets for Debiasing

Recently, synthetic or real-world datasets have been created and released publicly
to foster the debiasing research field, as shown in Fig. 2.

First, Colored MNIST (CMNIST) and Corrupted CIFAR10 (CCIFAR10)
are synthetic datasets built by manually injecting distinct biases into existing
MNIST and CIFAR10 datasets. CMNIST dataset is created by adding a color
bias to the MNIST [18, 19] dataset, as shown in Fig. 2a. Instead of adding color
bias like CMNIST, CCIFAR10 is constructed by applying ten distinct noise
corruption to each of the labels in CIFAR10 [17, 12], as depicted in Fig. 2b. While
these two synthetic datasets have been extensively used in previous studies,
the challenge for mitigating real-world bias remains, as synthetic datasets are
relatively simple to cover real-world bias, such as age or gender.

Second, Biased FFHQ (BFFHQ) and Biased Action Recognition (BAR)
datasets are released to mitigate biases in real-world data. BFFHQ [19] is cu-
rated from the FFHQ [14] dataset, which contains high-quality images of human
faces. From FFHQ, the BFFHQ dataset selects age as a task-relevant feature
and gender as a task-irrelevant feature. Accordingly, the majority of the young
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Fig. 2: Sample images from benchmark datasets. We provide task-relevant and
task-irrelevant features in each dataset, where each class is represented by a
group of images comprising four bias-align samples and a bias-conflict sample.

are women as shown in Fig. 2c. On the other hand, the BAR [23] consists of
real-world images of six action classes in distinct places, assuming that the clas-
sifier is likely to be biased in background (texture) bias. For instance, as shown
in Fig. 2d, most bias-align samples from the climbing label contain a climber
climbing a rock cliff. In contrast, the bias-conflict sample exhibits a climber with
a glacier cliff. Unlike synthetic datasets containing texture biases, real-world
datasets have both texture and shape biases which are relatively difficult to
handle.

2.2 Existing Methods for Debiasing

Numerous previous studies have been performed to mitigate dataset biases. We
mainly investigate existing debiasing methods in the context of augmentation:
debiasing without data augmentation and with augmentation.

Debiasing without Augmentation. Debasing can be performed through an
explicit definition of the bias type [16, 20, 27, 7, 23, 30]. Li and Vasconcelos et
al. [16] and Kim et al. [20] demonstrated that a specific color bias could be re-
lieved by normalizing the biased distribution or utilizing biased RGB values as
a clue for classification. Sagawa et al. [27] proposed the groupDRO, a debias-
ing method which clusters subgroups in the dataset with explicit supervision.
GroupDRO is then further improved with various modifications [7, 32, 26]. More-
over, Kim et al. [16] employed a regularization loss to inhibit the model from
learning unwanted bias in the dataset. However, none of the above are applicable
in real-world datasets since defining whole bias types is unfeasible when dealing
with large-scale real-world datasets [19]. In contrast, recent approaches widely
adopt the debiasing method without defining prior knowledge of the bias. Nam
et al. [23] proposed LfF, a state-of-the-art method for simultaneously training
biased and debiased models to amplify the influence of bias-align samples on
biased models and bias-conflict samples on debiased models, respectively.
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Debiasing with Augmentation. Debiasing with augmentation is less ex-
plored compared to the debiasing approaches without augmentation mentioned
above. Augmentation can be conducted on the image level to mitigate shape-
texture biases. Agarwal et al. [1] mitigated textural bias by training on the
‘Styled ImageNet’ [6, 13] dataset, which contains severely distorted textures of
the ImageNet data. Furthermore, MixStyle, proposed by Zhou et al. [33], encour-
aged the classifier to extract more generalized features against the texture bias
by shuffling feature-level statistics. These techniques, however, have a drawback
in that they are limited to dealing with textual bias.

Recently, Lee et al. [19] presented the DisEnt approach, which augments bias-
conflict samples by disentangling task-relevant and task-irrelevant features and
permuting each bias feature vector to the other task-relevant feature vectors. Mo-
tivated by this observation, we design an augmentation framework that adapts
task-irrelevant features regardless of the bias type to address both texture and
shape biases without supervision, enhancing the performance of classification
methods.

3 Importance of Augmenting Bias-conflict Samples

3.1 Overview

Data augmentation is a crucial way to boost the performance of DNNs, which
applies various transformations to the original data, and compensates for the
lack of datasets [29, 28]. Various augmentation techniques are available and have
been shown to improve the model performance; however, when applied to biased
datasets, augmentation might amplify the bias in the dataset by increasing bias-
align samples. Therefore, we conduct the following experiments assuming that
indiscriminate augmentation can degrade the classification performance:

– Case 1: Augmenting only bias-align samples.
– Case 2: Augmenting only bias-conflict samples.
– Case 3: Augmenting both bias-align and conflict samples.

We can find that Case 1 and 2 augment bias-align and bias-conflict samples,
respectively, whereas Case 3 augments both bias-align and bias-conflict samples.
These case studies can validate the degree of bias amplification according to the
augmented sample type. The above experiments show the effect of augmenta-
tion methods for each case while using only the simple augmentations (i.e., the
random crop and rotation) that do not affect the image’s texture.
Dataset and Classifier. We demonstrate our method’s performance on two
synthetic and one real-world datasets, CMNIST, CCIFAR10, and BFFHQ. For
CMNIST and CCIFAR10, we use bias ratios 99.5% and 95%, respectively. The
model’s performance is evaluated using a test set composed solely of bias-conflict
samples. See Appendix A.1 for more details.
Results. Table 1 summarizes the model’s performance in each case mentioned
above. The baseline column indicates how well the vanilla model performs on
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Table 1: Performance comparison on the bias-conflict test sets. Each case indi-
cates different augmentation scenarios. We observe performance degradation in
Cases 1 and 3 but performance improvement in Case 2. It denotes that apply-
ing data augmentation in a biased setting can cause the bias to exacerbate. We
report the average accuracy over three runs. Bold indicates the best accuracy.

Dataset Bias Ratio Baseline Case 1 Case 2 Case 3

Colored MNIST
99.5 33.36 24.89 37.07 33.76
95 83.88 82.70 84.10 79.96

Corrupted CIFAR10
99.5 13.23 12.77 13.31 12.46
95 27.37 27.27 28.08 27.60

Biased FFHQ 99.5 43.93 42.20 45.67 45.13

each test set. The model’s performance in Case 1 (augmenting bias-align sam-
ples) declines by up to 8%, indicating that the dataset’s bias has been amplified
due to the augmented bias-align samples. In contrast, Case 2 (augmenting bias-
conflict samples) illustrates that the model’s performance increases by up to 4%,
demonstrating that the dataset’s bias has diminished. However, in Case 3 (aug-
menting both bias-align and bias-conflict samples), the model’s performance re-
mains close to the vanilla model without making any meaningful improvements.
Therefore, it is desirable to augment only bias-conflict samples in biased settings.
These findings established the validity of our hypothesis. With this motivation,
we propose A2 to augment bias-conflict samples effectively.

4 Design of A2 framework

This section describes a novel augmentation framework, Adaptive Augmentation
(A2). First, we introduce our extraction method that selects a few bias-conflict
samples from a biased dataset in an unsupervised manner. Second, we describe
the detailed design of A2, which utilizes a generative model and few-shot adap-
tation. Finally, we explain the training scheme to build a debiased classifier with
an augmented dataset. We present the pipeline of our approach in Fig. 3.

4.1 Extracting Bias-conflict Samples

Suppose we can train a classifier to be biased regardless of the bias type (e.g.,
different bias types presented in Section 2.1). Then, the biased classifier predicts
a target label with high confidence for unseen bias-align samples because the
representation of the biased sample is similar to the trained biased samples [19,
2]. On the contrary, the classifier predicts with a low confidence for unseen
bias-conflict sample, because its representation is different from the bias-align
samples. This result leads to a higher cross-entropy loss for bias-conflict samples
compared to the bias-align samples. In that case, we can easily identify bias-
conflict samples with the higher cross-entropy loss [19, 2]. Therefore, we need
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Fig. 3: Overview of our proposed debiasing method, Adaptive Augmentation
(A2) model. Our A2 consists of two steps: 1) extracting bias-conflict samples
and 2) training the Adaptive Augmentation model. In Step 1, we extract bias-
conflict samples by sorting top-k Lce values calculated by the biased classifier
fbiased. Next, we adapt a biased generative model to the extracted bias-conflict
distribution by minimizing Ladv and Ldistance.

an unsupervised method to train a classifier to become biased without human
supervision or pre-defined bias types.

To enable a classifier to be biased in an unsupervised manner, we need to
keep emphasizing the impact of bias-align samples during training. Therefore,
we employ generalized cross-entropy (GCE) loss [23] that amplifies the bias of
the neural network without human-supervision. The equation of GCE loss is
defined as follows:

GCE(p(x; θ), y) =
1− py(x; θ)

q

q
, (1)

∂GCE(p(x; θ), y)

∂θ
= py(x; θ)

q · ∂CE(py(x; θ), y)

∂θ
, (2)

where p(x; θ) indicates the softmax output of a classifier θ, py(x; θ) represents
the probability assigned to the target variable y with q ∈ (0, 1] that is a hy-
perparameter controlling the degree of amplification. The gradient of GCE loss
emphasizes the gradient of CE loss by multiplying the probability py (i.e., con-
fidence score). Since the task-irrelevant features are easy-to-learn [23] in the
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early stages of training, the classifier first learns biased representations from
the bias-align samples, producing higher confidence in the bias-align samples
than that of bias-conflict samples. Thus, classifiers trained with GCE loss learn
task-irrelevant features from biased images regardless of the type of bias each
dataset has, ensuring that the classifiers become biased toward the aligned task-
irrelevant features. With this assumption, we propose simple, yet powerful bias-
conflict sample extraction algorithm, depicted in Step 1 of Fig. 3. Our algorithm
is described as follows: we train our classifier with GCE loss and calculate CE
loss for all samples in the training dataset to sort the loss values. After training,
we extract the top-k samples as bias-conflict samples for utilizing them when
adapting a generative model.

4.2 Training Generative Models

We elaborate on the training procedure of the bias adaptive generator that
translates bias-align samples into bias-conflict samples, as described in Step 2
of Fig. 3. First, we need a pretrained generative model Gb trained on a biased
dataset Db. For Gb, we adopt a powerful generative model, StyleGAN2 [15], as
our backbone for generating images (Note that any generative model can be
used in this procedure, where we used StyleGAN2 since it is one of the high-
performing GAN methods). Gb learns the distribution of Db, by mapping 512
low-dimensional noise vector z ∼ pz(z) to biased image xb ∼ Db. The biased
generative model can be obtained by using a GAN training procedure, with a
discriminator Dm as follows:

Ladv(Gb, Dm) = Dm(Gb(z))−Dm(xb), (3)

G∗
b = argmin

Gb

max
Dm

Ez∼pz(z), xb∼Db
Ladv(Gb, Dm), (4)

where G∗
b denotes optimal weights of the model and the detailed training proce-

dure is explained by Karras et al. [15]. After training the biased distribution, our
Gb can generate samples that have bias-aligned representation, depicted in the
left side of Step 2 in Fig. 3. Second, we convert biased generator (Gb) to debi-
ased generator (Gd) by adapting the learned distribution to the bias-conflicting
distribution with the extracted bias-conflict samples and all of the bias-align
samples. In this case, we need to preserve the learned relationship between the
generated samples from Gb and Gd during adaptation, as maintaining relative
pairwise distances prevents mode collapse [25, 4, 10, 24]. To this end, we leverage
the state-of-the-art few-shot adaptation method [24]. We initialize Gb and Gd

with the pretrained weight of Gb, and sample N noise vectors {zn}N0 . Then, we
forward zi into the networks for obtaining the ith generated samples Gb(zi) and
Gd(zi). To match the relationship of generated samples from each network, we
need to represent the relationship as probability distribution and minimize the
distance of the two distributions. Therefore, we convert the generated samples

4084



A2: Adaptive Augmentation 9

into probability distributions using cosine similarity as follows:

yb,li = Softmax(
{
sim(Gl

b(zi), G
l
b(zj))

}
∀j ̸=i

), (5)

yd,li = Softmax(
{
sim(Gl

d(zi), G
l
d(zj))

}
∀j ̸=i

), (6)

where l and sim indicates the lth activation layers and cosine similarity, re-
spectively. Now, we can preserve the relationship of the generated samples by
minimizing yb,li and yd,li through KL-divergence:

Ldistance(Gd, Gb) =
∑
l,i

DKL(y
d,l
i ||yb,li ), (7)

where the generated bias-align and bias-conflict samples have similar distribu-
tion. Thus, our final objective consists of two terms as follows:

G∗
d = argmin

Gd

max
Dm

Ez∼pz(z), xd∼Dd
Ladv(Gd, Dm) + λLdistance(Gd, Gb), (8)

where Dd denotes the extracted bias-conflict samples, Ldistance for preserving
the learned relationship, and Ladv for converting the learned distribution into
another distribution.

4.3 Learning Debiased Representation with Adaptive Augmentation

After Gb and Gd converges, we generate debiased representation of bias-align
sample xd through an image-to-image translation approach as shown in the
Fig. 1. Our A2 takes the bias-align sample as an input, and projects it into the
latent space (i.e., sample to latent), forming the biased latent vector zb using
Gb. The zb contains label and bias information. Then, we forward zb into Gd

to generate bias-conflict representation of the input image (i.e., latent to sam-
ple). By keeping the label information for each xb from the projected latent
vector zb, we do not need to label the generated samples manually (see Ap-
pendix A.2 for more details). After translating all xb to debiased sample xd,
we obtain the debiased dataset Dd. By adding Dd to the original dataset, we
have Daugmented = Db ∪Dd that supports to learn task-relevant features more
effectively than training solely Db, as task-irrelevant features are not aligned.
Finally, we train the debiased classifier fdebiased with Daugmented using CE loss
as follows:

f∗
debiased = argmin

f

1

N

N∑
i=1

CE(f(x), y), (9)

where we use f∗
debiased for predicting bias-align and bias-conflict samples.

5 Experiments

5.1 Experimental Setup

Datasets. We use both synthetic (Colored MNIST and Corrupted CIFAR10)
and real-world (Biased FFHQ and Biased Action Recognition) datasets. We
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report bias-align and bias-conflict classification accuracy (%) on each test set,
qualitative analysis on augmented samples, and ablation studies for our A2.
We further assess our A2 with one-shot scenario, where only one bias-conflict
sample per class exists, for demonstrating the validity of the proposed method
in extremely biased settings; in this case, we adopt Colored MNIST, Corrupted
CIFAR10, and Biased FFHQ datasets. See Appendix A.1 for more details (e.g.,
the number of samples, bias ratios, or description of each dataset).
Baseline.We compare the performance of our A2 with state-of-the-art debiasing
methods, including empirical risk minimization (ERM). The unsupervised debi-
asing and augmentation techniques are taken into consideration when choosing
the baselines. Detailed descriptions of each baseline method are provided below:
1) ERM. Empirical risk minimization (ERM) indicates a classifier trained
with only original CE loss [16], not exploiting any debiasing scheme. ERM per-
formance is treated as a reference to other debiasing methods.
2) LfF. LfF is a state-of-the-art method proposed by Nam et al. [23], utilizing
weighted cross-entropy loss for bias-conflict samples in an end-to-end manner.
Specifically, LfF trains two networks, a biased classifier for calculating relative
difficulty and a debiased classifier for learning debiased representation. After
training, the only debiased classifier is used to predict.
3) DisEnt. DisEnt proposed by Lee et al. [19] is the first to apply augmentation
approach to the debiasing method; specifically, DisEnt is an extended version
of LfF in terms of augmentation. They follow the training mechanism of LfF
and introduce the additional swapping function of the feature vectors from the
biased classifier.
Implementation Details. We adopt common implementations for the de-
biasing process: we use a 3-layer MLP network with 100 hidden units for the
CMNIST dataset, and Resnet18 [11] network for the other datasets. For train-
ing the biased classifier, we set the controlling degree q as 0.7 in equation 1. We
set k = 10 for our entire experiments for extracting bias-conflict except one-shot
testing scenario. See Appendix A.3 for more details.

6 Results

6.1 Performance on Benchmark Datasets

Real-World Datasets. The results are presented in Table 2, where we provide
both bias-align and bias-conflict performances.

For the BFFHQ dataset, the ERM model correctly identified bias-align sam-
ples, but incorrectly predicted bias-conflict samples, with 39.87% and 50.80% in
the one-shot and 99.5% bias setting, respectively. On the other hand, our clas-
sifier, trained with the augmented dataset, outperforms ERM and other state-
of-the-art debiasing methods by a large margin, producing 47.87% and 56.73%
accuracy in the one-shot and 99.5% bias settings, respectively. We can clearly
observe that our method is much more effective when the bias setting is severe
(one-shot and 99.5%). Furthermore, our A2 outperforms other baselines in the
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Table 2: Performance comparison on both real-world and synthetic datasets. We
evaluate both bias-align and bias-conflict test sets to show that each method can
learn debiased representation without performance degradation for bias-align
samples. We report the average accuracy over three runs. Bold and underlined
numbers indicate the best performance and the second best performance, re-
spectively.

Dataset
Type

Dataset Bias Ratio
Bias-align Bias-conflict

ERM LfF DisEnt (Ours) ERM LfF DisEnt (Ours)

Real-
world

Biased
FFHQ

One-Shot 99.33 98.67 99.33 87.73 39.87 39.47 40.40 47.87
99.5% 99.40 96.67 97.13 98.93 50.80 55.73 52.67 56.73

BAR 100% N/A 63.10 67.84 66.46 71.15

Synthetic

Colored
MNIST

One-Shot 98.40 97.80 96.50 97.21 14.22 22.06 18.33 23.70
99.5% 99.90 83.70 68.33 93.03 33.36 53.43 60.96 67.47
99% 99.90 86.65 78.35 97.14 57.28 61.75 75.99 70.68
98% 99.83 90.21 90.64 99.57 73.24 68.65 79.69 76.93
95% 99.67 85.99 98.21 99.20 83.88 85.13 87.29 86.09

Corrupted
CIFAR10

One-Shot 97.60 94.97 96.93 82.40 9.03 9.44 13.39 15.45
99.5% 96.87 82.47 89.37 90.03 13.23 14.43 14.58 15.96
99% 97.27 85.67 95.63 82.37 13.46 19.01 19.97 21.45
98% 96.57 78.93 95.17 88.53 17.62 26.50 23.11 21.79
95% 95.10 72.93 92.37 93.70 27.37 35.20 30.39 28.23

most severe case, where the bias ratio is set to 100% in the BAR dataset. We be-
lieve this is because our method easily adapts bias-conflict features in the severe
bias setting. Overall, our augmentation process demonstrated its effectiveness in
a severely biased environment by converting bias-align samples into bias-conflict
samples, effectively assisting the model to learn the debiased representations in
real-world datasets.
Synthetic Datasets. To further demonstrate the effectiveness of augmentation
methods, we evaluate the classification performance in controlled environments
with synthetic datasets. For the CMNIST dataset, our classifier outperformed
two baselines (ERM and LfF) with bias-conflict samples across all bias ratios.
Furthermore, our classifier successfully predicted bias-align samples even after
learning the debiased representation, producing on par performance compared
to the ERM model. DisEnt performed better than our method in three cases
(99%, 98%, and 95%); however, our classifier still outperforms DisEnt with a
large margin in extremely biased environments (one-shot and 99.5%). For the
CCIFAR10 dataset, our classifier also achieved the state-of-the-art performance
in severely biased settings (one-shot, 99.5%, and 99%), and produced on par
performance compared to baselines in other cases. In some cases, DisEnt has
better accuracy on bias-align samples. We believe that the cases where DisEnt
performed better are due to the difficulty of learning debiased representations of
bias-conflict samples. In fact, the performance difference between the bias-align
and bias-conflict test set in these cases is lower than other baselines across all
datasets. Overall, our approach performed better than other approaches across
different datasets with various bias ratios, achieving the best performance among
one-shot and 99.5% settings and the second best performance among most cases.
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Fig. 4: Qualitative evaluation for the translated images via A2 with 99.5% bias
ratio. The 2nd column (middle images) from each dataset indicates the samples
extracted by our extraction algorithm. The blue text indicates label information
for each image. We observe that the translated images successfully include bias-
conflict features while retaining their respective labels.

6.2 Qualitative Analysis on Augmented Samples

We examine translated images used in our main experiments with 99.5% of
bias-align samples. Figure 4 shows results on the bias-align sample for each
dataset and the corresponding translated image using the extracted samples.
We observed that the translated images have bias-conflict representations against
bias-align samples. For example, red-colored digit 0 in CMNIST is translated to
a bluish color digit 0.

Interestingly, the translated image has a mixture of several colors from the
extracted bias-conflict samples, which implies our A2 reflects the features from
bias-conflict samples. We also observed this successful translation in BFFHQ.
Nevertheless, a failure case was also observed in CCIFAR10 when enforcing
all noise biases from the conflicting samples to the given image, challenging
to recognize the original object. For the BAR dataset, where training samples
are all aligned with a bias, we observed that there is an unintended bias in the
aligned samples (e.g., most of the images have single racing cars, but extracted
images have several cars). Therefore, our A2 converted a single car image to
several car images with the original red-colored car preserved. It is worthwhile
to note that our method can also relieve the unintended biases when there are
no bias-conflict samples.

6.3 Ablation Study

We conduct ablation studies with our A2 in terms of the extraction method and
the quality of the translated samples, the results are presented in Table 3. We
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Bias Ratio CMNIST CCIFAR10 BFFHQ

99.5 100 80 60
99.0 100 100 N/A
98.0 100 100 N/A
95.0 91 100 N/A

(a) Bias-Conflict Ratio (%)

Bias Ratio CMNIST CCIFAR10 BFFHQ

99.5 98.37 97.03 98.52
99.0 98.95 96.11 N/A
98.0 98.61 96.67 N/A
95.0 98.66 97.95 N/A

(b) High-Quality Ratio (%)

Table 3: A2 ablation experiments with benchmark datasets. We report (a) the
bias-conflict ratio extracted by our extraction method, and (b) the high quality
ratio of the translated samples based on the GIQA [9]. We utilize all possible
bias ratios for CMNIST, CCIFAR10 and BFFHQ datasets. We cannot include
BAR dataset, as it does not have bias-conflict samples in training set.

report all valid cases for CMNIST, CCIFAR10, and BFFHQ datasets except
BAR dataset, as BAR does not have bias-conflict samples in the training data.

Bias-conflict Ratio of Extracted Samples. To verify the effectiveness of
extracting bias-conflict samples, we measure the proportion of bias-conflict sam-
ples among the extracted samples across all datasets. The results are reported in
Table 3a. The bias-conflict ratio is surprisingly high, showing mostly from 80%
to 100% for CMNIST and CCIFAR10 datasets; however, the ratio was relatively
low in the BFFHQ dataset.

We noticed that extracting whole bias-conflict samples in real-world datasets
with our proposed method remains challenging. It is difficult because of the
highly entangled representations, where correlated complex attributes, such as
age and gender, cannot be fully disentangled by the proposed biased classifier.
However, we believe that our unsupervised extraction method offers a simple
yet practical approach for extracting bias-conflict samples, by efficiently ex-
tracting bias-conflict samples without any supervision. Moreover, we success-
fully enhanced the classification performance in real-world datasets, achieving
state-of-the-art results.

High-Quality Ratio of Translated Samples. We measure the percentage of
high-quality samples in the translated samples for all datasets in order to assess
the quality of the translated bias-conflict samples generated by our A2. We use
generated image quality assessment (GIQA) proposed by Gu et al. [9] for this
analysis. Specifically, we use the GMM-GIQA among the GIQA family (refer to
the Section 3.2 for more details [9]).

The GMM-GIQA value is in the range of [0, 1], and higher value indicates
higher quality. We define a generated image as high-quality when it gets the
GMM-GIQA value over 0.5. As reported in Table 3b, the majority of samples
that generated by our method are evaluated as high-quality samples in all bias
ratios, producing over 96% results.

We noticed that our framework could enhance the classification performance,
providing lower bounds and valid results without using the quality assessment
method. Furthermore, our framework can be improved by reducing errors with
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the GIQA method (e.g., the GIQA method can be used as an ‘image picker,’
selecting only high-quality images).

7 Discussion

Limitations.We observed possible limitations of our model during experiments.
Since our method requires a biased generative model, dependence on the genera-
tive model may arise. However, developing generative models is one of the most
fast-growing research fields in machine learning; there is a great possibility for
future improvement when combined with our novel approach.
Future Work & Broader impacts. We plan to extend our framework to pre-
vent and filter out badly generated samples by using GIQA metric as the ‘image
picker’ to select the high-quality samples. As machine learning models become
deeply embedded in diverse aspects of our daily lives, it is crucial to ensure they
produce accurate, reliable, and trustworthy results. In this context, we believe
that our approach can contribute to various computer vision applications, such
as media or database platforms, by debiasing the massive data for protecting
machine learning models from bias.

8 Conclusion

In this work, we proposed a novel augmentation framework, A2, which effec-
tively learns biased representations through image-level augmentation to address
dataset biases. Our framework is derived from our findings that augmenting bias-
conflict samples is crucial in biased contexts. Thus, A2effectively augments bias-
conflict samples through image-to-image translation methods integrated with an
unsupervised extraction algorithm. We demonstrated the performance and ef-
fectiveness of our augmentation framework through extensive experiments. We
believe our work can contribute to building more accurate and trustworthy com-
puter vision applications by effectively preventing bias, predominately occurring
in real-world datasets.
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