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Abstract. Although end-to-end stereo matching networks achieve great
performance for disparity estimation, most of them require far too many
floating-point operations to deploying on resource-constrained devices.
To solve this problem, we propose PBCStereo, the first lightweight stereo
network using pure binarized convolutional operations. The degradation
of feature diversity, which is aggravated by binary deconvolution, is alle-
viated via our novel upsampling module (IBC). Furthermore, we propose
an effective coding method, named BIL, for the insufficient binarization
of the input layer. Based on IBC modules and BIL coding, all convolu-
tional operations become binary in our stereo matching pipeline. PBC-
Stereo gets 39× saving in OPs while achieving comparable accuracy on
SceneFlow and KITTI datasets.

Keywords: Stereo Matching · Disparity Estimation · Binary Neural
Network.

1 Introduction

Depth estimation plays an important role in complex computer vision tasks
such as autonomous driving[10], augmented reality [1]and robot navigation[24].
Compared with the usage of expensive LiDARs, stereo matching algorithms
that calculate the dense disparity from two input images provide a low-cost but
equally accurate solution to depth estimation.

As the end-to-end CNNs are proposed for depth estimation, the accuracy of
stereo matching has been greatly improved. At present, top 70 works on KITTI
2015 leaderboard have reached the overall three-pixel-error less than 2%[10].
While lots of effort has been carried out to improve the accuracy, the efficiency
of stereo algorithms is still far from satisfactory. Because the large input image
size and expensive convolutional operations consume such a large amount of
floating point operations that the average FPS of those 70 works is only 1.2.

To cope with the challenge of heavy calculations in depth estimation, one
strategy is adopting compact convolutional filters to replace standard convolu-
tion. For example, MABNet[32] and LWSN[30] have been proposed using depth-
wise separable convolution to reduce FLOPs. LWANet[9] designed pseudo 3D
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convolution to replace regular 3D convolution for aggregating the cost volume
with less computational cost. However, these approaches are difficult to optimize
memory access in hardware deployment due to the change of convolution mode
and still use expensive floating-point operations. Once targeting at the appli-
cations on resource-constrained edge devices, a highly efficient stereo matching
algorithm becomes more urgent.

One effective approach to greatly reduce floating-point operations for resource-
constrained devices is model binarization. Model binarization can achieve ex-
treme compression ratio because both the weight and activation are represented
by 1-bit[25] and floating point convolutions are replaced by XNOR and POP-
COUNT operations[3]. Therefore, not only the cost of memory access, but also
the amount of computation expense is greatly reduced. Binarization is also able
to benefit stereo matching algorithms in terms of saving energy consumption
for edge devices. StereoEngine[5] and StereoBit[6] made attempts to binarize
the feature extraction module in stereo matching pipeline. Ignoring Stereobit’s
floating-point calculations in modules like aggregation and refinement, we find
that its binary feature extraction module consumes 1.52G OPs, which is 2.7 times
PBCStereo’s total computational expense. There are two challenges for binariz-
ing end-to-end stereo matching algorithms. Firstly, the degradation of feature
diversity[31,16] is aggravated by binary deconvolution, which leads to the in-
complete feature geometry as shown in Fig. 2. Secondly, the binarization of the
input layer causes sharp decline of accuracy, resulting from the pixel distortion
of binarized input images.

In this paper, we propose a stereo matching network, named PBCStereo,
which replaces all floating point convolution with efficient binary operations.
With 39× saving in OPs, the overall three-pixel-error of PBCStereo is 4.73%
on KITTI 2015 benchmark. PBCStereo presents a reasonable balance between
accuracy and energy-efficient computing, making depth estimation more suitable
for deployment on embedded devices. The main contributions of this article are
as follows:

• We design an embedded upsampling module to replace binary deconvolu-
tion, named IBC module, which uses interpolation and binary convolution
to alleviate the phenomenon of feature homogenization.

• For the input layer, we propose a precision-preserving coding method named
BIL to avoid the unary pixel distortion, so that all convolutional operations
in our design become binarized without sacrificing performance.

• Based on the IBC module and BIL coding method, we design an efficient
backbone PBCStereo. PBCStereo takes only 0.57G OPs with comparable
accuracy for estimating the depth from a stereo pair at 512×256 resolution.

2 BNN Preliminaries

Quantization for neural networks can reduce the bit width of data, effectively
decreasing the power consumption of computation. Among the existing quanti-
zation techniques, binarization extremely compresses both the weight and acti-
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vation to only 1-bit. BNN[7] is a pioneering work that first verified the feasibility
of binarization on small datasets such as MNIST and CIFAR-10. Subsequently,
a series of works were proposed. XNOR-NET[27] proposed floating point scaling
factors acting on the channel dimension to recover the information loss, enhanc-
ing the top-1 accuracy to 51.2% on ImageNet for the first time. Bi-RealNet[19]
and BinaryDenseNet[2] respectively found that there were some specific struc-
tures that could effectively reduce the negative impact of information loss in the
process of binarization. ReactNet[18] changed the traditional Sign and PRelu
functions to enable explicit learning of the distribution reshape and shift at near-
zero extra cost, mitigating the accuracy gap between the binarized model and
its full-precision counterpart. However, these methods developed on ImageNet
classification are not readily transferable to depth estimation directly.

Fig. 1. The binary deconvolution process of a 3 × 3 input with stride=2, padding=1
and output padding=1.

In BNNs, both weights and activations are restricted to −1 and 1. We define
a binary convolutional layer as

O = Xb ∗W b (1)

O is the convolution output. Xb and W b represent binary activations and binary
weights. They are binarized through a sign function. Specifically,

xb = sign(xr) =

{
+1, xr ≥ 0,

−1, xr < 0.
(2)

wb =
‖W r‖1
n

sign(wr) =


+
‖W r‖1
n

, wr ≥ 0,

−‖W
r‖1
n

, wr < 0.

(3)

The superscripts b and r respectively refer to binary and real values. ‖W
r‖1
n is

a floating-point scaling factor proposed in XNOR-Net[27], meaning the average
of absolute values of all weights.
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Different from convolution, deconvolution adopts the expansion operator (Γ )
of adding zero padding to both sizes of the input to improve the resolution, as
shown in Fig. 1. Therefore, the binary deconvolutional layer can be rewritten as

Xb
′

= Γ (Xb) (4)

O = Xb
′

∗W b (5)

Xb
′

is a new input after the expansion operation.

3 Method

In this section, we first analyze how binary deconvolution pollutes feature quality.
Based on this analysis, we propose IBC module to effectively improve the quality
of upsampling in Section 3.1. Then we put forward a precision-preserving BIL
coding method for the input layer in Section 3.2. Finally, we introduce the overall
network design of PBCstereo in Section 3.3.

Fig. 2. Comparison of the feature obtained by different upsampling methods. (a) Input
image. (b) The ideal binary feature is obtained by real-valued deconvolution and sign
function. (c) The feature recovered by binary deconvolution is incomplete. (d) The
result of IBC module.

3.1 IBC module

As shown in Fig. 2, the geometry obtained by binary deconvolution is incomplete,
which indicates that there is a considerable information loss in the process of
binary deconvolution. Given a binary activation and binary k × k × C kernels,
the output values could be an integer in the range of −Ck2 to Ck2. If there
are p zeros in the k × k × C convolution window, the range of output will be
reduced to p − Ck2 to Ck2 − p. In other words, the operator (Γ ) of adding
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zero padding dilutes the information in the feature map and makes features
more difficult to be distinguished. So some effective structures are confused with
the surrounding background and filtered out by sign function. Moreover, the
smaller the number of channels, the more obvious this phenomenon is. For stereo
matching algorithms, if the disparity map cannot maintain the same geometry
as the original input, the final matching accuracy will be greatly affected.

Fig. 3. The proposed IBC module, which respectively replaces 2D binary deconvolution
and 3D binary deconvolution. The transformation of data dimension is marked.

For stereo matching algorithms, there are generally two forms of deconvo-
lution, 2D and 3D. In order to improve the feature quality of upsampling and
prevent the information from being diluted, we design 2D IBC and 3D IBC
module respectively as shown in Fig. 3. Inspired by ReactNet[18], we choose
RSign as the sign function and RPrelu as the activation function. We design
the 2D IBC module in two stages. The first stage completes the expansion of the
image size and the conversion of channel numbers. We first adopt bilinear in-
terpolation to double the resolution of the input feature map DownsampleN+1,
where the subscript N + 1 denotes the number of downsampling. Then, 1-bit
convolutional layer changes the number of channels from CN+1 to CN , the same
as DownsampleN . In the second stage, we exploit context information to make
up for the information loss due to binarization. To achieve this purpose, we
concatenate DownsampleN with the output in the first stage. Therefore, the
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shallow and deep features of the network will be effectively fused. Concatenat-
ing also makes use of more feature maps to alleviate the phenomenon of feature
homogenization, increasing the output range to −2CNk

2 to 2CNk
2. Meanwhile,

all convolutional operations in IBC module are binarized, which is conducive to
hardware acceleration. In addition to the 2D IBC module, we also implement an
efficient 3D IBC module in a similar way, as shown in Fig. 3. The difference is
that 3D deconvolution is generally applied to the part of cost aggregation. The
resolution of cost aggregation is much smaller than that of feature extraction.
3D deconvolution also has one more dimension than 2D deconvolution, resulting
in a larger range and more calculations after binarization. Therefore, instead
of concatenating to build a larger feature map, we use the residual connection
summation to make up for the information loss.

3.2 Binarizing Input Layer

Fig. 4. The proposed BIL coding method. The binary vector after encoding denotes
to the magnitude of the pixel.

In order to preserve the accuracy, most of binary neural networks use real-
valued activations and weights in an input layer. Therefore, a floating point con-
volution engine is needed without reusing operations of XNOR and POPCOUNT[35].
There are two reasons for the sharp decline of accuracy after binarizing an in-
put layer. The first reason is the lack of input channels. The input of CNNs
contains generally RGB three channels, and some may even be a single chan-
nel grayscale image. Such a limited number of input channel is insufficient for
binarization. The other reason is the information loss of binarized activations.
For vision tasks, the value of the input image is between 0-255. Whether the
input is normalized or not, directly turning an input image into a unary feature
map results in a considerable loss of information. In this paper, we figure out a
BIL coding method that binarizes the activations to a larger channel-wise size
without much information loss. As shown in Fig. 4, we first encode the input
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activation to expand the number of channels. We encode a value between 0-255
by an eight-dimensional binary vector, e.g., translating 118 to 01110110. This
increases the number of input channels from one dimension to 8 dimensions.
Accordingly, we apply the weight factor 2i to the corresponding ith channel
without retraining. On hardware, this process can be performed efficiently by
shifting registers.

3.3 PBCStereo Overview

Fig. 5. Architecture overview of PBCStereo.

Based on IBC modules and BIL coding method, we propose a binary end-to-
end stereo matching network PBCStereo, as shown in Fig. 5. At a light cost of
calculations, PBCStereo receives a reasonable accuracy through increasing the
discrimination between features. PBCStereo is the first lightweight stereo net-
work that all convolutional operations are binarized. The pipeline of PBCStereo
consists of four steps: feature extraction, cost volume aggregation, initial dispar-
ity computation and disparity refinement. We will introduce these modules in
detail in the following. For ease of illustration, we define H and W as the height
and weight of the input image, and D standing for the maximum disparity.

Feature Extraction. We adopt a Siamese network to extract the image
features. The left and right input feature share the weights. For the first three
layers, we set the convolution kernel size to 7× 7 , 5× 5 and 3× 3 respectively.
The purpose of using larger convolution kernels is to build a larger receptive
field and prevent the accuracy decline after BIL encoding. Then, the original
input image will be quickly downsampled to 1/64 resolution after a group of six
convolutional layers with strides of 2. Next, features are restored to 1/8 resolution
through upsampling via three 2D IBC modules. Finally, we concatenate 384
feature maps at 1/8 resolution together to generate a compact cost volume,
which greatly saves computations for subsequent networks.
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Cost Volume. After feature extraction, the left and right feature maps are
both with the size of 384 × H

8 ×
W
8 . Therefore, the corresponding maximum

disparity should also be adjusted to D
8 here. Then, the cost volume is constructed

by group-wise correlation[11]. 384 feature channels are divided into 48 groups,
and the left feature group is cross-correlated with the corresponding right feature
group over all disparity levels. At last, we get a 4D cost volume of D

8 ×
H
8 ×

W
8 ×48.

For this 4D cost volume, we design a 3D binary convolution network via 3D IBC
module to complete cost aggregation. Instead of stacking hourglass architectures
in PSMNet[4], we only use a U-Net-like structure to obtain an initial guess of
disparity Dini at a smaller computational cost, and left the correction of it to
the step of disparity refinement.

Disparity Refinement. In order to further make up for the information
loss due to the binarization, we design the disparity refinement module as shown
in the Fig. 5. Inspired by iResNet[15], the right image is fused with the initial
disparity at 1/2 resolution to generate a new synthesized left image. Next, we
calculate the difference between the left input image and the synthesized left
image, and use this difference to estimate the residual disparity Dref through
disparity refinement sub-network. The summation of Dini and Dref is considered
as the final disparity.

Disparity Regression. We use softargmin proposed in GCNet[13] for dis-
parity regression as,

pd = softmax(−cd) (6)

d̂ =

D∑
d=0

d× pd (7)

pd is the probability of each disparity d calculated from the softmax of cost
volume cd. d̂ denotes the predicted disparity.

Loss function. If the distributions of binary neural networks are more simi-
lar to that of real-valued networks, the performance will be improved[18]. In-
spired by knowledge distillation[12], we take the real-valued network as the
teacher network to guide the distribution of binary student network. However,
we don’t employ layer-wise distillation here, because the optimization of BNNs
is challenging[25,17], and layer by layer distillation will further make the model
difficult to converge. So we choose cd and Dref for distillation. The loss function
of PBCStereo is defined as,

L(d, d̂) = α · 1

N

N∑
i=1

smoothL1
(di − d̂i) +

(1− α)

2
· (Lp + LD) (8)

in which

smoothL1
(x) =

{
0.5x2, |x| < 0.5,

|x| − 0.5, |x| ≥ 0.5.
(9)

Lp =
1

ND

N∑
j=1

D∑
di=0

∣∣cRdi
− cBdi

∣∣ (10)
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LD =
1

N

N∑
i=1

∣∣DR
ref −DB

ref

∣∣ (11)

N is the total number of labeled pixels. Superscript R and B denotes the real-
valued network and binary network respectively.

4 Experiments

To evaluate the performance of PBCStereo, we conduct experiments on Scene-
Flow, KITTI 2012 and KITTI 2015. The datasets and the experiment settings
are introduced in Section 4.1. Furthermore, we perform ablation studies to vali-
date the effectiveness of the proposed IBC module and binary encoding method
for the input layer in Section 4.2. Finally, we compare PBCStereo with other
published stereo matching algorithms in Section 4.3.

4.1 Experiment Details

Datasets SceneFlow[22] is a large dataset rendered from various synthetic se-
quences, including FlyingThings3D, Driving and Monkaa. There are 39824 stereo
pairs of size 960×540 with dense ground-truth disparity maps. We further di-
vide the whole dataset into 35454 training images and 4370 testing images. The
end-point error (EPE) is used as the evaluation metric.

Unlike SceneFlow, KITTI 2012[10] and KITTI 2015[23] are both real-world
datasets with street views of size 1240×376, using LiDAR to collect ground-truth
disparity maps. KITTI 2012 provides 194 stereo pairs for training and 195 stereo
pairs for testing. End-point error in non-occluded areas (Noc) and in total (All)
are used as the evaluation metric. For KITTI 2015, it consists of 200 training
scenes and 200 testing scenes. The percentage of stereo disparity outliers (D1)
is reported.

OPs Calculation We count the binary operations (BOPs) following [27,19].
The floating point operations(FLOPs) caused by the BatchNorm are also listed.
The total operations(OPs) is calculated as OPs = BOPs

64 + FLOPs. In this
paper, we take the input size of 512× 256 as the standard for data analysis.

Implementation Details Our PBCStereo is implemented using PyTorch
on NVIDIA RTX 2080Ti GPU. We train our models by Adam optimizer with
β1=0.9 and β2=0.999.

The maximum disparity D is set to 192 and the batch size is set to 12. The
input is a grayscale image without normalization. During training, we randomly
crop the input to size 512×256 for data augmentation. For SceneFlow, we adjust
the learning rate with the cosine annealing[20], setting the maximum value of
0.001. We train our network for 50 epochs in total on SceneFlow. For KITTI,
we finetune our network for 400 epochs based on the model which is pretrained
on SceneFlow. α is set to 0.8. Moreover, we repeat training for three times to
submit the final model with the best performance.
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4.2 Ablation Study

Ablation study for IBC Module To validate the effectiveness of IBC mod-
ules, we first replace it with ordinary binary deconvolution in our PBCStereo
model. After the replacement, the end-point error decreases from 1.83 to 1.71
for SceneFlow. For KITTI 2015, the validation error decreases from 3.79 to 3.40.
The evaluation results of our real-valued teacher network are also listed in Table
1. With the help of IBC modules, PBCstereo achieves 39× reduction in OPs
with an acceptable cost in accuracy compared with the real-valued version. In
Fig.6, qualitative results on Middlebury 2014 and ETH3D show that our IBC
module produces more distinct object boundaries than binary deconvolution.

Fig. 6. Qualitative results on Middlebury 2014 and ETH3D. Note that the results are
generated by our SceneFlow trained model without any fine-tuned training.

Table 1. Ablation study results on SceneFlow and KITTI 2015. The input layers are
all real-valued here. We evaluate the EPE both on SceneFlow validation set and test
set. We also compute error on KITTI 2015 validation set. The last column show the
total amount of operations. BDeconv stands for the binary deconvolution.

Upsampling
Method

Network setting SceneFlow KITTI 2015
OPs

Bit-width of
Input Layer

Bit-width of
Other Layers

EPE
(val)

EPE
(test)

Val Err
(%)

Deconv 32/32 32/32 1.13 1.13 2.62 22.31G
BDeconv 32/32 1/1 1.90 1.83 3.79 0.65G

IBC 32/32 1/1 1.76 1.71 3.40 0.66G
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Further, we change the specific structure of the IBC module through exper-
iments to analyze why our design can bring performance improvement. Each
time we change just one of the following items of IBC module, i.e., removal of
skip-connection, 4× the resolution of feature map through interpolation, and
joining the aggregated DownsampleN−1 with DownsampleN . Testing results
of these modified models in Table2 reveal that none of them has achieved the
accuracy as good as the base module. Based on the observation, we conclude
that skip-connection is the crucial structure in IBC module to enrich the fea-
ture map representation, because it not only expands the channel dimension,
but also assembles context information from more layers. Although aggregating
DownsampleN−1 with DownsampleN achieves comparable accuracy with the
proposed IBC module, this structure is at the cost of increasing model size and
OPs.

Table 2. Evaluation of different structural settings of IBC module on SceneFlow,
comparing to our base module shown in Fig.3.

Settings ∆Model Size ∆OPs ∆EPE

without skip-connection -97KB -28M -0.67
4× interpolation -127KB +91M -0.10
DownsampleN−1 +40KB +80M -0.03

In addition, we also binarize two popular stereo networks of BGNET[33] and
DeepPruner[8] through the method of ReactNet[18]. All convolutional layers
except the input layer are binarized. For validation, we embed our IBC module
to replace the binary deconvolution. As demonstrated by the quantitative results
on SceneFlow in Table 3, the binary BGNET and DeepPruner with IBC modules
present better performance than those with ordinary binary deconvolution.

Table 3. Ablation study results of IBC modules embedded into BGNET and Deep-
Pruner on SceneFlow.

Method
Bit-width of
Input Layer

Bit-width of
Other Layers

Upsample EPE

BGNET[33] 32/32
1/1 BDeconv 2.31
1/1 IBC 2.23

DeepPrunerFast[8] 32/32
1/1 BDeconv 10.98
1/1 IBC 10.30

Ablation study for BIL To validate the effectiveness of the proposed BIL
coding method, we adopt four methods to binarize the input layer differently
in PBCStereo. Dorefa-net[36], IRNet[26] and ReactNet[18] adjust the data dis-
tribution of the input layer in different ways, but the lack of input channels
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leads to accuracy drop. FracBNN[35] uses thermometer encoding to expand in-
put dimension for the input layer. Although it has achieved good performance
on CIFAR-10 dataset, thermometer encoding presents nonnegligible information
loss in the tasks of pixel-level stereo matching. Compared with these methods,
our BIL coding is quite efficient in this case, as shown in Table 4.

Table 4. Evaluation of different methods binarizing the input layer on SceneFlow.
∆EPE denotes the error caused by binarizing the input layer, comparing to our base
model.

Method
Bit-width of
Input Layer

EPE ∆EPE

Base 32/32 1.71 -
Dorefa-net[36] 1/1 10.52 -8.81
IRNet[26] 1/1 7.82 -6.11
ReactNet[18] 1/1 6.22 -4.51
FracBNN(R=8)[35] 1/1 2.58 -0.87
Ours 1/1 1.84 -0.13

Ablation study for Loss Weight We use the real-valued teacher model to
guide the training of binary student model. The loss function consists of three
parts, and the hyperparameter α controls the contribution of three parts to the
final loss. As shown in Table 5, we conducted experiments with different values
of α. We set α = 1 as the baseline without distillation. When α = 0.8, our model
achieves the best performance with 3.43% error on KITTI 2015 validation set.
We adopt the best model and submit the results to KITTI.

Table 5. Influence of the hyperparameter α on KITTI 2015 validation set.

Loss weight
KITTI 2015 Val Error(%)

α (1-α)/2

1 0 3.74
0.9 0.05 3.49
0.8 0.1 3.43
0.7 0.15 3.55
0.6 0.2 3.52
0 0.5 4.04

4.3 Evaluations on Benchmarks

We evaluate PBCStereo on SceneFlow and KITTI benchmark against competing
algorithms to prove the effectiveness of our model. As shown in Table 6 and Table

4389



PBCStereo 13

7, PBCStereo exhibit a good balance between accuracy and computational cost.
Pure binary convolutional operations makes PBCStereo take only 0.57G OPs
for depth estimation. It even outperforms some real-valued networks such as
StereoNet[14] and LWANet[9]. The qualitative results of KITTI 2015 and KITTI
2012 are shown in Fig. 7.

Table 6. Quantitative evaluation results on KITTI 2015 benchmark and SceneFlow
benchmark. For KITTI 2015, we report the percentage of pixels with end-point error
more than three pixels, including background regions(D1-bg), foreground regions(D1-
fg) and all regions(D1-all). Note that the model size is the number of bytes required
to store the parameters in the trained model.

Method
Kitti 2015 SceneFlow

Model Size OPs
D1-bg D1-fg D1-all EPE

PSMNET[4] 1.86 5.62 2.32 1.09 20.4MB 257.0G
AANet[34] 1.99 5.39 2.55 0.87 15.6MB 159.70G
Content-CNN[21] 3.73 8.58 4.54 - 1.3MB 157.30G
MADnet[29] 3.75 9.20 4.66 - 14.5MB 55.66G
SGM-Net[28] 2.66 8.64 3.66 - 450KB 28.0G
DispNet[22] 4.32 4.41 4.34 1.68 168M 17.83G
StereoNet[14] 4.30 7.45 4.83 1.10 1.41MB 14.08G
BGNet[33] 2.07 4.74 2.51 1.17 11.5MB 13.58G
LWANet[9] 4.28 - 4.94 - 401KB 7.03G
MABNet tiny[32] 3.04 8.07 3.88 1.66 188KB 6.60G
StereoBit[6] 3.50 - 4.57 - - -

Ours(1bit) 4.22 7.28 4.73 1.84 653KB 0.57G

Fig. 7. Qualitative results on KITTI benchmark. On KITTI 2015, we compare our
evaluation results with MADNET[29]. On KITTI 2012, we compare our evaluation
results with StereoBit[6].
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Table 7. Quantitative evaluation results on KITTI 2012. We report the percentage
of pixels with end-point error more than two and three pixels, including non-occluded
regions(-noc) and all regions(-all). The last column refers to the ratio of OPs of the
corresponding algorithm to that of our method.

Method
Kitti 2012

OPs Saving
2-noc 2-all 3-noc 3-all EPE(noc) EPE(all)

PSMNET[4] 2.44 3.01 1.49 1.89 0.5 0.6 451×
AANet[34] 2.90 3.60 1.91 2.42 0.5 0.6 280×
ContentCNN[21] 4.98 6.51 3.07 4.29 0.8 1.0 276×
SGM-Net[28] 3.60 5.15 2.29 3.50 0.7 0.9 49×
DispNet[22] 7.38 8.11 4.11 4.65 0.9 1.0 31×
StereoNet[14] 4.91 6.02 - - 0.8 0.9 25×
BGNet[33] 3.13 3.69 1.77 2.15 0.6 0.6 24×
MABNet tiny[32] 4.45 5.27 2.71 3.31 0.7 0.8 12×
StereoBit[6] - - 3.56 4.98 - - -

Ours(1bit) 7.32 8.16 3.85 4.46 0.9 1.0 -

5 Conclusion

In this paper, we propose the first compressed stereo network using pure bi-
narized convolutional operations. Our PBCStereo gets 39× saving in OPs with
comparable accuracy. To achieve the performance, we propose the IBC module
to replace binary deconvolution, improving the upsampling quality for stereo
matching. Moreover, we implement BIL encoding in the input layer to resist the
usually severe information loss due to the binarization. We are looking forward
to realizing PBCStereo in hardware-software co-design, deploying our algorithms
on edge devices.
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