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Abstract. When a coded strip-patterns image (CSI) is captured in a
structured light system (SLs), it often su�ers from low visibility at low
exposure settings. Besides degrading the visual perception of the CSI,
this poor quality also signi�cantly a�ects the performance of 3D model
reconstruction. Most of the existing image-enhanced methods, however,
focus on processing natural images but not CSI. In this paper, we pro-
pose a novel and e�ective CSI enhancement (CSIE) method designed
for SLs. More concretely, a bidirectional perceptual consistency (BPC)
criterion, including relative grayscale (RG), exposure, and texture level
priors, is �rst introduced to ensure visual consistency before and af-
ter enhancement. Then, constrained by BPC, the optimization function
estimates solutions of illumination with piecewise smoothness and re-
�ectance with detail preservation. With well-re�ned solutions, CSIE re-
sults can be achieved accordingly and further improve the details per-
formance of 3D model reconstruction. Experiments on multiple sets of
challenging CSI sequences show that our CSIE outperforms the existing
used for natural image-enhanced methods in terms of 2D enhancement,
point clouds extraction (at least 17 % improvement), and 3D model re-
construction.

1 Introduction

Undoubtedly, vision-based 3D reconstruction technology plays an essential role
in the development of AR/VR innovations such as the metaverse. While recon-
structing an object's 3D surface pro�les in active or passive projection coding
mode is fundamental and critical to numerous vision-based 3D reconstruction
systems, such as binocular stereo vision [18], laser scanning [26], time-of-�ight
[6], and structured light systems (SLs) [24, 13] etc. Among those systems, SLs
in active projection coding mode has gained wide applications in industrial and
commercial �elds due to their superior advantages, such as highly accurate and
dense 3D reconstruction results. Complete SLs typically consists of a projec-
tor for projecting coded strip-patterns and a camera for capturing the coded
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strip-patterns image (CSI), respectively. Ideally, SLs usually use CSI and sys-
tem calibration parameters to decode the depth information of the target under
high exposure settings and then use the triangulation principle [12] to achieve
accurate estimation of the 3D point coordinates on the surface of the projected
object. However, in the high-speed reconstruction of structured light, the ex-
posure time of a camera needs to be synchronized with that of the projector,
i.e., a smaller exposure time setting can support reconstruction at a high frame
rate. In other words, the extremely low exposure setting of a camera under high-
frame-rate reconstruction makes the coded strips in the CSI bury in the dark
and di�cult to distinguish, further resulting in poor reconstructed 3D results,
such as loss of local details and decrease in accuracy. Obviously, the underexpo-
sure problem on the CSI introduced at low exposure settings not only reduces
the coded strips' discriminability but also seriously a�ects the 3D reconstruction
performance of object surfaces.

It is worth noting that the existing enhancement methods mainly includ-
ing three categories, i.e., model-free methods [21, 1, 4], model-based methods [7,
8, 10, 25, 2, 22, 32, 11, 28], and deep learning-based methods [31, 19, 30, 5], have
been developed to address underexposure problem in natural images. However,
to the best of our knowledge, there is almost no enhancement method speci�cally
designed to address the underexposure problem in CSI under �xed exposure set-
tings within SLs. Speci�cally, model-free methods are generally simple and e�ec-
tive, but will wash out details and cause oversaturation problems. Model-based
methods mostly work according to the simpli�ed Retinex theory assumption
that a captured image P can be decomposed into re�ectance component R and
illumination component L by P = R ◦L, where ◦ denotes pixel-wise multiplica-
tion. Although such methods have been shown to have impressive enhancement
e�ects in recent years, they are typically accompanied by overexposure issues in
local regions. Deep learning-based methods rely on complex network structures
and synthetic samples, which will increase high hardware resources and time
costs in training and will reduce the generalizing ability of multi-scenario appli-
cations in terms of the network. More importantly, the methods mentioned above
serve natural images, not CSI. Therefore, the core idea of most these methods,
although not all, does not consider CSI's inherent properties.

In this paper, we propose a novel method, i.e., CSIE, for underexposed en-
hancement of CSI in SLs under a �xed low exposure setting. Our work is mainly
inspired by an interesting observation: maintaining the visual consistency be-
fore and after enhancement can e�ectively avoid the disruption of regular coded
strip patterns within CSI. Inspired by this observation, a valid criterion, bidi-
rectional perceptual consistency (BPC), is �rst proposed to describe how to
guarantee visual perceptual consistency between before and after enhancement.
Then, we turn the underexposed enhancement problem into an optimization
problem based on the Retinex model for decomposing the illumination and re-
�ectance components under the constraints of the BPC priors. With well-re�ned
illumination and re�ectance components, the enhanced CSI results can be ob-
tained accordingly, and further embedded in SLs methods can reconstruct more
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3D pro�les of objects' surfaces. In particular, the work in this paper has the
following contributions: 1) We propose a novel CSIE method. To the best of
our knowledge, this is the �rst time that CSIE is embedded in SLs methods to
address underexposure problems in CSI under �xed exposure settings. 2) We
de�ne BPC (a simple and intuitive criterion including three consistency priors)
in CSIE, which explicitly describes how to avoid breaking the visual perceptual
consistency that exists in the CSI before and after enhancement. 3) We design
BPC-constrained illumination and re�ectance estimation via a variational op-
timization decomposition function, to achieve enhanced CSI results with high
visibility and high signal-to-noise ratios. 4) We introduce a block coordinate
descent (BCD) [27] technique to solve the convex problem contained in the de-
signing optimization function. Finally, we evaluate the proposed method that
includes a comparison with several state-of-the-art image enhancement meth-
ods on both multiple CSI sequences captured by SLs and the 3D reconstruction
method of [24]. Experiments demonstrate that the proposed method achieves
well enhancement e�ect in enhancing the visual quality for 2D CSI and simulta-
neously improves the performance of 3D surface reconstruction.

2 Related Work

Model-free Methods. Directly linearly amplifying the intensity of an un-
derexposed image is probably the most straightforward way to recover detail
in dark regions. However, this operation comes with a thorny problem, i.e., the
pixels in the relatively bright regions may increase the risk of saturation and
thus wash out corresponding details. Although the histogram equalization (HE)
method can alleviate the above problems by forcing the enhanced intensities
of input in a normalized manner, it may lead to noise ampli�cation and dis-
tortion appearance. To be more wise, an improved version of HE, content and
variational contrast (CVC) [4] enhancement, attempts to improve contrast by
introducing di�erent regularization terms on the histogram. It may very likely
fall into the trouble of overexposure/underexposure enhancement due to ignoring
the contrast change caused by real illumination.

Model-based Methods. Jobson et al. [14, 15] did early works based on
the Retinex model yet exhibited more unrealistic results in the output. Fu et
al. [7] proposed a simultaneous illumination and re�ectance estimation (SIRE)
method to realize enhancement in logarithmic space, but the re�ectance com-
ponent in it has the problem of detail loss. Thereafter, Fu et al. [8] developed a
weighted variational model (WVM) to improve the variation of gradient magni-
tudes in bright regions. Since the anisotropic smoothness assumption is ignored,
the illumination decomposed by the model may fall into erroneous estimation
around non-contiguous regions. Guo et al. [10] estimated the initial illumina-
tion map from the input and re�ned it by retaining only the main structural
information. This method does well in dealing with underexposed images with
globally uniform illumination, however, produces an overexposure issue when
processing ones with non-uniform illumination. To this end, Zhang et al. [32]

2190



4 W. Cao et al.

designed the high-quality exposure correction (HQEC) method, which estimates
reasonable illumination to solve the above problem by considering the visual
similarity between input and output. The limitation of this method is the blind-
ness of the noise, leading to results with a low SNR in underexposed situations.
Considering this limitation, Cai et al. [2] and Hao et al. [11] presented the joint
intrinsic-extrinsic prior (JieP) model and the gaussian total variation (GTV)
model, respectively, to achieve a balance between visual enhancement and noise
compression. However, both optimized models su�er from over-smoothing in the
illumination and re�ectance, and the latter's piecewise smoothness constraint
on the re�ectance component makes the model ine�ective for enhancing images
with extremely low exposure. Di�erent from JieP, Ren et al. [22] proposed the
joint denoising and enhancement (JED) method by considering an additional
detail enhancement term on the re�ectance component, but it also induces local
distortion on that. In addition, Xu et al. [28] proposed a structure and texture
aware retinex (STAR) model in recent years, which designed an exponential
�lter through local derivatives and used it to constraint for illumination and
re�ectance components, respectively. Because of the constraint of local partial
derivatives, the coded structures of underexposed CSI face destroyed problems.
It is worth noting that Song et al. [25] developed the HDR-based method to
improve CSI for alleviating the local underexposure and overexposure problems
caused by the high re�ectivity of the object surface in the CSI. Di�erent from
CSIs (captured with a �xed exposure setting) used in our method, the HDR-
based method [25] obtains the solution that requires at least three CSIs (captured
with di�erent exposure settings by the same camera under the same scene).

Deep Learning-based Methods. Chen et al. [5] proposed a low-light en-
hancement method with low photon counts and low SNRs based on the fully
convolutional networks in an end-to-end training way. However, the input of
network training is raw sensor data, which is di�cult to obtain and causes a
high training cost. Lore et al. [19] developed a depth encoder to enhance con-
trast, but its enhanced results only have well performance in noise reduction.
Inspired by neurobiological observations, Zhan et al. [31] designed a feature-
linking model (FLM) by utilizing the spike times of encoded information, which
can preserve information and enhance image detail information simultaneously.
Afterward, Zhan et al. [30] also presented a linking synaptic computation net-
work (LSCN) that generates detail-enhanced results, but its noise amplifying
problem is obvious. However, almost none of the above methods are suitable for
CSI enhancement, mainly due to their enhanced networks being designed for
natural images and not considering the regular encoded information in CSI.

3 Proposed Method

In this section, we describe the proposed novel CSIE method for enhancing CSI.
We �rst introduce one Retinex-based model decomposition problem and then
restraint it by de�ning the BPC criterion, including three consistency priors
(RG, exposure, texture). Jointing the above priors, we further proposed an opti-
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mization function that is designed for decomposing illumination and re�ectance
components in CSI, respectively. Finally, we use an e�cient BCD technique to
extract solutions for the convex optimization function iteratively. With well-
re�ned components in solutions, the enhanced CSI can be obtained accordingly.

3.1 Model Decomposition Problem

Let us recall the Retinex model, a commonly used visual model to estimate the
illumination and re�ectance components in real scenes for image enhancement.
Unlike previous enhancement methods based on this model, we apply it here to
the processing of CSI instead of natural images and combine the inherent priors
in CSI to formulate the image decomposition problem as the minimization of
the following optimization function F (·, ·):

min
R,L

F (R,L) = ||R ◦ L− P ||22 + λgfg + λefe + λrfr, (1)

where fe, fg and fr are three di�erent regularization functions, λe, λg and λr are
all non-negative balancing weights. ||R ◦L−P ||22, data �delity term, constraints
the product of the illumination and re�ectance components to be close to the
original CSI.

In general, decomposing an image into illumination and re�ectance com-
ponents is a highly ill-posed problem due to lack of reasonable priors on the
components. Appropriate component priors as constraints can reduce the solu-
tion space and converge quickly. To this end, we describe the introduced priors
about CSI in Eqn. (1) in detail below.

(a) Input (b) GT (c) CVC (d) LIME (e) WVM (f) Ours

Fig. 1. Issues existed by previous methods. GT: Ground truth (CSI captured with 2000
ms of exposure value).

3.2 Bidirectional Perceptually Consistency

By observing large numbers of CSI sequences pairs between underexposed and
well-exposed, we �nd that inherent properties (RG (de�ned as the relative grayscale
change of neighboring pixels in the CSI), exposure, texture) existed in under-
exposed CSI are buried in the dark, which results in SLs method that rely on
strip-edge features cannot e�ectively identify and further signi�cantly a�ects the
3D reconstructed performance. Compared with the well-exposed CSI (see Fig. 1
(b)), the distortions of relative grayscale, inconsistency of exposure, and loss of
details produced by existing methods on the CSI enhancement results are the
three main issues. For instance, coded strip features (regular bright-dark order
in spatial position) are distorted in the enhanced result by the CVC method due
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to the damage of the original relative grayscale, as shown in Fig. 1 (c). Texture
degradation and loss of details due to local overexposure appear on the LIME
method enhancement results, as shown in Fig. 1 (d). The WVM enhancement
results have a local over-dark problem caused by inconsistent exposure, while
these regions are contrary to the consistent exposure in the input, as shown in
Fig. 1 (e). We intuitively believe that the above three issues can well be removed
when we use inherent properties to preserve visual consistency before and after
enhancement in CSI, as shown in Fig. 1 (f). Additionally, we analyze their plau-
sibility by de�ning the following three consistency priors (RG, exposure, and
texture) in BPC and then verify the e�ectiveness of those in BPC in Section 4.

RG Consistency Prior. One fact is that RG change in CSI is caused
by the coded projection, which is an inherent feature belonging to CSI. For
instance, we show a synthetic patch with the simulated CSI in Fig. 2 (a), which
contains weak textures and strong edges/structures. The RG change, such as
the relative grayscale change in the red and blue boxes in Fig. 2 (a), enables the
strip-edge at the discontinuous region can be identi�ed by SLs-based method
[24] to reconstruct the pro�le of target surface, which can be regarded as an
important prior feature. Intuitively, RG inconsistency, such as smaller or no
discontinuity di�erences, will weaken the discrimination of the strip-edge features
on the enhanced CSI, thereby reducing the ability to recover depth information
for the SLs-based method. To avoid this issue, we take the preprocessed original
CSI (see Fig. 2 (b)) as a prior constraint to ensure global consistency (see Figs.
2 (b) and (c)) between before and after enhancement on the relative grayscale.
Mathematically, we express the regularization term as:

fg = ||L−G||22, (2)

where G=wgif(P ) is the output (see Fig. 2 (b)) smoothed by a weighted guided
image �ltering [17] operation wgif(·). This regularization term takes into account
the balance between RG preservation and noise suppression. Therefore, G as a
prior can not only be used to maintain the consistency of RG in the illumination
smoothing process but also be regarded as the initial value of illumination to
guide its smoothing.

(a) Input (b) G (c) Scanline �ltering results

Fig. 2. Illustration of RG changing.

Exposure Consistency Prior. Exposure consistency emphasizes a reason-
able estimation of the illumination distribution. This distribution usually can
be understood as piecewise smoothing [7, 8, 10], which follows the illumination
distribution on images captured from the real scene and can help to recover clear
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details from underexposed regions in CSI. It should be noted that the di�erent
existing norms, such as L1 and L2, directly employed to constraint illumination
will ignore the speci�city of CSI, i.e., the structure is buried in the dark or says
blind. To alleviate this issue, we use Lγ norm [20] to constrain the illumination
gradient to achieve piecewise smoothing and further estimate the illumination
with preserved overall structures. Hence, we provide one spatial smoothness reg-
ularization term:

fe = ||∇L||γγ , (3)

where || · ||γγ stands for Lγ norm with 0 ≤ γ ≤ 2. ∇ is the �rst-order di�erential
operator contains two directions: ∇h (horizontal) and ∇v (vertical). Since the
Lγ norm in Eqn. (3) will cause a non-smooth optimization problem, a simple
numerical approximation is introduced [2, 11, 20, 3] and Eqn. (3) can be rewritten
as:

fe ≈ w||∇L||22, (4)

where ||∇L||γγ ≈ w∥|∇L||22 and

w ≈


(|∇L|+ εL)

γ−2
, 0 < γ ≤ 2

ϕ−2 if |∇L| < ϕ

|∇L|−2 otherwise

}
, γ = 0

, (5)

ϕ is a small constant (typically 1
8 ) used for determining gradient sparsity of

illumination. The constant εL is a small value (typically 0.0001) to avoid the zero
denominator. For approximate operations, please refer to [20, 29]. Obviously, this
approximation operation, on the one hand, changes the non-smooth Lγ term into
L2 one. On the other hand, it makes the weighted L2 norm have both abilities
that the piecewise smoothness and the L0 norm pursuit (gradient sparsity), as
shown in Fig. 3.

Fig. 3. Distribution of di�erent penalty functions.

Texture Consistency Prior. Existing researches [9, 23] regard the decom-
posed R as the part that can remain unchanged under illumination variations
because it contains inherent properties of the object surface, namely edges. Con-
sistent properties are also included in edges of the captured CSI. So, texture
consistency needs to consider the consistency of edge degradation between re-
�ectance component and input before and after the CSI enhancement, which
can also be called re�ectance gradient degradation prior. In addition, edges, as
dependency features that need to be identi�ed in the 3D model reconstruction
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method [24], should be preserved in the output after CSI enhancement to the
greatest extent possible. To this end, we project edges of the noise-reduced orig-
inal CSI P onto ones of R and express the gradient �delity term as follows:

fr = ||∇R−M ||22, (6)

where

M(∇P ; εm) :=

{
0, |∇P | < εm

∇P, otherwise,
(7)

is a truncated function that only penalizes gradients whose magnitudes are
smaller than the small threshold εm (typically 1e-5), as shown in Fig. 4. εm
is used for determining whether there is an edge at a pixel in the CSI. In other
words, small εm can better preserve textures, and vice versa. So, this regular-
ization term separates the re�ectance component (with noise-suppressed and
detail-preserved) from CSI by removing small non-zero gradients, i.e., �attening
tiny textures/noises.

(a) P × 10 (b) |∇P | (c) |M | (d) 1D signal

Fig. 4. Illustration of truncated ability in M . For observation easily, the intensity of
original CSI P is linearly scaled by 10.

3.3 Exact Solver to Problem (1)

Although the illumination smoothness term constrained by Lγ norm is non-
smooth, the results of numerically approximated operation act as a tight sur-
rogate to change the non-smooth Lγ term into a piecewise smooth L2 one. By
doing so, the optimization function in Eqn. (1) can be rewritten as the following
equivalent form:

min
R,L

F (R,L) = ||R ◦L−P ||22 +λew||∇L||22 +λg||L−G||22 +λr||∇R−M ||22. (8)

One can see that the optimization function in Eqn. (8) can be regarded as a
problem that only contains two variables (R and L) to solve. Block coordinate
descent (BCD) [27] technique is a common choice to solve this problem. To
facilitate the solution and analysis, we further divide the objective function in
Eqn. (8) into two sub-problems corresponding to R and L as follows:
L sub-problem: Collecting the L involved terms from Eqn. (8) gives the fol-
lowing problem:

Lk+1 = argmin
L

||R ◦ L− P ||22 + λew||∇L||22 + λg||L−G||22. (9)
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R sub-problem: With Lk+1 acquired from the above solution, the minimiza-
tion corresponding to R in Eqn. (8) can be formulated as the following optimiza-
tion problem:

Rk+1 = argmin
R

||R ◦ Lk+1 − P ||22 + λr||∇R−M ||22. (10)

As can be seen from the two sub-problems above, they are both minimization
problems containing only classical least-squares terms and therefore have closed-
form global optimal solutions. The solutions are detailed as follows:
a) Solution for (T1): The sub-problem in Eqn. (9) can be reformulated in matrix
notation as:

(R◦L−P)
T
(R◦L−P)+λg(L−G)

T
(L−G)+λe(L

TDT
hWhDhL+L

TDT
vWvDvL),

(11)
where Dh and Dv are Toeplitz matrices from discrete gradient operators with
forward di�erence, respectively. Wh and Wv denote diagonal matrices contain-
ing weights wh and wv, respectively. The unique solution of the variable L in
Eqn. (11) can be easily obtained by performing linear system operation like:

Lk+1 = (RT
kRk + λg1+ λeW̄k)

−1
(RT

kP+ λgG), (12)

where 1 is an identity matrix andDT
hWhDh+D

T
vWvDv represents a symmetric

positive de�nite Laplacian matrix [16].
b) Solution for (T2): Similar to the solution of (T1), the update of the closed-
form solution Rk+1 can be directly obtained by the following operations:

Rk+1 = (LT
k+1Lk+1 + λrV̄k)

−1
(LT

k+1P+ λrM̄), (13)

where V̄ = DT
hDh+D

T
vDv. Note that M̄ = vec−1(DT

hṀh+D
T
v Ṁv), where Ṁh

and Ṁv are the vector versions of the corresponding Mh and Mv, respectively,
while vec−1(·) represents the inverse vectorization operator for reshaping vectors
back to their matrix format.

The above iterative estimation is repeated until the convergence conditions
||Lk+1 − Lk||/Lk ≤ ϖ and ||Rk+1 −Rk||/Rk ≤ ϖ are satis�ed or the maximum
number of iterations exceeds a preset constant K. The whole iterative optimiza-
tion process is summarized as Algorithm 1. To further improve the visibility of
images, the �nal enhanced CSI Pf is achieved by projecting the adjusted illumi-
nation back to the re�ectance, i.e., Pf = R ◦ Lf , where Lf is gamma-corrected
(empirically set as 2.2) illumination estimation.

4 Experiments

In this section, we run all enhancement experiments using Matlab R2021a on a
laptop with Windows 11 OS, 16G RAM and Intel Core i7-2.3 GHz CPU. In our
experiments, the parameters λe, λg, λr, ϖ, and γ (in Lγ norm) are empirically
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Algorithm 1 Exact Solver to Optimization Problem (8)

Require: The weight coe�cients λe, λg, λr; the original CSI P, initial illumination
map G, and truncated result M; the positive parameter ϖ and the maximum
number of iterations K.

Ensure: Optimal solutions Rk+1 and Lk+1.
1: initial L0 ← P, ϖ ← 0.001, k ← 0, and K ← 20;
2: repeat
3: Update Lk+1 using Eqn. (12);
4: Update Rk+1 with Lk+1 using Eqn. (13);
5: k ← k + 1;
6: until (||Lk+1 − Lk||/Lk ≤ ϖ and ||Rk+1 −Rk||/Rk ≤ ϖ) or k > K.

set to 0.01, 0.15, 5, 0.001, and 0.6 respectively. In addition, the experimental
setup in the SLs' hardware con�gured with an o�-the-shelf projector (TI3010,
with resolution 1280Ö720 pixels, ≤2800fps) and a camera (BFS-U3-16S2M, with
resolution 1440Ö1080 pixels, USB interface) with 50ms of exposure time, as
shown in Fig. 5 (a). Meanwhile, we use the 3D model reconstruction method
[24] (for showing the reconstructed 3D model performance of enhanced CSI)
and its coding strategy (see Fig. 5 (b)), and implement it by writing C++ in
the VS2019 environment. To fully evaluate the proposed method, we test 16
sets CSI sequences of object surfaces with di�erent re�ectance under a �xed low
exposure setting, such as samples in Fig. 5 (c). Then, we compare proposed CSIE
subjectively and objectively with existing state-of-the-art methods, including
CVC [4], SIRE [7], WVM [8], LIME [10], JieP [2], JED [22], HQEC [32], GTV
[11], STAR[28], and LSCN [30].

(a) SLs (b) Coding strategy (c) Testing samples

Fig. 5. Experimental con�guration. (a) The SLs consists of an o�-the-shelf projector
and a camera, and the two devices are synchronized. (b) Coding strategy (with 18
pattern images to be projected) of Gray code combined with binary shifting strip with
widths of 4 pixels [24]. (c) Samples from 16 sets of the captured CSI sequences.

Retinex decomposition. One can observe that visual artifacts appear in
the illumination and re�ectance components on the SIRE simultaneously, such
as the edges of the frog's eyes in Fig. 6 (b). These artifacts are generated due
to an unreasonable assumption that illumination is with unconstrained isotropic
smoothness. Furthermore, JieP, JED, and STAR all produce strong artifact and
over-smoothing problems on the re�ectance component, such as the frog's hair
and mouth in Figs. 6 (c), (d), and (e). For these visual distortions in the decom-
posed components, in essence, it is because those methods reduce the ability to
discriminate structures-textures at very low exposures. In contrast, the illumi-
nation component constrained by the Lγ norm in our method to be as far as
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CSIE: Coded Strip-patterns Image Enhancement 11

possible both removed most of the tiny textures and preserved the prominent
structures. Meanwhile, the re�ectance component constrained by the L2 norm in
our method to maintain both more textures and details of high-frequency, such
as the frog's face in Fig. 6 (f). More importantly, unlike SIRE, thanks to the
suppression of noise factors, our model can e�ectively avoid noise ampli�cation
on the re�ectance component, which is particularly suitable for recovering the
details of underexposed CSI.

(a) Input (b) SIRE (c) JieP (d) JED (e) STAR (f) Ours

Fig. 6. Comparison of several Retinex decomposition results. (a) Input and corre-
sponding ten times intensity levels (used for observation). Top Row in (b) to (f):
Illumination component. Bottom Row in (b) to (f): Re�ectance component.

(a) Original (b) w/o fe (c) w/o fg (d) w/o fr (e) Ours

Fig. 7. Ablation study of di�erent prior on 3D reconstruction performance of the pro-
posed CSIE. (a) The images from the �rst to the last rows are original CSI, depth
maps, and 3D point clouds, respectively. From (b) to (e): The enhanced versions cor-
responding to (a).

3D Impact of model with di�erent prior. Since RG, exposure, and tex-
ture consistency priors have not been adopted in previous Retinex algorithms,
we analyze their impacts in the following experiments. Here, we set λe = 0, or
λg = 0, or λr = 0 in (8), respectively, and update them according to Eqns. 9
to 13 describe, and thus have three baselines: CSIE w/o fe, CSIE w/o fg and
CSIE w/o fr. From Fig. 7, one can see that CSIE w/o fe tends to generate vi-
sual artifacts on the coded strip at the right black that should not be appeared
on the enhanced CSI results. This problem will lead to lots of holes appearing
on 2D depth maps and 3D point clouds simultaneously. The bright streaks of
CSIE w/o fg on the enhanced CSI results destroy the coded information at the
depth discontinuities, causing the details loss of the screwdriver's local pro�le
on the 2D depth map and 3D point clouds, respectively. However, the increase
in point clouds numbers of both demonstrates that the two regularization terms
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have a positive impact on improving the 3D reconstruction performance of the
object surface. For CSIE w/o fr, the local textures lost in the enhanced CSI
results directly lead to the emergence of large numbers of black holes in the
2D depth image, which seriously a�ects the numbers of 3D point clouds extrac-
tion. Obviously, the prior fr is far more important than the former two for CSI
enhancement and 3D reconstruction. By considering three, the proposed CSIE
obtains output with pleasing visibility and undistorting coded strip, which not
only satis�es the visual expectations (consistency between RG, exposure, and
texture) on the enhanced CSI results but also reasonably recovers more useful
depth details buried in the dark.

Convergence Behavior. Analyzing the convergence rate of CSIE with dif-
ferent prior from Fig. 8, one can observe that di�erent components with joint
priors are faster in convergence rate than ones without λe, or λg, or λr. This
is mainly due to the BPC criterion applying the di�erent priors' constraints to
reduce the solution space of the objective function. Besides, one can see that the
iterative errorϖ for di�erent components with arbitrarily di�erent priors reduces
to less than 0.001 in 20 iterations. This favorable convergence performance ben-
e�ts from the proposed CSIE exact solver converging to global optimal solutions
for the problem (8).

(a) The ACC of L (b) The ACC of R

Fig. 8. Convergence rate of our model with di�erent prior. ACC: Average convergence
curves.

Subjective Comparison. For comparison fairness, we use the CSI sequence
with 2000 ms of exposure time as the reference (ground truth) instead of the
one with 50 ms of that. Fig. 9 shows several visual comparisons. From which,
we can �nd that WVM, HQEC, STAR, and GTV cannot e�ectively recall the
information in the dark region on the original CSI, which signi�cantly a�ects the
depth information extraction and the 3D model reconstruction, such as the bells
in Fig. 9 (a). This problem is almost always generated, especially on GTV results.
Although the enhanced CSI results of CVC and LSCN exhibit higher visibility
in the given cases, the coded features with relatively regular bright-black strips
present on them are destroyed. While, unreasonable coded strips indirectly cause
both to produce invalid depth and point cloud maps, as shown in the second and
three rows in Figs. 9 (a), (b) and (c). As for LIME, it recovers more obvious and
high-contrast details, however, its depth and point cloud information will be lost
due to ampli�ed noises and overexposed textures on the enhanced CSI results'
local regions. In contrast, the enhanced CSI results by CSIE are closer to the
ground-truth CSI than other methods, as shown in Figs. 9 (a), (b) and (c).
Besides, our method obtains a balanced enhanced performance between depth
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estimation, point clouds extraction, and 3D model reconstruction bene�t from
the reasonable consideration of BPC introduced for CSIE.

(a)

(b)

(c)

Fig. 9. Result comparison of di�erent methods on CSI. From Left to Right in Three
Cases: Original CSI, Ground truth, CVC, WVM, LIME, LSCN, HQEC, STAR, GTV,
and Ours, respectively. From Top Row to Bottom Row in Three Cases: Enhanced
results by di�erent methods, corresponding 2D depth map, 3D point clouds, and 3D
mesh map, respectively.

Objectively Comparison. Here, we apply four indicators (peak signal-
to-noise ratio (PSNR), structural similarity index measure (SSIM), root mean
square error (RMSE), and number of points (NPs)) to evaluate the performance
of our CSIE objectively. As we can see, our CSIE method performs favorably
against existing image enhancement methods adapted to natural images, which
shows that the proposed CSIE method has superior performance in terms of
structure preservation and noise compression, as shown in Table 1. Addition-
ally, we note that STAR has higher NPs (see Fig. 10), but its other measure-
ment results (with smaller PSNR and SSIM values and larger RMSE values) are
less than the performance of our proposed method. It is worth noting that our
method ranks second on NPs, but the NPs extracted by our method have better
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3D reconstruction performance than the ones extracted by STAR, as shown in
Figs. 9 (a), (b) and (c). The main reason is that using local partial derivatives
in STAR generates numerous invalid NPs, which in turn recovers more erro-
neous 3D surface details that do not belong to the object. Obviously, the CSIE
method achieves not only higher PSNR and SSIM values but also lower RMSE
values in contrast to mentioned above methods, which is highly correlated with
its better decomposition of the illumination and re�ectance components on the
CSI. Overall, the CSIE method not only has a better comprehensive performance
compared to other methods, but its results are at least 17% improvements better
than the original CSI sequences in terms of NPs extraction.

Table 1. Quantitative measurement results on 16 sets of CSI sequences with a �xed
exposure value (50 ms) in terms of average PSNR, SSIM, and RMSE.

Metrics Original CVC WVM LIME LSCN HQEC STAR GTV Ours

PSNR 19.38 15.89 23.55 22.07 19.76 21.82 23.44 19.23 25.23
SSIM 0.3969 0.3152 0.7167 0.5602 0.0931 0.6261 0.7858 0.3807 0.8098
RMSE 0.1839 0.3979 0.1089 0.1133 0.3271 0.1317 0.1056 0.1817 0.1009

Fig. 10. Quantitative comparison results on 16 sets of CSI sequences with di�erent
exposure values (50 ms, 100 ms, and 200 ms) in terms of average NPs.

5 Conclusion

In this paper, we propose a novel CSIE method implemented in a variational
optimization decomposition, which can be used for CSI enhancement and fur-
ther improve the performance of the existing 3D model reconstruction method
based on SLs. The proposed CSIE is based on a visually bidirectional perceptual
consistency criterion, including RG, exposure, and texture consistency priors.
Combined with all priors, the proposed CSIE can simultaneously obtain the
illumination component with piecewise smoothness and the re�ectance compo-
nent with detail preservation on the enhanced CSI under a low exposure setting.
Experimental results on 2D enhancement and 3D model reconstruction demon-
strate that our CSIE outperforms other existing enhancement methods adapted
to the natural image in terms of visual enhancement and coded strip feature
preservation.
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