
CLUE: Consolidating Learned and Undergoing
Experience in Domain-Incremental Classification

Chengyi Cai1, Jiaxin Liu1, Wendi Yu1, and Yuchen Guo2⋆

1 Tsinghua-Berkeley Shenzhen Institute,
2 Beijing National Research Center for Information Science and Technology,

Tsinghua University, Beijing 100084, China
{ccy20, liujiaxi20, ywd20}@mails.tsinghua.edu.cn

yuchen.w.guo@gmail.com

Abstract. Deep neural networks tend to be vulnerable to catastrophic
forgetting when learning new tasks. To address it, continual learning has
become a promising and popular research field in recent years. It is no-
ticed that plentiful research predominantly focuses on class-incremental
(CI) settings. However, another practical setting, domain-incremental
(DI) learning, where the domain distribution shifts in new tasks, also suf-
fers from deteriorating rigidity and should be emphasized. Concentrating
on the DI setting, in which the learned model is overwritten by new do-
mains and is no longer valid for former tasks, a novel method named
Consolidating Learned and Undergoing Experience (CLUE) is proposed
in this paper. In particular, CLUE consolidates former and current ex-
periences by setting penalties on feature extractor distortion and sample
outputs alteration. CLUE is highly applicable to classification models
as neither extra parameters nor processing steps are introduced. It is
observed through extensive experiments that CLUE achieves significant
performance improvement compared with other baselines in the three
benchmarks. In addition, CLUE is robust even with fewer replay sam-
ples. Moreover, its feasibility is supported by both theoretical derivation
and model interpretability visualization.3

1 Introduction

Humans are born with the ability to learn continuously, adapting to new scenar-
ios without forgetting previous knowledge when facing the ever-changing world.
However, when deep neural networks are applied in learning new tasks, sharp
declines will be observed in the performance of previous ones, which is called
catastrophic forgetting[13]. Since multiple new training samples, unpredictable
scenario changes, and novel requirements in new tasks keep emerging as time
passes by, making it impractical to seek a once-for-all training scheme[37, 25, 1],
alleviating forgetting in continual learning[37, 25] is of great significance.

⋆ Corresponding author
3 The code is available at: https://github.com/Multiplied-by-1/CLUE

125

2 C. Cai et al.

Domain Incremental
Task1: Dog/ Elephant

Task2: Giraffe/ Guitar

Task3:Horse/House

Test

Task1: Sketch

Task2: Cartoon

Task3: Art Painting

Class Incremental

?

Test

Task1: Sketch Task2: Cartoon Task3: Art Painting

Dilemma - Losing Model Rigidity or Plasticity

Task4: Photo

20

40

60

80

100

Step1 Step2 Step3 Step4

Task1 Task2 Task3 Task4

20

40

60

80

100

Step1 Step2 Step3 Step4

Task1 Task2 Task3 Task4

Allowing weight changes (% Accuracy) Penalizing any weight change (% Accuracy)

Losing Rigidity Losing Plasticity

?

Fig. 1. (a) Difference between CI and DI learning. CI learning shares all the domains
and divides the classes into tasks, while DI learning shares all the classes and possess
different domains in each task. (b) DI learning also faces a tradeoff between rigidity
and plasticity - allowing weights to be accessible to all changes leads to forgetting while
penalizing and forbidding any weight change results in failure of learning new tasks.

Though abundant works have focused on continual learning[37, 25, 23, 20, 6],
the majority only consider class-incremental (CI) scenario[23, 20], where different
classes are distributed into sequentially-appearing tasks. Nevertheless, in real
cases, sometimes it is the domain distribution that changes in the incoming
tasks instead of the classes. For example, regarding autonomous driving, though
the target objects to classify, such as cars, cyclists, and pedestrians, are always
the same, the domain may shift due to different weather, location, and time.
Thus, though being ignored currently, domain-incremental (DI)[37] learning is
also an important and urgent research topic. The difference between CI continual
learning and DI continual learning is depicted in Figure 1(a).

Besides, the same as its CI counterpart, DI classification also faces the
rigidity-and-plasticity delimma[7]. Namely, for continual learning methods, al-
lowing enough plasticity might result in catastrophic forgetting, while allowing
no degradation in previous tasks may lead to the incapability of transferring to
new tasks, which is illustrated in Figure 1(b).

Since the up-to-date research in domain-incremental continual learning[35,
41, 38, 34] does not have a unified problem setting, we first clarify the prob-
lem setting following the principles in [37]. Then, to find the main culprit of
catastrophic forgetting in DI settings, we conduct preliminary experiments to
observe the performance of deep learning models facing sequential tasks. As is
shown in Figure 2, when learning novel tasks, the changes in data distribution
lead to an alteration of the original feature extractor, which further creates a
distorted attention map and invalid logits (output before Softmax) of previous
data, contributing to the misclassification.

In order to alleviate forgetting, the feature extractor updated with data in
novel distribution should remain valid for previous data. Therefore, a Consolidat-

126

CLUE in Domain-Incremental Classification 3

: :

Logits
&

Output Dog Horse Horse Horse

Logits
&

Output
2 2 4 1

Attention Attention

Fig. 2. Results of preliminary experiments. Facing novel tasks, the changes in domain
distribution lead to distorted attention maps and invalid logits outputs, contributing
to the misclassification. Left shows an example in the Digits benchmark while right
shows an example in the Pictures benchmark.

ing Learned and Undergoing Experience (CLUE) method is proposed to main-
tain the performance of old tasks when training on novel ones. CLUE can be
applied to all deep classification models and ensure an unchanged network archi-
tecture without additional calculation overhead. In CLUE, a network knowledge
distillation loss and a stored data regularization loss are respectively utilized to
increase the rigidity of the feature extractor and maintain the logits output dis-
tribution. CLUE greatly reduces forgetting and achieves good performance com-
pared to baselines on three domain-incremental benchmarks - Digits, Pictures,
Processing - we arrange in this paper. Besides, it shows remarkable robustness
towards changes in the buffer size (numbers of stored replay samples), which
greatly lessen storage overhead. Moreover, the feasibility of CLUE is supported
by mathematical derivation and neural network interpretability visualization.
Our main contributions are as follows:

– We clarify the problem setting of domain-incremental (DI) classification,
define the metrics, and find the primary cause of forgetting in DI settings.

– For DI settings, we propose a Consolidating Learned and Undergoing Ex-
perience (CLUE) method, which consolidates knowledge by two additional
losses from network and data aspects without introducing extra parameters
or processing steps, and can be applied to mainstream deep classifiers.

– CLUE achieves remarkable performance compared with other baselines on
three benchmarks - Digits, Pictures, and Processing - from different domain-
incremental aspects, which are arranged using existing open-sourced datasets.

– Further experiments show that CLUE also possesses strong robustness when
buffer size changes. Besides, the feasibility of CLUE is also supported by
theoretical derivation and model interpretability visualization.

2 Related Work

Continual Learning

127

4 C. Cai et al.

An increasing amount of research[23, 20] tries to alleviate forgetting in con-
tinual learning settings. Regarding image classification, the most common main-
stream method is the replay-based method [23, 20, 6]. The simple-yet-efficient
method store samples from previous tasks and merge them with data of novel
tasks[7]. Recent years has witnessed a great evolution of replay-based methods,
from storing raw samples[3, 19, 27, 4] to synthetic image generators[33], interme-
diate features[40] or hidden representations[36], compressed embeddings[10] and
prototypes[45]. Other non-replay methods may set some regularization. By at-
taching a term to the loss function to prevent weights from unwanted changes[14,
44], orthogonally modifying weights[43] or applying knowledge distillation[17] to
maintain the performance, those methods help to avoid forgetting. Another typ-
ical method is to redesign the architecture into a growable network[31, 42] or
apply a masked network[22, 8, 21, 32] to allow training of novel classes. However,
those architecture-based methods tend to be efficient only when the task label
is available in reference[37, 20, 6].

Nevertheless, the above research mainly focuses on class-incremental classi-
fication tasks, where novel classes following the same domain distribution will
appear in new tasks. In this paper, we concentrate on the domain-incremental
setting and propose our method to avoid catastrophic forgetting depending on
why performance drops facing newly appeared alien domains.

Continual Domain Adaptation

Domain adaptation[26, 39], where training data and target test data are from
different domains, has been another popular research topic. Nevertheless, it only
prioritizes performance in the target domain without caring about catastrophic
forgetting, which is partially different from continual learning settings. Some re-
cent work begins to handle forgetting in continual domain adaptation. However,
the up-to-date research[35, 41, 38, 34] does not have a unified problem setting.
[34] focuses on class-incremental learning when cross-domain training sets are
available. In [41], both domains and classes will increment in future tasks. Instead
of sequentially appearing tasks, the source and target domains’ performance is
focused in [35]. Besides, most of them are based on heavy image preprocessing[38]
or expandable network[41, 34] structure, which introduces additional computa-
tional overhead and may be invalid for some specific deep learning classifiers and
practical application.

Therefore, this paper simplifies and clarifies the definition of DI image classifi-
cation as stated in [37]. Besides, we propose a continual learning method without
additional training overhead, such as image pre-processing or meta-learning cal-
culations, and ensure that the network architecture remains unchanged facing
novel tasks, which is applicable for all deep learning classifiers.

128

CLUE in Domain-Incremental Classification 5

3 Method

3.1 Problem Statement

Assuming Dtrain = {Dt}Tt=1 is the domain-incremental classfication training
dataset with T tasks, each task satisfies Dt = {(It,i, ct,i)}|Dt|

i=1 with |Dt| samples.
In a training image sample of task t, (It,i, ct,i), It,i represents for the ith image,
and ct,i is its class label. Categories are shared in all tasks. Namely, ct,i ∈ C, t =
1, 2, ..., T , where C is the set of all classes. Besides, each task t belongs to one
specific domain d without overlapping with others.

While training on task t, only current data Dt is available. Besides, a small
buffer B = {(Ib, info)}|B|

b=1 is also allowed to store former samples and corre-
sponding information, where the buffer size |B| should be far less than |Dt|, t =
1, 2, ..., T .

The Goal of DI Classification
The optimizing goal for learning task t is to minimize the loss of classifying

all classes in learned and undergoing tasks when only Dt ∩B is available, which
can be presented as:

min[

|Di|∑
j=1

LCE(F (Θt; Ii,j), ci,j)]
t
i=1 (1)

Where LCE represents the cross-entropy loss function, F represents forward-
ing propagation calculation, and Θt is the current model.

During reference, Dtest is used to evaluate the performance, where all the
domains {d1, d2, ..., dt} are included.

Metrics of DI classification
In the DI continual learning setting, task-average accuracy and Forgetting

are the evaluation metrics.
In realistic situations, sample numbers might vary between domains because

data in a particular domain (e.g., hand-written digits) might be easier to collect.
To avoid overlooking the performance in some scenes with fewer test samples, we
calculate the mean classification accuracy of every task, which can be formulated
as:

ACCavg =
1

T

T∑
t=1

ACC(t, T) (2)

Where ACC(t, T) means the classification accuracy of task t after learning
the T th task, the end of continual learning.

Forgetting is another commonly used continual learning metric reflecting the
severity of forgetting[4]. However, only measuring the absolute accuracy drops
in DI settings might be unreasonable since learning difficulty varies between do-
mains. For example, training hand-written digits might achieve a higher accuracy

129

6 C. Cai et al.

……
Random
Sampling +

Copy

New
Buffer

fix variable

Network loss

Old
buffer ……

……

……

……()
,

()
, ()

,,

Task n

Random
Sampling

Feature
Extractor

Feature
Extractor

CNN MLP+

Label

Label

CNN MLP+
Updating Network

CNN MLP+

Task
n-1

Classification loss

Data loss
Softmax

Fig. 3. The framework of CLUE. Replay images and corresponding logits are stored
in the fixed memory. Network loss and Data loss are utilized to maintain the rigidity
of feature extractor to consolidate the learned and undergoing experiences.

than digits in street scenes. Thus, the absolute accuracy decay when catastrophic
forgetting happens might be more significant in hand-written digits. Therefore,
ensuring the balance between domains, we also calculate task-average forgetting:

Favg =
1

T

T∑
t=1

max(ACC(t, t)−ACC(t, T), 0)

ACC(t, t)
(3)

3.2 Consolidating Learned and Undergoing Experience (CLUE)

Motivation and Framework
As shown in Figure 2, when a deep neural network faces sequential tasks from

alien domain distributions, the weights in the original model adapt themselves to
classify samples following the new domain distribution. The overwritten weights
then lead to distorted attention maps of former task samples, which results in
the invalid logits output and incorrect classification. Figure 2 shows how the
handwritten digit ’2’ is misclassified into ’4’ and ’1’ after learning street scene
and synthetic numbers because of no-more appropriate feature extractor and
how the sketch image of ’Dog’ is classified into ’Horse’ after training on comic,
painting and photos.

Thus, the main reason for forgetting tends to differ from that of the CI
setting, where unbalanced, fully connected layers contribute most to forgetting.
In this paper, focusing on DI problems, we propose CLUE that maintains the
feature extractor’s performance on previous tasks.

Figure 3 shows the overall framework of CLUE. Two loss functions concerning
the original network and data are used to consolidate the learned and undergoing
tasks, apart from the common cross-entropy classification loss. The training for
each task requires two steps - updating the model and refreshing the buffer. In
the first step, a network loss is calculated as the knowledge distillation between
former and updated networks using current data. On the other hand, a data loss
controls the logits alteration of stored images in the buffer. With both of the
loss functions, the model is updated. In the second step, the buffer is renewed
with random sampling, where the allowed account of stored images is equally

130

CLUE in Domain-Incremental Classification 7

arranged for each task. Old samples are randomly dropped from the buffer if it
is full, while new ones are selected from the current task to fill the vacancy. Both
the image and its logits are stored.

Loss of Learned Network
Since (Ii,j , ci,j) ∼ Di, i = 1, 2, ..., t − 1 in equation (1) is not available when

learning task t, we need to estimate the optimization goal in (1) using available
data. Knowledge distillation loss[12] can be used to measure the changes when
training the model. Thus, the feature extractor can be prevented from becoming
invalid in former tasks. Utilizing data in current tasks, we can calculate the
model’s output before updating and compare it with the output after training
the current task. The final network loss applying knowledge distillation can be
written as:

Lnet = −
|Dt|∑
j=1

(F (Θt−1; It,j)/Tem) log(F (Θt; It,j)/Tem) (4)

Where |Dt| represents the number of samples in current task t, Θt−1 and Θt

respectively represents the model before and after training task t, and Tem ≥ 1
is the tempurate that rescale the output and is set to be 2 following [17] in this
paper.

The supplement will deliver a detailed formula derivation about why Lnet

estimate equation (1) and can be used in optimization.

Loss of Learned Samples
Another method to estimate equation (1) is to take advantage of the stored

samples in the replay buffer. The replay samples directly guarantee the model
performance on old tasks. To keep the output logits the same as when the replay
sample is trained, we minimize the distance between logits of the current model
and stored logits. The data loss Ldata can be represented as:

Ldata =

|B|∑
b=1

||F (Θt; Ib)− zb||22 (5)

Where |B| is the buffer size, Ib represents the stored image, and zb represents
its corresponding stored logits.

L2 norm is used instead of the cross-entropy loss, whose effectiveness is fur-
ther discussed in the ablation study. Besides, please refer to the supplement for
a detailed theoretical derivation of how Ldata relates to equation (1).

Overall Loss Function
Attaching Lnet and Ldata to the training loss of current classification task

LCE , we will get the overall loss function to update training models under the
CLUE framework:

Lall = LCE + λ1Lnet + λ2Ldata (6)

131

8 C. Cai et al.

Where λ1 and λ2 are both hyper-parameters balancing different losses.

4 Results

Benchmarks
The following three benchmarks are used in this paper:
Digits. We organize commonly-used digit datasets as the Digits benchmark,

sorting them from simple to complex. The four tasks appear sequentially in the
order of MNIST[15], MNIST-M[9], SVHN[24], Synthesis[30] to test the continual
learning ability of methods.

Pictures. PACS dataset[16] contains object images of various types, from
line sketches to real pictures, where the object categories are shared between
domains. We also arrange four tasks orderly from simple to complex. Sketch,
cartoons, art paintings, and authentic photo images appear sequentially.

Processing. STL10[5] contains ten categories of animal images. Here, we
perform image processing on STL10 to divide four different types of domains.
We use PyTorch’s official transform tool[28] for image processing and set four
sequential tasks for brightness, grayscale, sharpness, and contrast changes.

Through benchmarks from the three different aspects, we investigate the per-
formance of methods for continual learning in the DI settings. Please refer to
the supplement for more details concerning benchmarks.

Compared Baselines
We first implement two basic methods as upper and lower bounds for perfor-

mance comparison in continual learning. Naive, which means that all weights
in the original classifier are variable for finetuning facing novel tasks, with-
out adding any continual learning approach, is considered the theoretical lower
bound. Joint training, where it is assumed that data of all tasks are available
simultaneously to train the model together, is considered the theoretical up-
per bound. It is worth noting that they are not actual experimental upper and
lower bounds. In some cases, continual learning methods may exceed the range.
For other comparison methods, we implement LwF [17], EWC [14], and SI [44]
three regularization-based method, where knowledge distillation or weight up-
date methods are utilized to control network changes. With regard to replay-
based methods, Replay [29], DER[2], DER++[2] are implemented where replay-
ing raw samples and feature vectors are both included.

Implement Details
All experiments are conducted on RTX 3090 GPUs. We use the same clas-

sifier backbone to ensure fair comparisons between methods and implement all
methods in the Avalanche[18] continual learning framework with PyTorch[28].

ResNet-18[11] is used for all tasks. Besides, we use an SGD optimizer with a
learning rate of 0.01 and a momentum of 0.9 for all experiments. The batch size
for the Digits benchmark is 128, while the Pictures and Processing benchmark

132

CLUE in Domain-Incremental Classification 9

Table 1. Performance Comparision on Different Benchmarks (%)

Benchmark 1:
Digits

Benchmark 2:
Pictures

Benchmark 3:
Processing

Matrics ACCavg ↑ ACCavg ↑ ACCavg ↑
Naïve 64.52 ± 0.25 66.91 ± 1.82 68.88 ± 0.54
LwF 71.89 ± 1.26 84.03 ± 0.75 73.98 ± 1.35
EWC 62.28 ± 3.06 69.80 ± 2.78 69.98 ± 1.20

SI 64.60 ± 2.22 69.65 ± 2.96 66.47 ± 1.82
Replay 78.73 ± 0.54 87.32 ± 0.64 77.52 ± 0.73
DER 79.37 ± 0.53 87.84 ± 0.99 75.58 ± 1.02

DER++ 80.27 ± 0.93 88.68 ± 0.28 75.28 ± 1.01
Ours 84.81 ± 0.31 90.16 ± 0.82 79.13 ± 0.98
Joint 90.67 ± 0.14 88.30 ± 1.70 88.12 ± 0.41

Matrics Favg ↓ Favg ↓ Favg ↓
Naïve 42.24 ± 0.24 38.24 ± 2.45 23.29 ± 0.57
LwF 31.86 ± 1.88 13.56 ± 1.58 18.18 ± 1.49
EWC 44.97 ± 4.56 34.61 ± 4.15 21.85 ± 1.83

SI 42.32 ± 3.45 34.21 ± 4.33 27.38 ± 2.85
Replay 22.91 ± 0.72 9.36 ± 0.70 6.80 ± 2.04
DER 20.52 ± 0.71 3.77 ± 0.55 6.61 ± 2.22

DER++ 19.23 ± 1.57 3.95 ± 1.05 8.28 ± 1.93
Ours 7.23 ± 0.44 1.34 ± 0.18 5.03 ± 1.21
Joint - - -

have a batch size of 64. Training epochs are set to be 20 for Digits and Pictures
and 40 for Processing.

To determine the hyperparameters λ1 and λ2 in our method, we use the grid
parameter tuning method. λ1 is determined to be 0.8, 0.2, and 0.5 for the Digits,
Pictures, Processing benchmark. λ2 is decided to be 0.1 for all benchmarks.

4.1 Performance Comparison

Results are indicated in Table 1 and Figure 4. Table 1 shows the metric results
of different methods on the three benchmarks. Besides, the dynamic change plot
of overall accuracy, which is different from the task-average accuracy ACCavg,
is depicted in the left part of Figure 4. The eventual accuracy of all tasks after
learning the last one is plotted in the right part of Figure 4.

Table 1 shows that CLUE exceeds other methods by a large margin, with
84.81%, 90.16%, and 79.13% of ACCavg in each benchmark. It is remarkable that
in the Picture benchmark, CLUE even surpasses the upper bound Joint. It is
probably because the obvious difference between different domains confuses the
neural network when training them jointly. However, the neural network can be
trained on single novel tasks without confusion carrying former knowledge by ap-
plying CLUE. CLUE is also superb in solving catastrophic forgetting, with only
7.23% forgetting compared with 19.23% of the second-best method in the Digits

133

10 C. Cai et al.

benchmark. In the Picture and Processing benchmarks, CLUE is also excellent
in alleviating forgetting, only having 1.34% and 5.03% Favg respectively.

Besides, CLUE also maintains a high overall classification accuracy through-
out learning steps, shown in Figure 4 left. While other methods suffer from
various degrees of forgetting, CLUE maintains comparatively stable even when
the domain distribution in the current task changes. Figure 4 right shows the
eventual accuracy of all learned tasks when complete training is finished. In
each benchmark, the histograms of the first three tasks reflect the rigidity of the
method and the last histogram of task 4 mirrors plasticity. Through this graph,
CLUE maintains high accuracy in former tasks while preserving plasticity for
future tasks, almost always being the closest to the upper bound accuracy.

Task1 Task2 Task3 Task4
0.5

0.6

0.7

0.8

0.9

Cl
as

si
fi

ca
ti

on
 A

cc
ur

ac
y

Ch
an

ge

 Naïve LwF
 EWC SI
 Replay DER
 DER++ Ours

Task1 Task2 Task3 Task4

0.5

0.6

0.7

0.8

Cl
as

si
fi

ca
ti

on
 A

cc
ur

ac
y

Ch
an

ge

 Naïve LwF
 EWC SI
 Replay DER
 DER++ Ours

MNIST
0.5

0.6

0.7

0.8

0.9

Fi
na

l A
cc

ur
ac

y
of

 L
ea

rn
ed

 T
as

ks

MNIST-M
0.2

0.4

0.6

0.8

SVHN

0.4

0.6

0.8

Synthetic
0.0

0.2

0.4

0.6

0.8

Task1 Task2 Task3 Task4
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

si
fi

ca
ti

on
 A

cc
ur

ac
y

Ch
an

ge

 Naïve LwF
 EWC SI
 Replay DER
 DER++ Ours

MNIST → MNIST-M → SVHN → Synthetic

Sketch → Cartoon → Art Painting → Photo

Brightness → Grayscale → Sharpness → Contrast

Sketch
0.4

0.5

0.6

0.7

0.8

0.9

Fi
na

l A
cc

ur
ac

y
of

 L
ea

rn
ed

 T
as

ks

 Naïve
 LwF
 EWC
 SI
 Replay
 DER
 DER++
 Ours

 — upper

Cartoon
0.4

0.5

0.6

0.7

0.8

Art Painting
0.5

0.6

0.7

0.8

Photo
0.0

0.2

0.4

0.6

0.8

Brightness
0.3

0.4

0.5

0.6

0.7

0.8

Fi
na

l A
cc

ur
ac

y
of

 L
ea

rn
ed

 T
as

ks

 Naïve
 LwF
 EWC
 SI
 Replay
 DER
 DER++
 Ours

 — upper

Grayscale
0.5

0.6

0.7

0.8

Sharpness
0.6

0.7

0.8

Saturation
0.0

0.2

0.4

0.6

0.8

 Naïve
 LwF
 EWC
 SI
 Replay
 DER
 DER++
 Ours

 — upper

Contrast

Fig. 4. Performance comparisons of different methods. The dynamic changes of overall
accuracy are depicted in the left while the final accuracy distribution of all tasks after
completing all tasks is in the right. Our method maintains high accuracy in former
tasks while preserving plasticity for future tasks.

134

CLUE in Domain-Incremental Classification 11

0 40 80 120 160 200
0.6

0.7

0.8

 Replay
 DER
 DER++
 OursTa

sk
 A

ve
ra

ge
 A

cc
ur

ac
y

Buffer Size

Accuracy of 'Naïve'
 (the worst case)

0 40 80 120 160 200
0.0

0.1

0.2

0.3

0.4

0.5 Replay
 DER
 DER++
 Ours

Ta
sk

 A
ve

ra
ge

 F
or

ge
tt

in
g

Buffer Size

Forgetting of 'Naïve'
 (the worst case)

Fig. 5. The dynamic changes of ACCavg and Favg on the Digits benchmark using
different continual learning methods when the buffer size changes from 0 to 200. The
results of method ’Naive’ is marked in red as a comparison. Our method is observed
to be robust, facing reduced buffer sizes.

4.2 Buffer Size Analysis

In continual learning settings, buffer sizes (the number of replay images allowed
to be stored) are fixed. Therefore, as the task number grows, stored image num-
bers of each task will gradually decrease, significantly impacting the perfor-
mance. Superior continual learning methods must maintain high performance
even when buffer sizes are limited. Thus, it is fundamental to study the changes
in metrics when the buffer size becomes smaller.

In Figure 5, the dynamic changes of ACCavg and Favg is plotted for all the
replay-based methods. It is observed that when the buffer size is reduced to 0,
other replay-based methods degenerate into ’Naive’, while CLUE still maintains
decent performance. When the buffer size is gradually reduced to one-tenth, in
CLUE, both ACCavg and Favg have a significantly smaller change than other
methods. ACCavg is maintained at around 80%, while Favg is approximately
10%.

Therefore, we can safely conclude that CLUE is a robust method facing re-
duced buffer size. On the one hand, it helps maintain continual learning perfor-
mance as the task number increases. On the other hand, when the task number
remains unchanged, it significantly reduces the number of required replay sam-
ples, saving storage overhead.

4.3 Model Interpretability Analysis

As is illustrated above in Figure 2, the changes in domain distribution may lead
to a distorted attention map and invalid logits outputs. In this part, we conduct
experiments to interpret the effectiveness of CLUE in correcting the attention
map and preserving the logits distribution.

Figure 6 shows the output logits distribution of nine typical samples from
the first three tasks of the three benchmarks. Before forgetting shows the results
right after learning the task to which the samples belong, while after forgetting

135

12 C. Cai et al.

Task2 Task3Task1Task2 Task3Task1 Task2 Task3Task1

Before
Forgetting

After
Forgetting

Using
Our

Method

0

6

0

5

0 0

0 0

9

elephant

elephant

guitar

elephant

guitar

elephant

elephant

elephant

horse

bird

cat

bird bird

bird

horse

bird

cat

bird

Fig. 6. Logits distributions of typical samples. Left shows the Digits benchmark, middle
depicts the Pictures benchmark, and right corresponds to the Processing benchmark.
CLUE works in maintaining the original logits distributions and classifying correctly.

shows the performance of the eventual model. The last row in Figure 6 shows
the final results when applying CLUE.

It is observed that without our model, ’0’ might lose the logits distribution of
the original domain, leading to the misclassification as ’6’, ’5’, or ’9’. The sample
’elephant’ in the Picture benchmark and ’bird’ in the Processing benchmark
might also be misclassified without an effective continual learning method. With
CLUE, accurate classification can be achieved by maintaining the original logits
distribution as much as possible to prevent catastrophic forgetting.

Before
Forgetting

After
Forgetting

Using
Our

Method

Layer1 Layer2 Layer3

Task1

Layer1 Layer2 Layer3

Task2

Layer1 Layer2 Layer3

Task3

Fig. 7. Attention Maps of typical samples from the Picture benchmark without or with
CLUE. The mean output of channels in layer3 (ResNet-18) is used as the attention
map, where bright color corresponds to the vital area. CLUE works in maintaining
proper attention maps and classifying correctly.

136

CLUE in Domain-Incremental Classification 13

The attention maps of typical samples are shown in Figure 7. The Pictures
benchmark is used as an example as its 224 * 224-sized images are large enough
to be observed and analyzed.

As is shown, in the sketch image, for correct classification, the neck of the
giraffe should be focused. By applying CLUE, the attribute can be maintained.
The cartoon giraffe can be classified successfully by its head and legs. However,
after forgetting, the neural network tends to pay more attention to table legs
and the giraffe’s tail. Our method can preserve important areas without being
disturbed by noisy information. The eye and noise in the art painting of giraffes
are the prime areas for classification. CLUE keeps them well. Therefore, applying
CLUE guarantees a more accurate attention map.

4.4 Ablation Studies

Table 2 shows the ablation studies, where the significance of Lnet and Ldata

is tested. Metrics of the classifier when removing Lnet or Ldata or both are
calculated and recorded. Additionally, we test the performance where Ldata is
replaced by commonly used cross-aentropy LCE .

As is observed in Table 2, when both Lnet and Ldata are omitted, the method
degrades into naive finetuning. Attaching either Lnet or Ldata will promote
ACCavg by a large margin in the Digits (≈ 15%) and Pictures (≈ 10%) bench-
mark. In the Processing benchmark, Lnet is more effective than Ldata. Regarding
Favg, Lnet works better in alliviating forgetting in all benchmarks. Obviously,
utilizing both loss functions will further improve the performance.

Table 2. Ablation Studies

Lnetwork Ldata ACCavg(%) ↑ Favg(%) ↓

Benchmark 1:
Digits

% % 64.51 42.23
" % 80.15 14.38
% " 79.00 20.96
" LCE 82.41 11.64
" " 84.81 7.23

Benchmark 2:
Pictures

% % 66.91 38.24
" % 87.99 3.78
% " 88.27 6.03
" LCE 89.12 2.45
" " 90.16 1.34

Benchmark 3:
Processing

% % 68.88 23.29
" % 76.55 8.27
% " 72.60 14.03
" LCE 74.25 7.67
" " 79.13 5.03

137

14 C. Cai et al.

Besides, when changing Lnet into LCE , drops are witnessed in the perfor-
mance, with approximately 2%, 1% and 5% decrease in the ACCavg on the
three benchmarks. It is probably because LCE focuses more on the between-class
difference of samples, while Lnet focuses more on the class logits distributions
facing new domains.

As a result, both Lnet and Ldata are effective and contributing parts for our
CLUE.

5 Conclusion

In this paper, focused on the DI setting, we clarify the problem setting and define
the metrics. Firstly, the main culprit of forgetting when training on shifted do-
mains is found through preliminary experiments. It is because the feature extrac-
tor has adjusted to the new domain distribution, being invalid for former tasks.
Next, to deal with this issue, a Consolidating Learned and Undergoing Experi-
ence (CLUE) method is proposed to mitigate forgetting in DI classification. It
consists of two more loss functions to control network changes and can be applied
in any mainstream classification model without introducing extra parameters or
processing steps. Comprehensive experiments show the superior performance of
CLUE compared with other baselines on three benchmarks - Digits, Pictures,
and Processing, with higher task-average accuracy and less forgetting. Besides,
extensive experiments show that CLUE remains robust when there are limited
replay samples, maintaining higher performance and saving storage overhead.
Moreover, both theoretical derivation and model interpretability visualization
justify the feasibility of CLUE.

Acknowledgements This work was supported by the National Key R&D Pro-
gram of China (No.2020AAA0105500) the National Natural Science Foundation
of China (No. U21B2013, No.61971260)

References

1. Biesialska, M., Biesialska, K., Costa-Jussa, M.R.: Continual lifelong learning in
natural language processing: A survey. arXiv preprint arXiv:2012.09823 (2020)

2. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience
for general continual learning: a strong, simple baseline. Advances in neural infor-
mation processing systems 33, 15920–15930 (2020)

3. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: Proceedings of the European conference on computer
vision (ECCV). pp. 233–248 (2018)

4. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for in-
cremental learning: Understanding forgetting and intransigence. In: Proceedings of
the European Conference on Computer Vision (ECCV). pp. 532–547 (2018)

5. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Proceedings of the fourteenth international conference on ar-
tificial intelligence and statistics. pp. 215–223. JMLR Workshop and Conference
Proceedings (2011)

138

CLUE in Domain-Incremental Classification 15

6. Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G., Tuytelaars, T.: A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

7. Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G., Tuytelaars, T.: A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

8. Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A.A., Pritzel,
A., Wierstra, D.: Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734 (2017)

9. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The
journal of machine learning research 17(1), 2096–2030 (2016)

10. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: Remind your neural
network to prevent catastrophic forgetting. In: European Conference on Computer
Vision. pp. 466–483. Springer (2020)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learningfor image recognition.
ComputerScience (2015)

12. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531 2(7) (2015)

13. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences 114(13), 3521–3526 (2017)

14. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences 114(13), 3521–3526 (2017)

15. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998)

16. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: Proceedings of the IEEE international conference on computer
vision. pp. 5542–5550 (2017)

17. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935–2947 (2017)

18. Lomonaco, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes, T.L.,
De Lange, M., Masana, M., Pomponi, J., Van de Ven, G.M., et al.: Avalanche:
an end-to-end library for continual learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 3600–3610 (2021)

19. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning.
Advances in neural information processing systems 30 (2017)

20. Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., Sanner, S.: Online continual learning
in image classification: An empirical survey. Neurocomputing 469, 28–51 (2022)

21. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: Adapting a single network to multi-
ple tasks by learning to mask weights. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 67–82 (2018)

22. Mallya, A., Lazebnik, S.: Packnet: Adding multiple tasks to a single network by
iterative pruning. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. pp. 7765–7773 (2018)

23. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Wei-
jer, J.: Class-incremental learning: survey and performance evaluation on image
classification. arXiv preprint arXiv:2010.15277 (2020)

139

16 C. Cai et al.

24. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

25. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Networks 113, 54–71 (2019)

26. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: A
survey of recent advances. IEEE signal processing magazine 32(3), 53–69 (2015)

27. Prabhu, A., Torr, P.H., Dokania, P.K.: Gdumb: A simple approach that questions
our progress in continual learning. In: European conference on computer vision.
pp. 524–540. Springer (2020)

28. Pytorch, A.D.I.: Pytorch (2018)
29. Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., Tesauro, G.: Learning

to learn without forgetting by maximizing transfer and minimizing interference.
arXiv preprint arXiv:1810.11910 (2018)

30. Roy, P., Ghosh, S., Bhattacharya, S., Pal, U.: Effects of degradations on deep neural
network architectures. arXiv preprint arXiv:1807.10108 (2018)

31. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

32. Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forget-
ting with hard attention to the task. In: International Conference on Machine
Learning. pp. 4548–4557. PMLR (2018)

33. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. Advances in neural information processing systems 30 (2017)

34. Simon, C., Faraki, M., Tsai, Y.H., Yu, X., Schulter, S., Suh, Y., Harandi, M., Chan-
draker, M.: On generalizing beyond domains in cross-domain continual learning.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 9265–9274 (2022)

35. Tang, S., Su, P., Chen, D., Ouyang, W.: Gradient regularized contrastive learning
for continual domain adaptation (2021)

36. van de Ven, G.M., Siegelmann, H.T., Tolias, A.S.: Brain-inspired replay for con-
tinual learning with artificial neural networks. Nature communications 11(1), 1–14
(2020)

37. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734 (2019)

38. Volpi, R., Larlus, D., Rogez, G.: Continual adaptation of visual representations
via domain randomization and meta-learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4443–4453 (2021)

39. Wang, M., Deng, W.: Deep visual domain adaptation: A survey. Neurocomputing
312, 135–153 (2018)

40. Xiang, Y., Fu, Y., Ji, P., Huang, H.: Incremental learning using conditional ad-
versarial networks. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 6619–6628 (2019)

41. Xie, J., Yan, S., He, X.: General incremental learning with domain-aware categor-
ical representations. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14351–14360 (2022)

42. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically ex-
pandable networks. arXiv preprint arXiv:1708.01547 (2017)

43. Zeng, G., Chen, Y., Cui, B., Yu, S.: Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence 1(8), 364–372 (2019)

44. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: International Conference on Machine Learning. pp. 3987–3995. PMLR (2017)

140

CLUE in Domain-Incremental Classification 17

45. Zhu, F., Zhang, X.Y., Wang, C., Yin, F., Liu, C.L.: Prototype augmentation and
self-supervision for incremental learning. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 5871–5880 (2021)

141

