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Abstract. Point cloud classification is a fundamental but still challeng-
ing task in 3-D computer vision. The main issue is that learning repre-
sentational features from initial point cloud objects is always difficult for
existing models. Inspired by the Transformer, which has achieved suc-
cessful performance in the field of natural language processing, we pro-
pose a purely attention-based network, named PointFormer, for point
cloud classification. Specifically, we design a novel simple point multi-
plicative attention mechanism. Based on that, we then construct both a
local attention block and a global attention block to learn fine geometric
features and overall representational features of the point cloud, respec-
tively. Consequently, compared to the existing approaches, PointFormer
has superior perception of local details and overall contours of the point
cloud objects. In addition, we innovatively propose the Graph-Multiscale
Perceptual Field (GMPF) testing strategy that can significantly improve
the overall performance of the proposed PointFormer. We have conducted
extensive experiments on the real-world dataset ScanObjectNN and the
synthetic dataset ModelNet40. The results show that the PointFormer
has stronger robustness and achieves highly competitive performance
compared to other state-of-the-art approaches. The code is available at
https://github.com/Yi-Jun-Chen/PointFormer

Keywords: Point cloud classification · Attention mechanism · Feature
extraction.

1 Introduction

3-D vision is widely used in augmented reality, robotics, autonomous driving and
many other fields. Voxels, meshes and point clouds can all be applied to effec-
tively represent 3D data. In contrast to voxels and meshes, point clouds preserve
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the original geometric information of 3D objects and are easy to collect. There-
fore, it is more suitable for 3D object classification which is a fundamental and
still challenging task in 3D vision. However, point clouds are irregular embed-
dings in continuous space which is different from 2D images. Therefore, existing
methods are still challenging for learning representational features in point cloud
classification task.

To address this challenge, much work [16,23] has been inspired by the success-
ful application of convolutional neural networks to 2D computer vision, where
3D objects are projected onto different 2D planes and then the 2D convolution
operation is performed. Other methods voxelize the point cloud and then apply
3D discrete convolution in 3D space. Unexpectedly, the performance of these
approaches is largely limited by the computational and memory costs. In ad-
dition, the transformation of point clouds, such as voxelization and projection,
leads to the loss of information, which is detrimental to the processing of point
clouds. PointNet [3] is a pioneer in the direct manipulation of point cloud data.
It extracts the features of point clouds through shared multilayer perceptron
(MLP) and a max-pooling operation, achieving permutation invariance in point
cloud processing and impressive classification results. However, PointNet ignores
local structure information, which is proven to be important for feature learn-
ing in visual recognition. To better capture the local information of point cloud
objects, some works [4,27] introduce attention mechanisms to enhance the local
representation of features. Unfortunately, they usually have expensive overhead
on memory and arithmetic power. Consequently, it is important to design net-
works with superior perception of the fine and overall geometric structure of
point clouds while maintaining a relatively light weight.

To solve this problem, we propose a purely attention-based network, named
PointFormer, for point clouds classification. In detail, we propose a novel and
simple point multiplicative attention mechanism. Unlike traditional methods
[3, 17, 29] that aggregate information from each point indiscriminately through
pooling operations, the point multiplicative attention mechanism treats each
point in point cloud differently to extract more discriminative features. Based
on this, we then construct local attention block and global attention block that
enables the network to have excellent perception of the local fine structure and
overall shape of the point cloud. In addition, we propose the Graph-Multiscale
Perceptual Field (GMPF) testing strategy for the first time to improve the over-
all performance of the PointFormer. In summary, our main contributions are
displayed below.

• We design a point multiplicative attention mechanism with high expressive-
ness for point cloud objects. It applies shared multilayer perceptrons (MLP)
to learn the encoding of points, which maintains low complexity while satis-
fying permutation invariance for point cloud processing.

• Based on the point multiplicative attention mechanism, we design both a
local attention block and a global attention block for building PointFormer,
which enables our model to have superior dual perception of local details
and overall contours of point cloud.
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• We propose a Graph-Multiscale Perceptual Field (GMPF) testing strategy,
which greatly improves the performance of the model. Furthermore, as a
general strategy, it can be easily transferred to other networks.

• Extensive experiments on real-world datasets ScanOjectNN and synthetic
datasets ModelNet40 show that our proposed has strong robustness and
superior classification performance.

2 Related Work

Unlike 2D images which have a regular grid structure, 3D point clouds have spa-
tial continuity and irregularities that preclude direct applications of the existing
deep learning models. To overcome this challenge, many approaches have been
proposed, which can be broadly classified into three types: multi-view methods,
voxel-based methods and point-based methods. We summarise the main features
and limitations of these approaches as follows:

1) Multi-view Methods: Considering the success of CNNs in 2D images, these
methods [6,9,23] project 3D point cloud objects onto multiple 2D planes. Then,
convolutional neural networks are applied to perform feature extraction. Finally,
the aggregation of multi-view features is performed to accurately classify the
point cloud. For example, MVCNN [23] is a pioneering network that has achieved
impressive results by aggregating multi-scale information through max-pooling
operations. However, these methods may result in loss of information during
the projection process. At the same time, these approaches usually lead to huge
memory and arithmetic overheads because they do not make good use of the
sparsity of point clouds.

2) Voxel-based Methods: voxel-based approaches regularize irregular point
clouds by 3D voxelization [15,22] and then perform a 3D convolution operation.
While these methods can achieve impressive results, the cubic increase in the
number of grids can lead to an explosion in computation and memory over-
head. To alleviate this problem, OctNet [20] uses shallow octrees to improve
computational efficiency, but it is still a computationally intensive approach.
In summary, these approaches not only consume computational and memory
resources greatly, but also raise information loss during the voxelization process.

3) Point-based Methods: Instead of transforming point clouds into other data
domains as the previous methods do, the point-based approaches directly use
points as input for feature extraction. PointNet [3], as a pioneer model, realizes
the real sense of a neural network acting directly on a point cloud. It is imple-
mented by shared MLPs and symmetric operations (e.g. max-pooling) to satisfy
the permutation invariance of point cloud processing. However, PointNet oper-
ates on each point individually, so it does not have the ability to extract local
geometric features. To solve this problem, PointNet++ [17] designs a series of
operations for furthest point sampling and grouping, hierarchically aggregating
the features of neighbouring nodes. DGCNN [29] makes the local information
spread to the global sufficiently by k-nearest neighbor (k-NN) composition and
dynamic graph update between each layer, which learns the local geometric in-
formation of the point cloud very well. However, they uniformly use symmetric
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Fig. 1. The red point is selected as the central node, and its k-nearest neighbors (k=5 in
the figure) are selected to form the k-NN graph. Then, neighboring nodes are weighted
by the point multiplicative attention mechanism. The different depths of the colors
respond to the magnitude of the weights.

pooling operations such as max-pooling to retain the most significant elements,
which leads to loss of information and is detrimental to the fine perception of
point cloud objects. Other approaches [4,36] enhance the representation of local
information by introducing attention. However, their large number of parameters
and computational effort leads to a huge overhead on computational resources.

In contrast, as a point-based approach, our PointFormer has excellent dual
perception of the local fine geometry and the overall contour of the point cloud.
At the same time, our model is able to maintain a relatively light weight due
to the proposed novel and simple point multiplicative attention mechanism. In
addition, the proposed Graph-Multiscale Perceptual Field (GMPF) testing strat-
egy gives PointFormer the ability to sense multi-scale information, thus greatly
improving the performance of the model.

3 Our Approach

In this section, we first review the general formula for self-attention. Then, the
point multiplicative attention mechanism is proposed for constructing our local
attention block and global attention block. Finally, the complete framework of
PointFormer and the Graph-Multiscale Perceptual Field(GMPF) testing strat-
egy for model performance enhancement is presented.

3.1 Scalar and Vector Self-attention

Self-attention is a set operator [36] which can be classified into two types: scalar
attention [27] and vector attention [35]. X = {xi}i denotes the set of feature
vectors. The scalar attention can be formulated as follows:

x
′

i =
∑
xj∈X

S
(
M1 (xi)

>
M2 (xj)

)
M3 (xj) , (1)
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Where x
′

i is the updated feature. M1, M2 and M3 correspond to different map-
pings such as projections or MLPs. S is a normalization operation such as soft-
max. Scalar attention is actually a projection of feature vectors into different
feature spaces and then the corresponding attention coefficients are found by
calculating the inner product.

In vector attention, the formulation is slightly different:

x
′

i =
∑
xj∈X

S (M4 (M1 (xi) ,M2 (xj)))�M3 (xj) , (2)

M4 represents a mapping (e.g. MLP) like M1, M2, M3. Vector attention replaces
the operation of inner product in scalar attention by introducing more learnable
parameters in M4. Both scalar and vector attention are set operator. Therefore,
it satisfies the permutation invariance of point cloud processing and is well suited
for processing point clouds.

3.2 Point Multiplicative Attention Mechanism

From the viewpoint of formulation and computation, scalar attention is simpler,
but often less effective than vector attention. Conversely, vector attention is
more effective but more complex. To reach a reliable balance between these
mechanisms, we propose our point multiplicative attention mechanism:

x
′

i =
∑
xj∈X

S
(
L1
3 (L1 (xi) + L2 (xj))

)
L2 (xj) , (3)

Where L1,L2 denote different single fully connected layers respectively. L1
3 de-

notes a single fully connected layer with an output dimension of 1. As we can
see, to reduce the complexity of vector attention, we replace all the MLPs in
Equation 3 with a linear layer. In particular, we replace the different MLPs M2,
M3 in Equations 1 and 2 with the same single fully connected layer L2. At the
same time, unlike GAN [28], we use the vector addition instead of vector con-
catenation in Equation 3 to reduce the dimension of features. Moreover, subject
to scalar attention, we only output an attention coefficient for each neighbor
feature xj through the fully connected layer L1

3 and then perform a weighted
summation. This is the reason why our attention is called point multiplicative
attention.

3.3 Local Attention Block

As point multiplicative attention follows a similar formulation as scalar and
vector attention, it is still a set operator. We construct the k-nearest neighbor
(k-NN) graph [29] for each node of the point cloud, as shown in Figure 1. The
features of the central node and the neighbor nodes constitute the set of feature
vectors for the attention operation. We construct our local attention block by
acting the point multiplicative attention mechanism on the k-NN graph of each
point (as presented in Figure 1).
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Fig. 2. Framework diagram of the local attention block. Input: Initial point cloud object
features (blue). Output: Updated point cloud object features. The local attention block
can be viewed as a d-dimensional to h-dimensional feature mapping.

Our local attention block providing a better perception of local details of the
point cloud objects. For example, in Figure 1, the neighbor xj5 represents the
sampled points from the rearview mirror of the car, while the other neighbors
are the sampled points from the body. Point multiplicative attention mecha-
nism can place on neighbor xj5 with a larger attention coefficient, thus paying
more attention to this particular neighbor points while treating other neighbors
differently.

Position Encoding: From the viewpoint of graph neural networks [7, 34], at-
tention is an information aggregation operator. Specifically, we learn the aggre-
gation feature of neighboring points xj to centroid xi by L2 in Equation 3. Then,
the aggregation of information is completed by weighted summation of the cor-
responding attention coefficients. Therefore, the linear layer L2 can be viewed as
a fit of the abstract function f(·) between xi and xj . However, considering only
the features xj of neighbour nodes in L2 may not make good use of the initial
geometric information of the point cloud. In order to take the higher order fea-
tures into considerations, we use xi, xj , (xi − xj) and ‖xi−xj‖22 as inputs to L2.
This means that we use higher order difference terms (xi − xj) and ‖xi − xj‖22
to retain high frequency detail information.

Finally, our local attention block can be formulated as:

x
′

i =
∑
xj∈X

S
(
L1
3 (L1 (xi) + L2 (PE (xj)))

)
L2 (PE (xj)) , (4)

where PE denotes our position encoding strategy. The framework of the local
attention block is illustrated in Figure 2.
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Fig. 3. Architecture of global attention block. The input is a point cloud carrying high-
dimensional features [n × h], and the output is a representation vector of the point
cloud [n × 1].

3.4 Global Attention Block

Local attention block provides excellent perception of local details, but lacks
overall representation of the point cloud. To address this problem, global atten-
tion block is designed to extract highly representational features from point cloud
objects. In detail, our global attention block is designed to apply point multiplica-
tive attention to the entire point cloud object that carrying high-dimensional
features, i.e., the red point cloud output from the local attention block in Figure
2. Specifically, we concatenate the max-pooling and mean-pooling of the point
cloud 3D coordinates to obtain the query vector. If X = {xj}j denotes the set
of features of all points of a point cloud object, the global attention block can
be formulated as:

y =
∑
xj∈X

S
(
L1
3 (L1 (query) + L2 (xj))

)
L2 (xj) , (5)

Where y denotes the representation vector of the point cloud. The complete
structure of global attention block is presented in Figure 3. The global attention
block can be assigned an attention level for each point. This mechanism of treat-
ing each point differently allows our model to have superior perception of the
overall contour of the point cloud. We will further visualize it in the experimental
section.

3.5 Framework of PointFormer

In summary, we use four local attention blocks and one global attention block
to build the PointFormer, as shown in Figure 4. The output dimensions are set
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Fig. 4. Architecture of PointFormer.

to (64, 64, 128, 256) and (1024), respectively. Meanwhile, shortcut connections
are applied to extract multi-scale features. Finally, the classification results are
obtained by Multi-layer Perceptron (MLP).

Hierarchical Position Encoding (HPE): To maximize the initial geometric
information of the point cloud while maintaining the lightweight of the model,
our position encoding strategy in local attention block is further designed to use
xi, xj , (xi − xj) and ‖xi−xj‖22 as the input of L2 only in the first local attention
block. However, in the subsequent three blocks, we just use xj and first-order
difference term (xi − xj) [29]. We refer to this location encoding strategy as
Hierarchical Position Encoding (HPE).

3.6 Graph-Multiscale Perceptual Field (GMPF) testing strategy

In order to improve the performance while without introducing any burden (e.g.,
parameters, inference time), we design a novel Graph-Multiscale Perceptual Field
(GMPF) testing strategy. Briefly, in the training phase, we construct the k-
nearest neighbor (k-NN) graph using a specific number of neighbors (e.g., k=5 in
Figure 1), while in the testing phase, multi-scale k-NN graphs are used for testing
(e.g., k=3, 5, 7). Equivalently, the GMPF strategy is applied to learn a model
on a fixed-scale k-NN graph while observing the information on the multi-scale
graph during testing as shown in Figure 5. In the experimental section, we will
further show that this strategy can greatly improve the robustness and overall
performance of the model. Moreover, as a general strategy, it can be naturally
transferred to other graph-based networks.

4 Experiments

In this section, we first provide the experimental setup for evaluation. We then
comprehensively evaluate PoinrFormer on ScanObjectNN [26] and ModelNet40
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Fig. 5. The Graph-Multiscale Perceptual Field testing strategy.It can also be analogous
to a person identifying objects from different ranges of vision from far to near. In reality,
this can greatly improve human recognition when objects are obscured or dimly lit.

Table 1. Classification Results (%) on ScanObjectNN dataset. The Accuracy gap (last
column) represents the difference between Mean Class Accuracy and Overall Accuracy
(%).

Method Mean Class Accuracy Overall Accuracy Accuracy gap

3DmFV [2] 58.1 63.0 4.9
PointNet [3] 63.4 68.2 4.8

SpiderCNN [32] 69.8 73.7 3.9
PointNet++ [17] 75.4 77.9 2.5

DGCNN [29] 73.6 78.1 4.5
PointCNN [11] 75.1 78.5 3.4

BGA-DGCNN [26] 75.7 79.7 4.0
BGA-PN++ [26] 77.5 80.2 2.7

DRNet [18] 78.0 80.3 2.3
GBNet [19] 77.8 80.5 2.7

PointFormer 78.9 81.1 2.2

[30] benchmarks. Finally, we conducted a large number of careful and reasonable
ablation experiments to prove the rationality and validity of each component of
the proposed network.

4.1 Experimental Setup

1) Training: We implement PointFormer using PyTorch and employ SGD opti-
mizer with an initial learning rate of 0.1 and the momentum of 0.9 for training.
We use the cosine annealing [14] to reduce the learning rate until 0.001. The
batch size is 36, number of neighbors is k=20 and we do not use batch normal-
ization decay. The epochs on the ScanObjectNN dataset and the ModelNet40
dataset are 350 and 250, respectively.

2) Testing: In our testing, we use the GMPF testing strategy. Specifically, we set
the multi-scale k-NN graph to k=(15,16,20,25,28) on the ScanObjectNN dataset
and k=(15,20,28) on the ModelNet40 dataset respectively. The selection will be
further explained in the experimental section.
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Table 2. Classification Results (%) on ModelNet40 dataset. (coords: 3-dimensional
coordinates, norm: point normal vector, voting: multivotes test method, k: ×1024, -:
unknown)

Method Input #point Mean Class Accuracy Overall Accuracy

ECC [21] coords 1k 83.2 87.4
PointNet [3] coords 1k 86.0 89.2

SCN [31] coords 1k 87.6 90.0
Kd-Net [8] coords 1k - 90.6

PointCNN [11] coords 1k 88.1 92.2
PCNN [1] coords 1k - 92.3

DensePoint [12] coords 1k - 92.8
RS-CNN [13] coords 1k - 92.9
DGCNN [29] coords 1k 90.2 92.9
DGCNN [29] coords 2k 90.7 93.5
KP-Conv [25] coords 1k - 92.9

PointASNL [33] coords 1k - 92.9
SO-Net [10] coords 2k 87.3 90.9
SO-Net [10] coords + norm 5k 90.8 93.4
RGCNN [24] coords + norm 1k 87.3 90.5

PointNet++ [17] coords + norm 5k - 91.9
SpiderCNN [32] coords + norm 5k - 92.4
DensePoint [12] coords + voting 1k - 93.2
RS-CNN [13] coords + voting 1k - 93.6

PCT [5] coords 1k - 93.2
Point Transformer [36] coords 1k 90.6 93.7

GB-Net [19] coords 1k 91.0 93.8

PointFormer coords 1k 90.7 93.7

4.2 Classification Results

1) Classification on ScanObjectNN: ScanObjectNN consists of approximately
15,000 objects, which belong to 15 categories. Table 1 shows the classification
results comparison between PointFormer and each competitive benchmark on
ScanObjectNN. It can be seen that our model achieves 78.9% mean class ac-
curacy and 81.1% overall class accuracy, which is 0.9% and 0.6% higher than
the previous best results, respectively. Note that the number of parameters of
PointFormer is 3.99M and FLOPs is 3.48G, while for GBNet [19] is of 8.78M and
11.57G, respectively, which is much larger than our model. However, we achieve
a superior performance than it, which means we have earned a better balance
between model complexity and performance. Besides, our PointFormer attains
the smallest gap between mean class accuracy and overall accuracy. This dis-
plays that our network has superior performance for each categorie, exhibiting
better inter-class robustness.

The objects in ScanObjectNN contain many distortion points, background
points and missing regions [26], which poses a serious challenge to the robustness
of the model. However, the local attention block and global attention block in
PointFormer bring an effective solution to this problem. For example, in the
local attention block, the attention weights the features of each neighbor node,

3300



PointFormer 11

Table 3. Graph-Multiscale Perceptual Field testing strategy (GMPF) effectiveness
analysis on the ScanObjectNN and ModelNet40 datasets. We are comparing mean
class and overall class accuracy (%)

ScanObjectNN ModelNet40
Mean Class Acc. Overall Acc. Mean Class Acc. Overall Acc.

PointFormer 77.2 80.1 90.5 93.6
PointFormer (GMPF) 78.9 81.1 90.7 93.7

which allows the model to learn to discard more useless nodes during training.
Moreover, when the features are finally aggregated, our global attention block
can even abandon unwanted nodes directly by setting the coefficient to low
response. More importantly, our GMPF testing strategy can fully extract useful
information from the multi-scale k-NN graph. This can greatly improve the noise
immunity of the model when the dataset is not pure. This means that our model
is able to eliminate the detrimental effects of more noise points. So PointFormer
is able to demonstrate booming robustness in unclean real-world datasets.
2) Classification on ModelNet40: This dataset, specifically, contains 12,311 syn-
thetic pure CAD models in which the point cloud data is divided into 40 cate-
gories. Typically, 9843 models are used for training and 2468 models are reserved
for testing in our experiment. Table 2 presents the highly competitive classifi-
cation result for our network (mean class accuracy: 90.7% and overall accuracy:
93.7%). Note that our model uses only the 1k 3D coordinates of the point cloud
as input, but carries out even better results than some approaches that use
more information. As can be observed in Table 2, DGCNN [29] takes 2k points
as input and achieves 90.7% average class accuracy and 93.5% overall accuracy.
RGCNN [24] additionally used the normal vector of points as input to attain
90.5% overall accuracy. SO-Net [10] even used 5k points and normal vectors,
achieving an average classification accuracy of 90.8% and an overall accuracy of
93.4%. Moreover, our model also outperforms the models that employ the voting
strategy such as RSCNN [13] and DensePoint [12].

It is worth noting that although the classification performance of PointFormer
on ModelNet40 is slightly worse than GB-Net [19], our model is far lighter and
more robust than GB-Net as analyzed earlier, which implies that our Point-
Former is more practical in real-world applications.

4.3 PointFormer Design Analysis

To demonstrate the soundness and validity of our model design, we conduct
comparative and ablation experiments in this section, as well as conducting the
visualization and analysing the complexity of the model.

1) Effectiveness of GMPF testing strategy: GMPF is our innovative work,
which does not bring any parametric quantity to the model, but greatly improves
the robustness and performance of our model. We verify the effectiveness of this
strategy by comparing the performance of the model with GMPF and the model
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Table 4. The effects of different choices of multiscale k-NN graph on the ScanObjectNN
datasets. We are comparing mean class accuracy and overall accuracy (%).

k=(20) k=(20,28) k=(15,20,25) k=(15,20,28) k=(15,16,20,25,28)

Mean Class Acc. 77.2 77.9 78.8 78.7 78.9
Overall Acc. 80.1 80.2 80.9 80.9 81.1

Table 5. The results (%) of different HPE strategies. We are comparing the overall class
accuracy on the ModelNet40 dataset. L2: the l2 paradigm (3D Euclidean distance) of
xi-xj , xi: center vertex, xj : neighborhood nodes, Feature Dimension: the input channel
of the four local attention block respectively.

Model Hierarchical Position Encoding Feature Dimension Overall Accuraccy

A 4*(xi, xi-xj) (6, 128, 128, 256) 93.3
B (xi, xj , L2

2) and 3*(xi, xj) (7, 128, 128, 256) 93.1
C (xi, xj , xi-xj , L2) and 3*(xi, xj , xi-xj) (10, 192, 192, 384) 92.9
D (xi, xj , xi-xj , L2

2) and 3*(xi, xi-xj) (10, 128, 128, 256) 93.7

without GMPF on the ScanObjectNN and ModelNet40 dataset. The results are
shown in Table 3. As can be seen, on the real-world ScanObjectNN dataset, the
GMPF strategy improved the average accuracy and overall accuracy by 1.7% and
1%,respectively, which is a stunning result with significant relevance! Besides, the
GMPF strategy on clean synthetic ModelNet40 dataset also earns good gains.
This strategy is like learning at a specific angle while recognizing point cloud
objects at multiscale related angles. The effect may not be as dramatic when the
data is very pure, but when faced with realistic unclean datasets, GMPF can
greatly improve the robustness and overall performance of the network.

On the ScanObjectNN and ModelNet40 datasets, the multiscale k-nearnest
neighbor graphs were selected as k=(15,16,20,25,28) and k=(15,20,28), respec-
tively. In Table 4, we compare the effects of different choices of k-NN graph on
the performance of the PointFormer on the ScanObjectNN dataset. As we can
see, our selection based on which makes the testing result best. Similarly, on the
ModelNet40 dataset, we do the same.

2) Effectiveness of Hierarchical Position Encoding (HPE): We verified the
effectiveness of HPE and compared different encoding strategies on ModelNet40
dataset. The results are presented in Table 5. Compared to models A and B,
our model D retains and utilises more point cloud geometry information. At the
same time, it does not increase the size of the model and introduce too many
parameters. The model C, on the other hand, exponentially increases the FLOPs
and the size of the model when the features are high-dimensional. This greatly
boost the risk of overfitting. Thus, it can be seen that our Hierarchical Position
Relation strikes a good balance between model complexity and maximizing the
use of the original geometric information in point cloud object.

3) Network Complexity: We analyze the network complexity of PointFormer
and other advanced approaches by comparing the number of parameters and
FLOPs on ModelNet40 dataset. For the sake of fairness, we standardize the test-
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Table 6. Complexity analysis of classification network on the ModelNet40 dataset.

Method Param. FLOPs Overall acc. (%)
(1)DGCNN [29] 1.81M 2.72G 92.9
(2)GBNet [19] 8.78M 11.57G 93.8

(3)Point Transformer [36] 9.58M 18.41G 93.7
(4)Point Transformer [4] 21.67M 4.79G 92.8

PointFormer 3.99M 3.48G 93.7

Fig. 6. Visualisation of the importance of each point in the point cloud. Each point
is coloured by the attention factor. Blue represents the lowest attention and red the
highest.

ing conditions (GeForce RTX 3090, batch size = 1). The results are displayed
in Table 6. As we can see, the complexity of our model is slightly higher than
that of the traditional DGCNN approach, but compared with current Attention-
based methods such as (2) and (4), our model is much lighter and achieves better
results. It is worth noting that, for simplicity, we perform the comparison on a
clean synthetic dataset ModelNet40, but the greater strength of our network is
the strong robustness demonstrated on the impure real-world dataset ScanOb-
jectNN. However, the more complex approaches (2) and (4) do not necessarily
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stand up to the test in this case. At the same time, compared to GBNet [19],
PointFormer is much lighter and has better robustness, as mentioned in the
previous analysis.

4) Visualization: To illustrate PointFormer’s excellent perception of point
cloud objects, we visualize the attention factor of the global attention block at
each point. As shown in Figure 6, PointFormer focuses more on recognizable con-
tour points in the point cloud, while treats other unimportant points differently.
In the case of airplane, the points that PointFormer pays the most attention to
are distributed in various parts of the airplane, such as wings, tail, fuselage, etc.,
which well form a recognizable outline of an airplane. However, PointFormer can
selectively ignore some optional points, as shown in the blue points in Figure 6.
In addition, our testing strategy (GMPF) allows the model to be more percep-
tive of the overall contours of the point cloud. As presented in the last column
of Figure 6, the highly responsive points provide a more complete and accurate
representation of the point cloud shape.

5 Conclusion

In this paper, we present a purely attention-based network, PointFormer, for
the point cloud classification task. Specifically, we design the local attention
block, which enables the network to have the ability in fine local perception with
finer-grained local geometric features of the point cloud. At the same time, we
designed the global attention block, so that PointFormer can perceive point cloud
objects as a whole to improve the performance in classification. In addition, the
general GMPF strategy greatly improves the performance and robustness of the
model while easily transferred to other models. The highly competitive results
on the synthetic dataset ModelNet40 and the real-world dataset ScanObjectNN
demonstrate the outstanding advantages and a promising performance of the
proposed model. We believe that PointFormer is a superior feature extractor, not
only for classification tasks, but also for part segmentation, scene segmentation
and even point cloud completion.
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