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Abstract. The objective of image inpainting is refilling the masked area
with semantically appropriate pixels and producing visually realistic im-
ages as an output. After the introduction of generative adversarial net-
works (GAN), many inpainting approaches are showing promising de-
velopment. Several attempts have been recently made to control recon-
structed output with the desired attribute on face images using exemplar
images and style vectors. Nevertheless, conventional style vector has the
limitation that to project style attribute representation onto linear vector
without preserving dimensional information. We introduce spatial-aware
attribute controllable GAN (SAC-GAN) for face image inpainting, which
is effective for reconstructing masked images with desired controllable fa-
cial attributes with advantage of utilizing style tensors as spatial forms.
Various experiments to control over facial characteristics demonstrate
the superiority of our method compared with previous image inpainting
methods.

1 Introduction

Image inpainting is a task about image generation which has long been studied
and dealt with in computer vision. Given masked images with missing regions,
the main objective of image inpainting is understanding the masked images
through neural networks and refilling the hole pixels with appropriate contents
to produce the final reconstructed output. Image inpainting has been mainly
applied to restore damaged images or refill appropriate content after removing
some specific object in a photo.

Although conventional inpainting works [1,2] have demonstrated considerable
reconstruction ability, image inpainting has achieved notable development since
the introduction of generative adversarial networks (GAN) [3], which facilitate
image synthesis ensuring plausible quality. Inpainting approaches with GAN-
based methods [4,5,6] were able to show more visually realistic results than tra-
ditional approaches due to competitive training driven by adversarial networks.
Recently, many efforts are focusing on user-controllable image inpainting by re-
filling masked region with desired contents beyond the limitation of traditional
deterministic image inpainting. For example, providing an exemplar image for
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Fig. 1. Examples of face image inpainting with attribute manipulation (’smile’, ’mus-
tache’) using our proposed model. We can reconstruct intended image by giving a
condition, which is considered a domain of attribute.

the masked region [7], giving a guideline based on edge image [8,9], or facial
landmarks [10].

After StarGAN [11] demonstrated GAN-based image translation beyond mul-
tiple domains, StyleGAN [12] showed the potential of image generation with user
preference by mapping styles into features. Based on these translation methods,
COMOD-GAN [13] adopted StyleGAN based style codes for controllable image
inpainting with conditional input. Additionally, [14] made a trial to reconstruct
images with style codes using AdaIN [15,12] or weight modulation [16].

Nevertheless, StyleMapGAN [17] pointed out that existing style-aware image
generation or reconstruction projects style attributes into a linear vector with
ignorance of spatial information for facial attributes. This means that facial
attributes have information regarding shapes and dimensions, and projecting
those style attributes onto linear vectors without preserving spatial information
may reduce image generation quality. They proposed handling style codes as
spatial tensors, called style maps.

Motivated by these previous works, we further propose spatial-aware at-
tribute controllable GAN for image inpainting (SAC-GAN). Given input masked
image, the target attribute is converted to spatial style map through convolu-
tional mapping networkM. Then, we adopted a cross attention module to style
maps for enhancement of contextual consistency in feature space to achieve long-
range dependency between image feature and spatial style map. Finally, obtained
style maps go through upsampling networks to produce multi-scale style maps,
which are modulated to each layer of the decoder to reconstruct masked areas
with proper contents with target attributes. To confirm the advantages of the
proposed model, we conducted comparative experiments with other approaches
and ablation studies with and without various loss conditions. The main con-
tributions of this study are summarized as follows: (1) Attribute-controllable
inpainting model with user-guided condition input and high-quality image re-
construction based on GAN. (2) Convolutional mapper network based on modu-
lation which preserves dimensional information for spatial style maps with cross
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attention module for global consistency between feature from masked image and
spatial style maps. (3) Multi-scale spatial style maps obtained using an upsam-
pling network are applied to the decoder using modulation to ensure a higher
quality than conventional linear style vectors.

2 Related Works

2.1 Image Inpainting

Conventional image inpainting is categorized into diffusion-based and patch-
based approaches. Patch-based approaches [1] usually relied on dividing image
as small patches and refilling occluded areas with outer patches by computing
scores, such as cosine similarity.

However, since deep-learning became a trend in computer vision, the capa-
bility of generative adversarial networks (GAN)[3] has shown remarkable per-
formance in image generation. Many recent researches about image inpainting
have been based on GAN and showed high quality in the reconstructed image
[4,5,6,18]. Some approaches attempted to imitate the traditional approach of
patch-based inpainting with the GAN-based model [19]. Other methods [20,21]
tried to utilize binary masks to emphasize pixels to be reconstructed.

Because of the deterministic property of conventional image inpainting ap-
proaches, several researches focus on diverse image restoration to produce mul-
tiple possible predictions for damaged images. For example, considering distri-
butions [22,23], or adopting visual transformers for the prediction of prior possi-
bilities [24]. COMOD-GAN [13] showed visually excellent inpainting outputs by
using stochastic learning and style codes [12] for large scale image restoration.
It showed the possibility of applying modulation in image inpainting tasks. In-
spired by attention-based [25] works like Self-Attention GAN [26], UCT-GAN [7]
applied feature-cross attention map for image inpainting from two features from
different images to ensure high consistency between pixels from the reconstructed
image by combining two features semantically.

2.2 Facial Attribute Manipulation

StarGAN [11] demonstrated face image translation for multiple domains. The
improved StarGAN v2 [27] showed the possibility of generating diverse results
within one domain using the additional mapping network and feature-level style
encoder. Styles for image generation are usually utilized for editing facial at-
tributes or mixing several facial images with high quality. Unlike pixel-wise style
translation [28,29], AdaIN [15] presented style editing with the generative model
using instance normalization and showed remarkable possibility in manipulating
a specific style. PA-GAN [30] focused on feature disentanglement using pairs of
generators and discriminators for progressive image generation with attributes.
StyleGAN [12] showed how a latent-space aware network facilitates multi-domain
style transfer with AdaIN. StyleGAN v2 [16] proposed weight modulation which
demonstrates better image generation quality than AdaIN.
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Fig. 2. Overall architecture of SAC-GAN consisting of the encoder Ge and the decoder
Gd as a generative network. The mapper M extracts spatial style maps [17] from
feature from the encoder and mapper. The style maps Sx are applied to decoder’s
layer by weight modulation [16].

3 Proposed Methods

As shown in Fig. 2, overall network is based on an encoder-decoder based gener-
ative architecture with weight modulation [16] to handle facial attribute features
as style codes. However, beyond previous approaches dealing with styles [12,13],
our model handles style codes as spatial tensors form containing spatial dimen-
sion information like StyleMapGAN [17] .

3.1 Facial Attributes as domains

Similar to L2M-GAN [31], we define a set representing a particular facial at-
tribute as a domain, which can be considered as male/female, wearing glasses,
mustache, or any other possible attributes. Then, we can consider a style code
Sk for a specific domain ck → K. In implementation, we consider domain K
as a condition value ck. Then synthesized output from input image x will be
described as G(x, Sk), where G denotes the encoder-decoder structure genera-
tor G = {Ge, Gd}. The proposed network for extracting a style maps Sk from
condition input ck and its detailed process are explained in the following sections.

3.2 Convolutional Mapper Network

Because of projection style information to linear vectors, some significant dimen-
sional information could be lost during the modulation process. StyleMapGAN
[17] suggests handling style code as a spatial form called style maps. With this
motivation, we propose a conditional mapper based on co-modulation [13]. In-
stead of linear vector and fully-connected layers, our mapper network M pro-
duces a spatial style map sk as output.

Additionally, in mapper networkM, to ensure dependency between far pixels
in style maps and features from masked input image x, we adopted a cross atten-
tion module in similar way as [26,7]. Cross attention module generates attention
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Fig. 3. Illustrations of conditional mapper networkM, upsampling layers, and cross
attention module. The initial style map is generated fromM and cross attention module
gradually upsampled to produce pyramid-like spatial style maps [17].

map A ∈ RH×W from the encoder’s feature map F(x) = Ge(x) ∈ RC×H×W

and output of mapper networkM(Ge(x), ck) ∈ RC×H×W . At first they are re-
shaped through 1×1 convolution and the cross attention module produces the
initial style map sk as:

A = σ(tr(F(x)) · F(M)), sk = (A · F(x))⊕F(x) (1)

Then, the refined style map sk is sent to the upsampling network to produce
style maps with various scales. Where input masked image x is given, style maps
for a specific attribute k are denoted as:

Sk = {s0k, . . . , sN−1
k } =M(Ge(x), ck) (2)

Where ck is condition value for attribute domain K and Ge(x) is the output
feature from encoder Ge from input masked image x. The pyramid-like set Sk

includes style maps with various scales. As shown in Fig. 3, the condition value
ck is converted to a one-hot vector and concatenated to the feature Ge(x). The
condition value is converted to a one-hot vector and passed through the mapping
network. The mapped vector is reshaped to the same size as the feature Ge(x)
and the concatenation of the vector and Ge(x) is passed through spatial mapping
layers.
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Fig. 4. Overview of our four loss functions for training our proposed models. First pixel
loss (Lpix) and style consistency loss (Lsty) are computed from G(x, Sx) (source domain
X ). Then adversarial loss (Ladv) and identity preserving loss (Lid) are computed from
G(x, Sy) (target domain Y).

3.3 Generator with Co-Modulation

The encoder Ge takes images as input to represent the image as a feature map.
We denoted masks pixels by concatenating binary masks to the input image.
The encoder output feature Ge(x) obtained from input image x and mask is
reconstructed in the decoder Gd containing skip-connection [32] and style mod-
ulation [16] from the set of style codes Si. The modulated convolutional from
each decoder layer applies the intended style (Si) to the feature map during the
reconstruction process.

3.4 Training Objectives

Unlike previous style-aware image translation methods that use complete images
as inputs, we have to perform style modulation and image reconstruction simul-
taneously from masked input images that lack visual information. To achieve
these objectives, we reconstruct input image x with style maps Sx from domain
attribute cx → X which is in the same domain as input image x ∈ X . After op-
timizing pixel reconstruction loss and style consistency loss in source-to-source
inpainting, then we optimize adversarial loss and face identity loss in source-to-
target inpainting. The training scheme is operated by four main loss functions
including pixel-wise loss (Lpix), adversarial loss (Ladv), style consistency loss
(Lsty), and identity preserving loss (Lid).
Pixel-wise Reconstruction Loss. Basically, a generative model for re-
constructing images requires a pixel-wise loss to refill approximate content in
occluded regions. Because L2-norm loss has a drawback of making the recon-
structed image blurry, L1 loss is adopted. Our generatorG consists of the encoder
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Algorithm 1 Training Procedure
1: Prepare dataset for domain X and domain Y
2: Fix recognizer encoder R
3: while Ge, Gd, D,M is not converged do
4: Sample batch x̂ and its domain condition cx → X from dataset
5: Generate masks m for x̂ and construct input x by x← x̂�M

Phase 1 : Reconstruct with source domain X
6: Extract feature Ge(x) from Ge

7: Extract Sx fromM with Ge(x) and condition cx
8: Reconstruct outputs G(x, Sx)← Ge(x) from Gd

9: Compute losses Lre and Lsty

10: Update Ge, Gd andM with Lre and Lsty

Phase 2 : Reconstruct with target domain Y
11: Pick target domain condition cy → Y
12: Extract Sy fromM with Ge(x) and condition cy
13: Reconstruct outputs G(x, Sy)← Ge(x) from Gd

14: Compute losses Ladv and Lid

15: Update Ge, Gd andM with Lid and Ladv

16: Update D with Ladv

17: end while

and the decoder, which refills missing area from input image x with appropriate
pixels to produce reconstructed output. In the training phase, the pixel loss is
computed from reconstructed image G(x, Sx) from style maps Sx with the same
domain cx → X as the input image x and ground-truth x̂.

Lpix = |G(x, Sx)− x̂|1 (3)

Where Sx denotes style maps obtained from mapper with source domain
condition cx, G(x, Sx) denotes the reconstructed output from x using Sx with
the decoder’s weight modulation.
Adversarial Loss. The synthesized image should be realistic enough to be
comparable to the original image. To achieve realistic reconstruction output
beyond multiple attributes, we employed a multi-domain discriminator [31,33]
based on Wasserstein GAN [34]. We also applied the R1-regularization gradient
penalty [35] to the adversarial loss for the discriminator’s stable training with
high convergence. The adversarial loss is defined as follows:

Ladv = Ex̂[− logD(x̂, cx)] + Ex̂,cy [log (1−D(G(x, Sy), cy))]

+ Ex̂[5D(x̂, cx)],

Where Sy indicates style maps from target domain cy → Y, D(G(x, Sy), cy)
is the output of the discriminator for the fake image with target domain cy; and
D(x̂, cx) denotes the real image description with source domain cx, which is the
same as the domain of ground-truth image x̂.
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Style Consistency Loss. We define style consistency loss [36,29] in source
domain cx to guarantee that the encoder Ge and mapper M extract identical
style maps from reconstructed image G(x, Sx) and ground-truth x̂.

Lsty =

N−1∑
i

(|six̂ − six|2) (4)

Where Sx = {s0x, s1x, ..., sN−1
x } are N style maps obtained from the encoded

feature of the reconstructed imageG(x, Sx) and mapperM, Sx̂ = {s0x̂, s1x̂, ..., s
N−1
x̂ }

denotes style maps from the feature of ground-truth image x̂ and mapper M
so that the style consistency loss can be computed from the summation of L-2
distances between Sx and Sx̂.
Identity Preserving Loss. After computing the above three losses, we have
reconstructed images with source attribute domain X and target attribute do-
main Y. From those images we introduced identity preserving loss, which guar-
antees that reconstructed outputs from an image x preserve the same identity.
Similar to [37], we adopted the face identity recognizer network ψ, which is the
pre-trained ArcFace [38] with CASIA-WebFace [39]. The identity loss for our
model is defined as:

Lid = |ψ(G(x, Sx))− ψ(G(x, Sy))|2 (5)

Full Objective. Finally, the total objective for training our proposed SAC-
GAN can be described as a combination of aforementioned losses:

Ltotal = λpix · Lpix + λadv · Ladv + λsty · Lsty + λid · Lid (6)

Where {λpix, λadv, λsty and λid} denote hyper-parameters for controlling the
importance of each component. Experimentally, we conducted training and test
with the hyper-parameters conditions of λpix = 100, λadv = 1, λsty = 1 and
λid = 0.1. Detailed training strategy is shown in Algorithm 1.

4 Experiments

4.1 Implementation and Datasets

Datasets Aligned face datasets have the possibility that they basically have
spatial information because their significant facial components are fixed. In order
to confirm that our spatial-aware method has an effect even in the unaligned face
images, we prepared wild CelebA dataset [41] using only face detection based
on MTCNN [42]. We cropped the face images with 25 margins and 128×128
size. CelebA contains more than 200,000 face images including various facial
attributes, which are mainly used for quantitative evaluation for restoring fa-
cial images in image inpainting. For quantitative experiments, we mainly used
’smiling’ attribute class data because the amount of data in each class is well
balanced compared to other attributes.
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(b) Input(a) Original (c) CE (d) CA (e) Partial (f) Gated (g) Ours

Fig. 5. Comparison of inpainting result with CelebA dataset. (a) Ground-truth. (b)
Input. (c) context encoders (CE) [4]. (d) contextual attention (CA) [19]. (e) partial
convolution [20]. (f) gated convolution [21]. (g) Ours.

Implementation Details. Our network is implemented in PyTorch and
trained for 100,000 iterations using Adam optimizer [43] with a batch size of
20. Training and experiments are conducted on the NVIDIA TITAN RTX GPU.
For occlusion masks, we adopted two strategies: fixed masks and irregular masks.
The fixed masks cover all main facial components, including the eyes, nose, and
mouth. The irregular masks are same used in gated convolution (free-form) [21],
which creates random brushes, circles, and rectangles.

In order to compare the quantitative performance with other methods, we
employed the facial attribute classifier based on ResNet-50 [44] to compare the
visual certainty of specific attributes from the reconstructed image and FID [45]
to measure the quality of generated images using Inception-V3 [46] network. We
exploit several facial attributes for qualitative experiments, including ’smile’,
’gender’, ’glasses’ and ’mustache’ which are visually evident, and location infor-
mation was expected to be important because those attributes tend to appear in
certain areas of the face. For each attribute, we conducted training and test as
two-class domains and used 90% of images for training and 10% for evaluation.

For comparative experiments with previous other inpainting models, we con-
ducted two types of comparisons. 1) Comparing our model’s inpainting perfor-
mance with previous image inpainting models like context encoders (CE) [4],
contextual attention (CA) [19], partial convolution [20], and gated convolution
[21]. To compare our SAC-GAN with these models, we reconstructed the masked
image by giving the same domain condition value as ground-truth. 2) Compar-
ing with other models with conditional-based inpainting. In this experiment, we
consider the condition as attribute domains such as wearing glasses, smiling and
gender. Besides COMOD-GAN [13], we combined CGAN [40] and CE [4] as a
baseline inpainting model for facial attribute manipulation without modulation.
We denoted conditional CE as ’C-CE’ which takes additional input condition
value and reshapes it to tensor in a similar way to CGAN [40].
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(b) Input(a) Original (c) C-CE (d) COMOD (e) Ours

Smile ↔ Non-smile

Glasses ↔ Non-glasses

Fig. 6. Examples of attribute controllable face inpainting with given domain attribute
condition. From left to right are: (a) Ground-truth. (b) Input masked image. (c) Con-
ditional CE [40,4]. (d) COMOD-GAN [13]. (e) Ours.

4.2 Quantitative Comparisons

As mentioned above, we evaluated the inpainting task of our proposed model
by providing the same condition attribute with the ground-truth of the input
masked image. For example, we split test set into ’smile’ and ’non-smile’ groups
and evaluated the average accuracy in ’smile → smile’ and ’non-smile → non-
smile’ reconstruction. Table 1 presents the quantitative comparative results for
the inpainting task with various generative models.

Next, we conducted an inpainting test with facial attribute manipulation,
considering an attribute as a domain. Because facial attribute translation is a
hard task to evaluate using only with visual metrics, we deployed the ResNet-50
based facial attribute classifier to verify numerically that the attributes we ex-
pected were applied well during the reconstruction process. Fig. 7 shows the two-
class classification for specific attributes, including ’smile’ and ’eye-glasses’. Our
model produced higher performance and accuracy than other methods. Results
of quantitative comparison in attribute manipulating experiments are shown in
Table 2. In this table, we reported the results of test for ’non-smile → smile’ in-
painting task. Acc denotes accuracy of attribute classification about two classes:
smile and non-smile.
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Fig. 7. Accuracy of facial attribute classification about smiling(left) and eye-
glasses(right) from reconstructed images using various facial manipulation inpainting
methods. Input images are occluded by irregular masks and the x-axis denotes propor-
tion of occluded pixels from mask.

Fixed Mask Free Mask
FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑

CE [4] 13.83 19.46 0.641 11.86 20.09 0.759
CA [19] 10.35 21.87 0.694 9.13 21.87 0.803
Partial [20] 7.98 21.02 0.710 6.05 22.54 0.786
Gated [21] 6.43 22.65 0.748 4.23 23.09 0.801
Ours 4.55 23.39 0.769 3.18 24.68 0.814

Table 1. Quantitative comparison on CelebA with inpainting task for ’non-smile →
non-smile’ and ’smile → smile’ with fixed and free form masks. The highest perfor-
mances are marked in bold.

Fixed Mask Free Mask
FID↓ PSNR↑ SSIM↑ Acc↑ FID↓ PSNR↑ SSIM↑ Acc↑

C-CE [40,4] 21.49 19.28 0.621 88.54% 13.49 0.784 21.92 91.15%
COMOD [13] 10.28 20.65 0.665 92.60% 8.18 0.811 22.57 93.28%
Ours 10.04 21.30 0.701 93.82% 7.70 0.823 22.84 95.28%

Table 2. Quantitative comparison on CelebA with attribute manipulation inpainting
for ’non-smile → smile’ with fixed and free form masks. The highest performances are
marked in bold.
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(b) Input(a) Original (c) C-CE (d) COMOD (e) Ours

Male ↔ Female

Mustache ↔ Non-mustache

Fig. 8. Examples of attribute controllable face inpainting with given domain attribute
condition. From left to right are: (a) Ground-truth. (b) Input masked image. (c) Con-
ditional CE [40,4]. (d) COMOD-GAN [13]. (e) Ours.

4.3 Qualitative Comparisons

We also conducted qualitative comparisons with the same condition as exper-
iments for quantitative results. Reconstructed images from inpainting task are
shown in Fig. 5. Although other methods produce slightly distorted outputs,
applying weight modulation synthesized output images with better quality vi-
sually.

In Fig. 6, we present results of image inpainting with face attribute manipula-
tion. From top to bottom: ’non-smile→ smile’, ’smile→ non-smile’, ’non-glasses
→ glasses’, and ’glasses → non-glasses’. Our model synthesized visually natu-
ral output by filling masked areas with intended condition. Furthermore, our
SAC-GAN generated higher quality output with spatial style maps compared to
previous linear-based style modulation like COMOD-GAN [13]. Additionally, we
presented another results with ’mustache’ and ’gender’ attributes in Fig. 8.
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(a) (b) (c) (d) (e) (f)

Fig. 9. Ablation study results for our model on the various losses and cross attention
in inpainting task of ’non-smile→ smile’. (a) Input image. (b) Ground-truth. (c) Using
Lpix +Ladv. (d) Using Lpix +Ladv +Lsty. (e) Using Lpix +Ladv +Lsty +Lid and (f)
Using all losses and cross attention module.

Lpix Ladv Lsty Lid FID↓ PSNR↑ SSIM↑ Acc↑
X X 14.27 20.68 0.681 90.29%
X X X 10.81 20.48 0.663 92.10%
X X X X 10.28 20.86 0.685 93.01%
All losses + Cross Attention 10.04 21.30 0.701 93.82%

Table 3. Quantitative comparison for the ablation study with various losses on CelebA
with fixed mask and facial attribute ’non-smile → smile’.

4.4 Ablation Study

We trained our model on the auxiliary losses or module to check the effect of our
loss terms. We conducted our ablation study with fixed mask and various loss
conditions in ’non-smile → smile’ reconstruction task. As shown in Table 3. it
demonstrates preserving identity loss term produce more stable facial attribute-
aware inpainting by maintaining overall identity information beyond domain
conditions. The result in the bottom achieves better output, showing the benefits
of the cross attention module. The visual examples are shown in Fig. 9. We can
check that our cross attention improves the quality of synthesized images in
visual metrics and attribute accuracy. Since style consistency loss is excluded in
model (c), the ’smile’ attribute was not well applied to the reconstructed output.
In (d), although the expected attribute was well applied to output, it showed a
limitation that the identity is not maintained.

5 Conclusions

We presented SAC-GAN : Spatial-aware attribute controllable GAN for image
inpainting in this paper. Our network is able to restore masked image with
appropriate contents and intended attribute by using style tensors preserving
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spatial dimension instead of conventional linear style vectors. Through extensive
experiments, we demonstrated that our proposed SAC-GAN generating visually
remarkable outputs using spatial style maps. Additionally, our proposed cross
attention module achieved the advantage of long-range dependency between fea-
ture from image and style map, which enhanced the performance of style-aware
image inpainting. Moving forward, we expect our proposed model to reconstruct
images with high quality using more complex and extensive facial attributes.
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