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Abstract. Public concerns about deepfake face forgery are continually
rising in recent years. Existing deepfake detection approaches typically
use convolutional neural networks (CNNs) to mine subtle artifacts un-
der high-quality forged faces. However, most CNN-based deepfake detec-
tors tend to over-fit the content-specific color textures, and thus fail to
generalize across different data sources, forgery methods, and/or post-
processing operations. It motivates us to develop a method to expose the
subtle forgery clues in RGB space. Herein, we propose to utilize multi-
scale retinex-based enhancement of RGB space and compose a novel
modality, named MSR, to complementary capture the forgery traces. To
take full advantage of the MSR information, we propose a two-stream
network combined with salience-guided attention and feature re-weighted
interaction modules. The salience-guided attention module guides the
RGB feature extractor to concentrate more on forgery traces from an
MSR perspective. The feature re-weighted interaction module implicitly
learns the correlation between the two complementary modalities to pro-
mote feature learning for each other. Comprehensive experiments on sev-
eral benchmarks show that our method outperforms the state-of-the-art
face forgery detection methods in detecting severely compressed deep-
fakes. Besides, our method also shows superior performances on cross-
datasets evaluation.

Keywords: Deepfake detection · Multi-scale retinex · Generalization.

1 Introduction

Deepfake techniques [1–3] refer to a series of deep learning-based facial forgery
techniques that can swap or reenact the face of one person in a video to an-
other. While deepfake technology is very popular in the entertainment and film
industries, it is also notorious for its unethical applications that can threaten
⋆ Han Chen and Yuzhen Lin contributed equally to this work. Bin Li is the corre-

sponding author.
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politics, economics, and personal privacy. Over the past few years, a large num-
ber of deepfake videos (called deepfakes) uploaded to the Internet with potential
harms have been reported. Accordingly, the countermeasures being desired to
identify deepfakes become an urgent topic in social security.

To prevent malicious deepfake media from threatening the credibility of hu-
man society, deepfake detection (i.e, face forgery detection) is becoming an ur-
gent topic that has attracted widespread attention. Early works leverage hand-
crated features(e.g., eyes-blinking[4] or visual artifacts [5]) or semantic features
extracted by universal CNNs [6, 7] to identify real and fake images/videos. These
methods achieve promising performance when the training and testing data are
sampled from the same distribution. However, deepfakes in the real-world are
different from those contained in a training set in terms of the data source,
forgery method, and post-processing. Due to these mismatched domain gaps,
most deepfake detection methods suffer from severe performance drops in practi-
cal applications. Therefore, generalization capability is one of the major concerns
for existing deepfake detection systems.

In general, there are two typical manners for addressing the generalizing
problem have been explored. On the one hand, some works train the deepfake
detector with synthetic data that artificially simulates the forgery traces (e.g.,
visual resolution[8] or blending boundary [9]), which encourages models to learn
generic features for face forgery detection. However, these methods suffer severe
performance drop when facing post-process distortions (e.g. video compression).
On the other hand, some works utilize two-stream networks that introduce in-
formation from other domains, such as DCT[10] and SRM[11] features. These
methods either simply concatenate RGB and other features at the end of the
network or fuse them with at a shallow layer, which rarely considers the relation
and interaction between the additional information and regular color textures.
This makes it difficult for them to fully utilize the additional information.

As pointed in [12, 13], the poor generalization in CNN-based deepfake de-
tection can attribute to the fact that deep CNN models tend to easily capture
the content-specific texture patterns in the RGB space. Thus, designing a deep-
fake detector with good generalization should consider suppressing the content-
specific color textures and exposing discrepancies between forged and real re-
gions. With this simple but powerful insight, herein, we utilize a multi-scale
retinex enhancement inspired by the illumination-reflection model [14, 15] and
compose a novel modality, named MSR, to complementary capture the forgery
traces. To take full advantage of the MSR information, we propose a two-stream
network combined with salience-guided attention and feature re-weighted inter-
action modules. The salience-guided attention module guides the RGB feature
extractor to concentrate more on forgery traces from the MSR perspective at
multi-scale level. The feature re-weighting module leverages the correlation be-
tween the two complementary modalities to promote feature learning for each
other. Extensive experiments demonstrate that the proposed framework achieves
consistent performance improvement compared to state-of-the-art methods. The
main contributions of our work are summarized as follows.
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– To expose the forgery traces, we perform retinex-based enhancement and
propose a multi-scale retinex (MSR) feature as the complementary modality
for RGB images.

– To take full advantage of MSR information, we devise a novel two-stream
framework to collaboratively learn comprehensive representation. We design
two functional modules to promote the correlation and interaction between
the MSR and RGB components, i.e., the feature re-weighted interaction
module and salience-guided attention module.

– Comprehensive experiments are presented to reveal the robustness and gen-
eralization of our proposed method compared to several state-of-the-art com-
petitors.

2 Related Works

2.1 Face Forgery Detection

The past four years have witnessed a wide variety of methods proposed for
defending against the malicious usage of deepfakes. Early works focus on hand-
crafted features such as eyes-blinking [4] and visual artifacts [5]. Due to the
tremendous success of deep learning, convolutional neural networks (CNNs) [6,
7, 16] is widely used to deepfake detection task and achieved better performance.
As have been criticized, most of the methods suffer from severe over-fitting to
the training data and cannot be effectively used in many practical scenarios.
There are methods trying to cope with the over-fitting issue of deepfake detec-
tors. One of the effective approaches to address this problem is training models
with synthetic data. For instance, Li et al. [8] noticed the quality gap between
GAN-synthesized faces and natural faces, and proposed FWA (Face Warping
Artifacts) to simulate the fake images by blurring the facial regions of real im-
ages. BI (Blending Image) [9] and I2G (Inconsistency Image Generator) [17] were
introduced to generate blended faces which can simulate the blending artifacts
from of some pristine image pairs with similar facial landmarks. In addition,
it is also a common idea to use multi-modality (e.g., frequency domain) learn-
ing framework and auxiliary supervisions (e.g., forgery mask) to further mine
the heuristic forgery clues and improve the robustness of the model. Qian et al.
first employed the global and local frequency information for deepfake detection
task. Luo et al. [11] employed SRM filter that extract the high-frequency noise
to guide RGB features. Wang et al. [18] amplified implicit local discrepancies
from RGB and frequncy domain with a novel multi-modal contrastive learning
framework. Kong et al. [19] introduced PRNU noise information to guide the
RGB features, and proposed a novel two-stream network for not only identifying
deepfakes but also localizing the forgery regions.

In this work, we utilize a novel MSR modality based on the Retinex theory
[20] that exposes the forgery traces in RGB space. Furthermore, we devise a
novel two-stream network that combines the MSR and RGB information to
collaboratively learn comprehensive representation for detecting deepfakes.
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Fig. 1. Overall framework of our proposed method.

2.2 Retinex-based Methods

Retinex theory [20] models the color perception of human vision on natural
scenes. It assumes that the observed images can be decomposed into two compo-
nents, i.e., reflectance and illumination, which can be mathematically formulated
as:

S (x, y) = R (x, y)⊗ I (x, y) (1)

where x and y are image pixel coordinates. R (x, y) represents reflectance, I (x, y)
represents illumination and ⊗ represents element-wise multiplication.

Retinex-based methods are widely accepted among image enhancement method-
ologies [14, 21] due to their robustness. Besides, it can also be viewed as a fun-
damental theory for the intrinsic image decomposition problem, which aims at
disentangling an image into two independent components, such as the structure
and texture [22].

As for image forensics task, Chen et al. [15] proposed to use retinex-based
information for face anti-spoofing task and achieve great generalization perfor-
mances.

In this work, we apply the retinex-based information as the complementary
of RGB modality, which aims to improve the generalization performance of deep-
fake detection.

3 Methodology

3.1 Overall Framework

In this work, we propose a novel two-stream framework that utilizes MSR in-
formation for face forgery detection. Specifically, the original RGB images are
first converted to MSR images. Following that, to learn comprehensive feature
representation, the RGB and MSR information are integrated at three seman-
tic levels (low, mid and high) through a two-stream network combined with
salience-guided attention and feature re-weighted interaction modules.
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(b) Pipeline of MSR extraction in this work

Fig. 2. Illustration of multi-scale retinex (MSR) enhancement. (a) Inspired by [15],
we adopt a MSR-based algorithm for deepfake detection task. (b) Red boxes mark
blending traces that are hard to recognize in the RGB space but distinctive in the
MSR space.

According to the resolutions of output feature maps, we abstractly divide
the whole network into three semantic layers. As for CNN, the low-resultion
feature maps at the end of the network contain high semantic information, and
vice versa. Thus, we denote these semantic layers as l ∈ {low,mid, high} for
simplicity. H l,W l, Cl are the height, width, and channel of the feature map of the
corresponding layer. Formally, we define the feature map from the RGB and MSR
stream at l-th layers of network as F l

R ∈ RHl×W l×Cl

and F l
M ∈ RHl×W l×Cl

,
respectively. The overall framework of our proposed approach is illustrated in
Figure 1, and several components are elaborated in more detail as follows.

3.2 Multi-Scale Retinex Extraction

For the retinex theory, Eq.(1) is usually transformed into the logarithmic domain
as:

log[S (x, y)] = log[R (x, y)] + log[I (x, y)] (2)
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Fig. 3. The pipeline of our proposed method. We design a novel two-stream architec-
ture, which aims to collaboratively learn comprehensive representations from the RGB
and MSR information with Feature Re-weighted Interaction and Salience-Guided At-
tention modules.

We respectively represent log[S (x, y)] and log[R (x, y)] by s (x, y) and r (x, y)
for convenience. Summarizing the previous work, the illumination image can be
generated from the source image using the center/surround etinex.

r(x, y) = s(x, y)− log[S(x, y) ∗ F (x, y)] (3)

where F (x, y) denotes the surround function, and ∗ is the convolution operation,
and it is the so called Single Scale Retinex (SSR) model. To overcome the highly
dependency on the parameter of F (x, y), Jobson et al. [14] proposed a Multi-
scale Retinex (MSR) model, which weights the outputs of several SSRs with
different F (x, y).

As shown in Figure 2(a), the MSR modality can attenuate content-specific
colors and enhance forgery clues. Thus, we utilize the multi-scale retinex en-
hancement and compose a novel modality, named MSR, for deepfake detection
task. As shown in Figure 2(b), the pipeline of MSR extraction in this work can
be formulated as:

rMSR(x, y) =

3∑
i=1

wi {log[S(x, y)]− log [S(x, y) ∗Gi(x, y)]} (4)

where Gi(x, y) denotes three Gaussian filters with σi = 10, 20, 30. We also add
color restoration operations for eliminating color shifts after employing the above
MSR pipeline.

3.3 Feature Re-weighted Interaction

To collaboratively align and integrate the feature maps from two domains, we
proposed a novel Feature Re-weighted Interaction (FRWI) module inspired by
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the mechanisms of SPADE [23]. The computation block of FRWI is described in
Fig. 3(a).

Firstly, we concatenate feature maps from RGB and MSR streams with
F l
Concat = C

(
F l
R, F

l
M

)
, where C (·, ·) being feature concatenation in channel di-

mension. In order to align and aggregate the feature maps from two domains,
we respectively generate the weight γl and bias βl by utilizing F l

Concat as:

γl = δ
(
f1

(
F l
Concat

))
(5)

βl = f2
(
F l
Concat

)
(6)

Specifically, γl is learned through a 3× 3 convolution layer (denoted as f1) and
a sigmoid activation (denoted as δ (·)) while βl learned through another 3 × 3
convolutional layer (denoted as f2). The outputs of the FRWI module can be
formulated as:

F̃ l
R = γl ⊗ F l

R + βl (7)

F̃ l
M = γl ⊗ F l

M + βl (8)

where the F̃ l
R and F̃ l

M represents the aligned feature maps of RGB and MSR
streams, respectively.

3.4 Salience-Guided Attention

Utilizing the forgery mask as auxiliary supervision is a universal trick to improve
the performance of face forgery detection. Inspired by this, we further adopt
the forgery mask as the saliency map to highlight the manipulation traces. In
particular, we introduce the spatial attention mechanism and design a Salience-
Guided Attention (SGA) which guides a feature learning in the RGB modality
with MSR information at different semantic layer. The computation block of
SGA is described in Fig. 3(b).

Specifically, we predict the saliency map (denoted as M̂l) of l-th semantic
layer as:

M̂l = δ
(
f l
3

(
F̃ l
M

))
(9)

where f l
3 represents a 1 × 1 convolution layer to transform the channels of F̃ l

M

with 1. We respectively set N = 64, 32, 16 for predicting the M̂l in the low, mid
and high level layer.

The output of SGA module is formulated as:

F̃ l
out = F̃ l

R + M̂l ⊗ F̃ l
R (10)

3.5 Training Details and Loss Functions

We employ the Efficient-B4 (EN-b4) as the backbone of our work. In order to
capture more artifacts at higher resolutions, we change the stride of the first
convolution layer at the backbone model from 2 to 1. The whole end-to-end

608



8 H. Chen et al.

training process involves the supervision of binary classification and salience
prediction task, and the overall loss function consists of two components:

L = Lcls + λLSM (11)

where Lcls and LSM represents the binary cross-entropy loss and saliency map
loss, respectively. λ is the balance weight.

Specifically, the cross-entropy binary classification loss Lcls is formulated as:

Lcls = yt logyp + (1− yt) log (1− yp) (12)

where yt and yp represents ground-truth label and the prediction logits, respec-
tively.

The saliency map loss LSM consits of the l2 loss in of three semantic layers,
which can be formulated as:

LSM =

3∑
l=1

1

Ω (Ml)

∥∥∥Ml − M̂l
∥∥∥
2

(13)

where Ω (·) repents the total number of elements. Ml is the ground truth forgery
mask of the l-th semantic layer. We employ DSSIM [24] algorithm, which com-
pute the paired face manipulation images and their corresponding source face
pristine images with threshold, to get the original forgery mask Mgt with size of
256× 256. Besides, we use bi-linear interpolation to down-sample Mgt by {4×,
8×, 16×}, respectively obtain ground-truth saliency maps for the low, mid and
high semantic layer (i.e., Ml, i = 1, 2, 3).

4 Experiments

4.1 Experimental Setup

Datasets and Pre-processing In this paper, we mainly conducted exper-
iments on the challenging FaceForensics++ (FF++) [7] dataset. FF++ con-
tains 1000 Pristine (PT) videos (i.e., the real sample) and 4000 fake videos
forged by five manipulation methods, i.e., Deepfakes (DF), Face2Face (F2F)
[25], FaceSwap (FS), NeuralTextures (NT) [26]. Besides, FF++ provides three
quality levels controlled by the constant rate quantization parameter (QP) in
compression for these videos: raw (QP=0), HQ (high-quality, QP=23) and LQ
(low-quality, QP=40). Considering the deployment in real-world application sce-
narios, we conduct our experiments on both HQ videos and LQ videos. The
samples were split into disjoint training, validation, and testing sets at the video
level follows the official protocol [7].

As for pre-processing, we utilized MTCNN [27] to detect and crop the face
regions (enlarged by a factor of 1.3) from each video frame, and resized the them
to 256 × 256 as the input images.

609
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Table 1. Detection performances (%) on FF++ dataset. HQ and LQ denote the high-
quality and low-quality data. * indicate the model is trained by us implementing the
official code. The best results are in bold.

Methods HQ LQ
ACC AUC ACC AUC

MesoNet[6] 83.10 - 70.47 -
Xception[7] 95.73 - 81.00 -
PRRNet[29] 96.15 - 86.13 -
SPSL[30] 91.50 95.32 81.57 82.82
MTA[31] 97.60 99.29 88.69 90.40

MC-LCR[18] 97.89 99.65 88.07 90.28
D&L[19] 98.40 99.77 84.84 87.10

Xception* 96.06 98.89 86.35 90.25
RGB baseline 96.08 98.98 86.36 91.00

Ours 96.94 99.32 88.39 92.98

Implementation Details and Evaluation Metrics The proposed frame-
work is implemented by PyTorch on an NVIDIA Tesla A100 GPU (40GB). We
use Efficient-B4 (EN-b4) [28] as the backbone network and initialized with the
weights pre-trained on ImageNet. We employed an Adam optimizer with a cosine
learning rate scheduler and set the training hyper-parameters by: the mini-batch
size as 12, the initial learning rate as 0.0002, the weight decay as 0.05, β1 = 0.9,
β2 = 0.999. We implemented the training stage with 500 epochs. We set λ = 10
for the loss function.

Following most existing face forgery detection methods, we mainly utilize the
Accuracy rate (ACC) and the Area Under Receiver Operating Characteristic
Curve (AUC) as our evaluation metrics. We take AUC as the key evaluation
metric and reports the frame-level performances.

4.2 Comparison with Previous Methods

In this part, we compare the proposed method with several stat-of-the-art face
forgery detection methods. Since following the official data splitting settings[7],
we directly cite the results of previous methods from the corresponding papers.
We also report performance for the RGB baseline that removes the MSR stream
and the proposed FRWI and SGA in our proposed framework.

Detection on different video qualities In the real-world situation, the
videos spread in the social medias are always compressed by popular algo-
rithms such as H.264. Therefore, we evaluate our models on two video qual-
ities, i.e., FF++(HQ and LQ). Table 1 reports the comparison results with
previous methods. For FF++(HQ), our method achieves comparable high per-
formances (nearly 100%AUC) compared to state-of-the-art methods. Detecting
low-quality manipulated face images is a challenging task as severe compression
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Table 2. AUC(%) performance of binary detection on the FF++(LQ) dataset with
each four manipulation methods. * indicate the model is trained by us implementing
the official code. The best results are in bold.

Methods DF F2F FS NT
MesoNet[6] 89.52 84.44 83.56 75.74
Xception[7] 94.28 91.56 93.70 82.11
PRRNet[29] 95.63 90.15 94.93 80.01
SPSL[30] 93.48 86.02 92.26 76.78

MC-LCR[18] 97.23 91.08 94.44 82.13
Xception*[7] 95.60 89.76 93.33 78.87
RGB baseline 95.67 88.48 93.50 80.10

Ours 97.14 91.37 94.94 82.54

erases much detailed information from the original faces. For FF++(LQ), our
method achieves the remarkable performance. Comparing the very recent work
D&L[19], our method improves ACC and AUC in 3.55% and 5.88%, respectively.
Furthermore, our method achieve better than comparing with the RGB baseline.
It demonstrates that introducing the MSR information and joint learning with
RGB feartures can effectively improve the detection performance.

Table 3. Recall rate(%) of multi-class classification on the FF++(LQ) dataset with
each four manipulation methods. * indicate the model is trained by us implementing
the official code. The best results are in bold.

Methods DF F2F FS NT PT Avg
MesoNet[6] 62.45 40.37 28.89 63.35 40.93 47.20
Xception[7] 86.61 78.88 83.16 52.94 75.55 75.43
SPSL[30] 91.16 78.31 88.75 58.97 77.49 78.94
D&L[19] 95.28 86.96 93.24 71.66 63.80 82.19

Xception*[7] 93.13 79.24 85.93 66.74 67.25 78.46
RGB baseline 89.38 80.41 86.01 70.36 59.94 77.22

Ours 92.97 84.47 91.13 74.61 71.22 82.88

Detection on specific manipulation methods Although identifying the
authenticity of input faces is of great importance, specifying the manipulation
method is also a non-trivial problem. We evaluate the proposed method against
different manipulation methods in FF++(LQ). The models were trained and
tested on the FF++(LQ) for each manipulation method. Comparing with previ-
ous detection methods, the proposed model achieves the best detection accuracy
on all four manipulation methods.

Furthermore, multi-classification is more challenging and significant than bi-
nary classification.We further evaluate the proposed model on this five-way (pris-
tine and four respective manipulation methods) classification task. As reported
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Fig. 4. A t-SNE [32] visual comparison of embedding spaces between RGB baseline
(left) and our proposed method (right) on FF++(LQ) in the multi-classification task.

in Table 3, our method achieve the best average recall performance. As for the
recent work D&L[19], although the performance of identifying DF, F2F, and
FS is slightly better than our method, the accuracy of distinguishing NT and
real samples is very poor. This reveals that the D&L method tends to over-fit
deepfake samples with large forgery artifacts, and perform a high false alarm
rate.

We also show the t-SNE [32] feature spaces of data in FF++(LQ) with the
multi-class classification task. As shown in Figure 4, the RGB baseline is more
likely to confuse pristine faces with NT-based fake faces because this manipu-
lation method modifies very limited pixels in the spatial domain. In particular,
NT-based images, which just slightly tampered with lip, are very similar to pris-
tine images causing almost indistinguishable in the RGB domain. Conversely,
our proposed method can split up all classes in the embedding feature spaces.
These improvements may benefit from the introduction of the MSR information.

Cross-datasets evaluations Most existing detection models always suffer
a significant performance drop when applied to unseen datasets. To compre-
hensively evaluate the generalization ability of the proposed model, we con-
duct extensive cross-dataset experiments in this paper. We train our model on
the FF++/DF and Pristine (HQ) data and test it on the unseen Deepfake-
TIMIT(DT-HQ/LQ)[33], CelebDF [24], DFD-HQ5 and DFDC-p [34] datasets.

As shown in Table 4, the proposed method achieves the best generalization
performances under all cross-dataset settings. For trained on FF++/DF and
tested on CelebDF, which is a common protocol that indicates the generaliza-
tion performance, our method outperforms at least 2.8% at the AUC metric
compared with other methods. The cross-dataset experiment demonstrates that
the proposed model is capable of achieving high generalization capability.

5 http://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
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Table 4. AUC(%) performance of cross-dataset evaluations. * indicate the model is
trained by us implementing the official code. The results for within-dataset settings are
shown in gray and the best results are in bold.

Methods FF++/DF DT-LQ DT-HQ DFD-HQ DFDC-P CelebDF
Xception[7] 99.70 95.90 94.40 85.90 72.20 65.50

Nirkin et al.[35] 99.70 - - - - 66.00
MC-LCR[18] 99.84 - - - - 71.61

D&L[19] 99.85 56.08 47.20 76.23 - 70.65
Xception*[7] 99.74 92.83 90.49 88.21 71.66 59.09

Ours 99.67 97.69 94.58 89.44 76.70 74.46

Table 5. Ablation studies on the FF++(LQ) dataset with identifying specific manip-
ulation methods.

RGB MSR FRWI SGA DF FF FS NT√ √ √ √
97.14 91.37 94.94 82.54√ √ √
↓ 0.65 ↓ 0.71 ↓ 1.07 ↓ 0.51√ √ √
↓ 1.13 ↓ 1.27 ↓ 1.46 ↓ 0.91√
↓ 1.47 ↓ 2.89 ↓ 1.44 ↓ 2.44√
↓ 3.43 ↓ 3.45 ↓ 2.94 ↓ 5.79

4.3 Ablation Studies and Visualizations

To explore the influence of each component, we evaluated the proposed model
and its variants by identifying the specific manipulation method on FF++(LQ).
The results are present in Table 5. From these experiments we get the following
observations. In the single-stream setting, using only the RGB or MSR data as
input leads to poor results. In the two-stream setting, combining the original
two stream with the proposed FRWI or SGA can improve the performance,
which verifies that the MSR input is distinct and complementary to the RGB
data. The performance can be further improved by both adding the proposed
FRWI and SGA, reaching the peak when using the overall proposed framework.
This shows the effectiveness of each module: MSR exposes fake clues in the RGB
space as supplementary information, and the FRWI and SGA enhance the above
information by integrating them.

Furthermore, we presented the visualization of MSR and predicted salicency
maps with SGA in Figure 5 and qualitatively analyzed the results. We enlarged
the predicted saliency maps M̂l to the same size as the ground-truth forgery
mask Mgt. We can observe that the MSR image can attenuate content-specific
colors and enhance forgery clues. As for predicted salicency maps, the predicted
saliency map can accurately localize the forgery region at all three semantic
levels. It demonstrates that SGA can promote the RGB feature to capture the
subtle forgery clues with the help of multi-scale spatial guidance.
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Fig. 5. Qualitative results. For the fake faces, we also display the corresponding real
faces for reference.

5 Conclusions

In this work, we present a novel two-stream framework for deepfake detec-
tion. In particular, we utilize a multi-scale retinex enhancement inspired by the
illumination-reflection model and compose a novel modality, named MSR, to
complementary capture the forgery traces. To take full advantage of the MSR in-
formation, we propose a two-stream network combined with multi-scale salience-
guided and feature re-weighting modules. The multi-scale salience-guided atten-
tion module guides the RGB feature extractor to concentrate more on forgery
traces from the MSR perspective at multi-scale level. The feature re-weighting
module leverages the correlation between the two complementary modalities to
promote feature learning for each other. Extensive experiments demonstrate that
the proposed framework achieves consistent performance improvement compared
to state-of-the-art methods. Future studies can focus on extending this work at
a video level so that multiple types of manipulated facial videos can be identified
by using a general model.
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