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Abstract. Scene text in natural images contains a wealth of valuable
semantic information. To read scene text from the image, various text
spotting techniques that jointly detect and recognize scene text have
been proposed in recent years. In this paper, we present a novel end-to-
end text spotting network SPRNet for arbitrary-shaped scene text. We
propose a parametric B-spline centerline-based representation model to
describe the distinctive global shape characteristics of the text, which
helps to e�ectively deal with interferences such as local connection and
tight spacing of text and other object, and a text is detected by regress-
ing its shape parameters. Further, exploiting the text's shape cues, we
employ adaptive projection transformations to rectify the feature repre-
sentation of an irregular text, which improves the accuracy of the sub-
sequent text recognition network. Our method achieves competitive text
spotting performance on standard benchmarks through a simple archi-
tecture equipped with the proposed text representation and recti�cation
mechanism, which demonstrates the e�ectiveness of the method in de-
tecting and recognizing scene text with arbitrary shapes.

Keywords: Scene text spotting · Spline · Regression · Recti�cation

1 Introduction

Scene text in natural images carries a wealth of semantic information, which is
of great importance in various real-world applications. To read the scene text
from the image, text spotting methods �rst localize text regions in the image and
then recognize the character sequences contained in them. Due to the complex
and varied appearance of text, scene text spotting has been a challenging task
and attracted increasing research attention in recent years.

Most of recent scene text spotting methods [46, 5, 31, 18, 23, 42] integrated
text detection and recognition into an end-to-end framework to exploit the com-
plementarity of these two tasks to e�ectively improve the performance of the
whole spotting model. Meanwhile, to alleviate the di�culties that the irregular
shape of a scene text causes to a text recognition network, variant techniques like
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Fig. 1. Illustration of the architecture of the proposed text spotting network SPRNet.
The network �rst detects text with arbitrary shapes in the image by a spline-based text
region representation and regression model. An adaptive spatial recti�cation module
is then employed to transform the text's feature representation to a regular shape to
facilitate the subsequent text recognition. 'G' denotes the grid sampling operation for
feature deformation based on predicted control points.

shape recti�cation [23] and spatial attention [31] have been employed in recent
text spotting methods for generating appropriate features for text recognition.

Despite the great progress in enhancing scene text spotting performance,
most of existing text spotting methods employed a text region localization mech-
anism based on either segmentation [29, 46, 31] or regression of discrete bound-
ary points [39], which did not capture the text's shape characteristics as a whole
(e.g., via a global shape model) and sometimes required some post-processing
like grouping or �tting to obtain the �nal text region.

In this paper, we propose a novel end-to-end scene text spotting network
SPRNet, which integrates a spline-based parametric shape regression network
for localizing arbitrary-shaped text region, an adaptive text feature recti�cation
module, and a light-weight text recognition network. Figure 1 shows the overall
architecture of the proposed text spotting network. The key contributions of our
work are summarized as follows:

� We propose a spline-based representation and regression model for detecting
arbitrary-shaped text. The model geometrically describes the global shape of
a text and its intrinsic smoothness and regularity with a parametric B-spline
centerline and associated boundary cues. Compared with the segmentation-
or boundary-based text representations employed in previous text spotting
methods, our parametric, centerline-based representation of text is less sus-
ceptible to interferences such as local connection and tight spacing of text
and other object due to its modeling and constraints on the overall shape
and regularity of the text. Moreover, the model obtains directly the com-
plete boundary of the text as the localization result, eliminating the need for
post-processing that segmentation-based methods usually rely on to obtain
the �nal text boundary.
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� We integrate a shape recti�cation mechanism with the text spotting model
for recognizing text with arbitrary shapes. The recti�cation module exploits
adaptive projection transformations and the shape cues of an irregular text
obtained by the detection module to regularize the text's feature represen-
tation, which e�ectively improves the accuracy of the subsequent text recog-
nition network.

� Our text spotting method achieves competitive performance on several scene
text benchmarks.

2 Related Work

Scene Text Detection. Most of recent scene text detection methods can
be generally categorized into two schemes: segmentation-based and regression-
based. Segmentation-based methods [45, 27, 41, 49] localize text regions by pre-
dicting a text/non-text label for every image pixel using some fully convolutional
networks [26]. Accordingly, a text region is usually modeled as a connected set
of text pixels in these methods, and some of them [27, 5, 49] further model a
text's centerline region as a shrunk mask of the whole text area consisting of
a set of points on the text's central axis associated with local geometric at-
tributes such as centerline/character orientations and boundary o�sets, and cer-
tain post-processing is often required to generate the �nal boundary of the text.
Regression-based methods [20, 50, 44] predict text candidates by regressing their
bounding box parameters based on generated proposals or from dense features
directly, while a text region is usually depicted by its polygonal boundary with
discrete vertices.

Note both pixel-based and boundary-based text representations employed
in most previous work capture only local constraints such as connectedness or
o�set between individual pixels or boundary points, lacking accurate description
of a text's global shape characteristics. Comparatively, our method geometrically
and holistically depicts the text shape with a parametric representation based
on B-spline.

Scene Text Recognition. Recent text recognition methods usually employ
some sequence models like RNN to recognize the character sequence in an image
region as a whole, avoiding error-prone segmentation of individual characters.
Particularly, the encoder-decoder framework has often been employed in text
recognition, with the encoder encoding the text region into a feature sequence
and the decoder predicting a sequence of most probable character labels cor-
responding to the features with connectionist temporal classi�cation (CTC) [6,
33] or attention mechanisms [16, 3]. To cope with text in irregular shapes, some
recent methods further proposed recti�cation [34, 28, 35, 48, 47] and 2D atten-
tion [17] techniques for obtaining appropriate text features for recognition. For
example, in [47], a text's shape was characterized by a point-based centerline
associated with local geometric attributes similar to [27], which was used to gen-
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erate the �ducial points of a TPS transformation for rectifying the feature maps
of an irregular text.

Scene Text Spotting. Earlier scene text spotting methods [40, 12, 19] often
employed a two-stage pipeline that performed text detection and recognition in
separate steps. Due to the complementarity of text detection and recognition
tasks, however, it is di�cult for these two-stage spotting methods to attain
holistically optimal performance.

Most of recent scene text spotting methods [46, 5, 31, 18, 23, 42] employed
an end-to-end detection and recognition pipeline for improved spotting per-
formance. Particularly, to handle arbitrary-shaped scene text, some methods
introduced spatial recti�cation measures [5, 23] to help obtain regularized repre-
sentations of the text or spatial attention mechanisms [31, 18] to adaptively align
features with characters for recognition. For example, in [31], a Mask R-CNN
based instance segmentation model was combined with a seq2seq recognition
model and a spatial attention mechanism for text spotting. On the other hand,
ABCNet [23] �rst localized the text boundary depicted by two Bezier curves,
and then exploited the BezierAlign operation to generate recti�ed features of
the text for recognition. Our method di�ers from previous work in two main
aspects � the text region representation and regression model and the text fea-
ture recti�cation mechanism, which are described in detail in following respective
sections.

3 Methodology

We propose an e�ective scene text spotting network SPRNet. As shown in Fig. 1,
the network localizes arbitrary-shaped text regions in the image with a spline-
based text shape representation and regression model, and then adaptively recti-
�es the feature representation of an irregular text for subsequent text recognition.

3.1 Text Localization via Spline-Based Shape Regression

Di�erent from most previous segmentation-based and boundary point-based text
region representation schemes used for scene text detection, which lack precise
description and e�ective constraint for the global shape of one text, we pro-
pose a parametric, geometric text region modeling and regression scheme, which
captures the holistic shape characteristics of a text to improve the text region
localization accuracy. Speci�cally, as shown in Fig. 2, a text region is modeled
by a n-order B-spline centerline describing the global layout of the text and a
series of boundary cues capturing its local shape details.

The B-spline centerline is formulated as:

B(t) =

m∑
i=0

PiNi,n(t) (1)
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Fig. 2. Illustration of the spline-based representation of a text region.

where Pi=0,··· ,m denote the m + 1 control points of the B-spline, and Ni,n(t)
is the basis function associated with Pi, which is de�ned recursively with a
predesignated knot vector [t̄0, t̄1, · · · , t̄m+n] as follows:

Ni,1(t) =

{
1, t̄i ≤ t < t̄i+1

0, otherwise

Ni,n(t) =
t−t̄i

t̄i+n−1−t̄i
Ni,n−1(t) +

t̄i+n−t
t̄i+n−t̄i+1

Ni+1,n−1(t) (2)

In addition to the centerline, we further depict the contour of a text region
with two sets of boundary points {vi}ui=1..w and {vi}li=1..w on the upper and lower
boundaries of the text region respectively as shown in Fig. 2. Each pair of two
corresponding boundary points (vui , v

l
i) are connected by a line segment Li, and

its length above and below the centerline are described by a pair of parameters lui
and lli, the angle between Li and the coordinate axis is described by a parameter
θi, and the intersection point between Li and the centerline (called a sampling

point) is represented by its corresponding spline variable value ti. Accordingly,
a text region is geometrically described by the control points Pi=0,··· ,m of the
B-spline centerline and the parameters {ti, lui , lli, θi} of the boundary points.

Our spline-based, geometric text region representation model di�ers essen-
tially from the segmentation-based representations employed by previous scene
text detection and spotting methods [41, 49, 5, 43]. The explicit parametric mod-
eling of the global centerline provides e�ective shape constraints for robustly
and accurately localizing text in cluttered scenes such as closely spaced or par-
tially overlapping text instances, which are often challenging for segmentation-
based detection methods. Moreover, compared to previous text representations
that modeled a text region by its upper and lower boundaries like in [23], our
centerline-based representation of the text region is usually less a�ected by vari-
ations of text geometry and style such as nonuniform sizes of characters in a text
which often cause more signi�cant changes to the boundary of the text region
than to its centerline, and better captures the smoothness of the overall shape
of a text.

We generate training labels for the parameters of the text region representa-
tion model in a similar manner to that adopted in [36] on the basis of the common
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polygonal annotations of text region provided in most scene text benchmarks.
Particularly, di�erent from ABCNet which requires generating ground-truth la-
bels for the control points of Bezier curve boundaries, we do not generate anno-
tations for the B-spline centerline's control points. Instead, we generate ground-
truth labels for a series of k path points located on the text centerline, which act
as more direct constraints on the B-spline centerline and are easier to be inferred
from text region features than the control points.

Text Region Regression Network. To infer the shape parameters of a text
candidate in an image, as shown in Fig. 1, the text region regression network
takes a text region proposal's feature maps generated by the ResNet50 [10],
FPN [21], and RPN [32] backbone as input, and employs a Cascade R-CNN [2]
to re�ne the proposal's position and assign it a text/non-text score. Next, the
network employs three branches, each comprising several convolution, pooling,
and full-connected layers, to predict the parameters of the B-spline centerline, the
boundary points, and the text direction respectively. The detailed con�guration
of the network is given in the supplementary material.

Localization Loss. We employ a multitask text region localization loss Lloc

on each text region proposal, which integrates a RPN loss Lrpn [32], a Cascade
R-CNN loss Lrcnn [2], and a text region regression loss Lreg:

Lloc = λ1Lrpn + λ2Lrcnn + λ3Lreg (3)

where λ1, λ2, and λ3 are set to 1.0.
The text region regression loss Lreg measures the approximation accuracy of

the predicted text region relative to the ground-truth, which is formulated as
the combination of a centerline loss Lspline, a boundary loss Lbound, and a text
direction loss Ldir:

Lreg(P ,Tc,Tb,Θ, l,Q∗,V ∗,Θ∗, l∗,d,d∗) = λ4Lspline(P ,Tc,Q
∗)

+ λ5Lbound(P ,Tb,Θ, l,V ∗,Θ∗, l∗) + λ6Ldir(d,d
∗) (4)

where P = {P0, · · · ,Pm} are predicted control points of the B-spline centerline
de�ned by Eq. (1). Tc = {tc1, · · · , tck} and Tb = {tb1, · · · , tbw} are predicted spline
variable values for the path points and the sampling points on the centerline
respectively, while Q∗ and V ∗ are the ground-truth coordinates of path points
and boundary points respectively. Θ, l = [lu, ll] and Θ∗, l∗ are the predicted
and ground-truth angles and lengths of the lines connecting sampling points
to corresponding boundary points respectively. Ldir(d,d

∗) is the binary cross-
entropy loss between the predicted text direction probability vector d and the
ground-truth one-hot direction label vector d∗ which is generated for a text
region based on the angle θt between the text's main axis (i.e. the line connecting
the �rst and last path points) and the x axis to categorize it to horizontal if
θt < 50◦ and vertical otherwise. The weights λ4, λ5, and λ6 are experimentally
set to 5.0, 5.0, and 0.5 respectively in this work.
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The centerline loss Lspline measures how accurately the predicted B-spline
centerline approximates the ground-truth path points Q∗ and is formulated as:

Lspline(P ,Tc,Q
∗) = smoothL1(|F(P ,Tc)−Q∗|) (5)

where the function F(P ,T ) computes a set of s output points corresponding to
a set of spline variable values T = {t1, · · · , ts}, which are located on the B-spline
de�ned by the control points P = {P0, · · · ,Pm}:

F(P ,T ) =

T1

..
Ts

 [
N0,n N1,n .. Nm,n

] 
P0

P1

..
Pm

 (6)

where Ni,n denotes the coe�cient vector of the ith basis function of B-spline,
and Tj = [tn−1

j , tn−2
j , · · · , t0j ] with tj being the spline variable value for the jth

output point. Therefore, F(P ,Tc) yields the set of predicted path points.
The function smoothL1(·) is de�ned as:

smoothL1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

(7)

The boundary loss Lbound measures the accuracy of the predicted boundary
points of text region relative to the ground-truth V ∗ and is formulated as:

Lbound(P ,Tb,Θ, l,V ∗,Θ∗, l∗) = smoothL1(|G(P ,Tb,Θ, l)− V ∗|)
+ smoothL1(sum(|Θ −Θ∗|)) + smoothL1(sum(|l− l∗|)) (8)

where the function G(P ,Tb,Θ, l) computes w pairs of boundary points based on
the set of sampling points computed by F(P ,Tb) and the predicted parameters
Θ, l of lines connecting sampling and boundary points. Moreover, we maintain
two separate sets of Θ, l parameters to better capture shape characteristics of
horizontal and vertical text respectively, and compute Lbound on the parameter
set corresponding to the direction label d∗.

3.2 Spatial Recti�cation of Text Features

To alleviate the di�culties caused by irregular text shapes (e.g., curved or per-
spectively distorted) to a text recognizer, we introduce an adaptive shape rec-
ti�cation module to spatially regularize the text's feature representation before
feeding it to the recognizer for improved recognition accuracy. Di�erent from
most previous text recti�cation methods [34, 35, 30] which used spatial trans-
form network (STN) [13] with thin-plate-spline (TPS) transformation to deform
the text's shape, we employ a piecewise linear deformation model based on pro-
jection transformation for feature sampling and mapping to reduce non-linear
distortion to the text's shape during recti�cation, while keeping su�cient defor-
mation �exibility for widely varied shapes of scene text.
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deformationsource patch target patch
target control point
source control point

Fig. 3. Illustration of spatial recti�cation of irregular text. Note the deformation ac-
tually occurs on the feature maps rather than the image itself.

Speci�cally, given the predicted boundary points of a text region, as shown
in Fig. 3, we �rst use the line connecting each pair of boundary points on the
upper and lower text boundaries respectively to divide the feature map of the
text region into a strip of adjacent quadrilateral patches (called source patches),
each of which will be deformed individually.

Next, we map each source patch to a target patch in the output (recti�ed)
feature map as shown in Fig. 3. Di�erent from prede�ning a set of �xed-size
target patches on the output feature map using a uniform grid as employed in
previous methods [35, 48], we propose a variable target grid by predicting an o�-
set δ for each grid point to allow a target patch's boundary to deviate adaptively
from the uniform grid position, which increases the model's �exibility for recti-
fying non-uniform distortions of text. Note the o�sets of the target grid points
are end-to-end learned with the recognition task without any extra supervision.

Finally, we compute the feature values in a target patch by grid-sampling
features in the corresponding source patch to obtain a regular feature represen-
tation of the text region for recognition.

Feature Patch Deformation. We employ projection transformation as the
mapping function between the source and target patches because of its linearity
which helps keep shape characteristics of character and the fact that most scene
text has a certain degree of perspective distortion resulting from the viewing
process.

Using the four boundary points of a source patch as four source control points
and the four corner points of the corresponding target patch as target control
points, the homogeneous deformation matrix H of a projection transformation
for the patch can be formulated as:

H = reshp([b 1])3×3 (9)

where function reshp(·)3×3 reshapes the input tensor to a 3× 3 view, and b is a
1× 8 vector computed as:

b = A−1x (10)

where x is an 8× 1 vector containing the coordinates of the four target control
points. A is an 8 × 8 matrix formulated as follows based on the Direct Linear
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Transformation (DLT) algorithm [8]:

A =


r
(0)
x r

(0)
y 1 0 0 0 −r

(0)
x ∗ t(0)x −r

(0)
y ∗ t(0)x

0 0 0 r
(0)
x r

(0)
y 1 −r

(0)
x ∗ t(0)y −r

(0)
y ∗ t(0)y

· · ·
r
(3)
x r

(3)
y 1 0 0 0 −r

(3)
x ∗ t(3)x −r

(3)
y ∗ t(3)x

0 0 0 r
(3)
x r

(3)
y 1 −r

(3)
x ∗ t(3)y −r

(3)
y ∗ t(3)y

 (11)

where (r
(i)
x , r

(i)
y ) and (t

(i)
x , t

(i)
y ) are the (x, y) coordinates of the ith source and

target control points respectively.
Given the deformation matrix H, a position pt in the target patch is mapped

back to the position pr = H−1pt in the source patch. Accordingly, we compute
the feature value in the position pt in the target patch's feature map by bilinear
interpolation of feature values neighbouring to pr in the source feature map.
This grid sampling operation is represented by the symbol 'G' in Fig. 1.

3.3 Text Recognition

Given the recti�ed feature maps of one text region, we employ a light-weight
attention-based sequence-to-sequence recognition network to recognize the text.
As shown in Fig. 1, the network �rst employs several convolutional layers to pro-
duce a feature map of height 1, and then uses a bidirectional LSTM to encode
long-range forward and backward dependencies between the column feature vec-
tors of the feature map and outputs a sequence of features. A gated recurrent
unit (GRU) decoder with Bahdanau attention is �nally employed to decode the
feature sequence into a character label sequence. More details about character
sequence prediction with GRU can be found in [28], and the con�guration of the
recognition network is presented in the supplementary material.

Recognition Loss. The text recognition loss Lrec is formulated as:

Lrec = −
N∑
i=1

NC∑
j=1

I(ŷj
i = 1)log(yj

i ) (12)

where N is the length of the predicted character label distribution sequence
{yi}, NC is the total number of di�erent characters, {ŷi} is the ground-truth
one-hot label distribution sequence, and I(·) is a binary function that returns 1
if its input is evaluated as true and returns 0 otherwise.

3.4 Text Spotting Loss

The total loss of the text spotting model is a combination of the text region
localization loss Lloc and the text recognition loss Lrec:

L = λlLloc + λrLrec (13)

where the weights λl and λr are set to 1.0 and 0.2 respectively in this work.
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4 Experiments

4.1 Datasets

We evaluate our scene text spotting method on three challenging benchmarks:
TotalText, CTW1500, and ICDAR2015. TotalText [4] is composed of 1255 and
300 images for training and testing respectively and contains large numbers of
curved text instances, each annotated by a polygonal boundary of 10 vertices.
CTW1500 [24] contains 1000 training images and 500 testing images with many
challenging long curved text, each annotated by a polygonal boundary of 14
vertices. ICDAR2015 [14] consists of 1000 training images and 500 testing
images with multi-oriented accidental scene text instances, each annotated by a
quadrilateral bounding box. We employ precision P , recall R, and f -measure F
to evaluate text spotting performance.

4.2 Implementation Details

We implement the proposed text spotting network on the basis of the PyTorch
framework and conduct the experiments on a NVIDIA Tesla V100 GPU. We
depict the text centerline by a cubic B-spline (order n = 4) with 5 control points
(m = 4) and an open uniform knot vector, and approximate the centerline with
k = 17 path points. We employ w = 9 pairs of boundary points on the upper
and lower boundaries of a text region.

The spotting network is optimized using stochastic gradient descent with a
weight decay of 0.0001 and a momentum of 0.9. The network is �rst pre-trained
on a combined dataset similar to that used in [29] for 90K iterations with the
learning rate starting from 0.01 and reduced to 0.001 for the last 20K iterations.
The combined dataset contains training samples of SynthText [7], ICDAR 2013
[15], ICDAR 2015 [14], COCO-Text [38], and Total-Text [4] datasets, with a
sampling ratio 2 : 2 : 2 : 2 : 1 among these datasets for generating a mini-batch
of 10. Next, we �ne-tune separate spotting models for di�erent test datasets
using their own training sets. For TotalText and CTW1500 curved text datasets,
the learning rate is initialized to 0.001 for the �rst 40K training iterations and is
reduced to 0.0001 for further 20K iterations. For ICDAR2015 dataset, a learning
rate of 0.001 is used during 40K training iterations of the network.

4.3 Ablation Study

E�ectiveness of Spline-Based Text Region Regression. We verify the
e�ectiveness of the proposed spline-based text region representation and regres-
sion model by comparing the text detection performance of some variants of the
text region regression network in Table 1. The model 'Baseline' uses the Cascade
R-CNN backbone to predict the bounding boxes of text instances in the image.
The model 'Mask' replaces the shape parameter regression branches with the
mask branch in Mask R-CNN [9] for text detection.
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Table 1. Text detection performance of
the proposed spline-based text region re-
gression model and two variant models

Model TotalText ICDAR2015

P R F P R F

Baseline 73.3 72.7 73.0 79.5 74.8 77.1

Mask 85.0 82.2 83.6 89.7 80.9 85.1

Proposed 85.7 85.1 85.4 91.1 85.4 88.1

Table 2. Text detection performance us-
ing variant number of control points for the
B-spline centerline of a text region

Num TotalText ICDAR2015

P R F P R F

4 85.8 84.5 85.1 89.0 86.9 87.9

5 85.7 85.1 85.4 91.1 85.4 88.1

6 85.5 85.0 85.3 90.2 85.6 87.8

7 85.1 84.6 84.8 88.4 86.5 87.4

Baseline

Mask

Proposed

Fig. 4. Text detection results ob-
tained by variant models in Table 1.

Baseline Ours

SEAFOOD
Img575 R0
Precision:0.0
Recall:0.0
Fmean:0.0

MUSEODELJAMON
Img575 R1
Precision:1.0
Recall:1.0
Fmean:1.0

P : 0.0, R : 0.0, F : 0.0 P : 100, R : 100, F : 100

VEGAN

Img1097 baseline
Precision:0.83
Recall:0.83
Fmean:0.83

1924

CHINA

OF

UNIVERSITY

MEWORK FOR PERSON
NATIONAL

Img1097 ours
Precision:1.0
Recall:1.0
Fmean:1.0

OCEAN

1924

CHINA

OF

UNIVERSITY

MEWORK FOR PERSON
NATIONAL

P : 83.0, R : 83.0, F : 83.0 P : 100, R : 100, F : 100

Fig. 5. Text spotting results obtained by the
baseline model (left) and our model (right) in
Table 3. Detected text instances are marked
with green boxes. Incorrect recognition results
are shown with red text.

Compared to the baseline, the proposed spline-based text region regression
model substantially improves the text detection performance through more ac-
curate and �exible modeling of the text region. It also achieves higher detection
f -measure than the mask mechanism [9], showing the advantages of the pro-
posed parameterized, geometric representation of the text over the pixel-level
representation in accurately describing the shape of the text. Figure 4 presents
some text detection results obtained by variant models in Table 1. The proposed
model yields more accurate text region boundaries than the others.

We further inspect the impact of using di�erent numbers of control points for
the B-spline centerline of a text region on the detection performance. As shown
in Table 2, a B-spline with 5 control points is usually su�cient to cope with the
di�erent shape complexities of most scene text.

E�ectiveness of Text Feature Recti�cation for Text Spotting. We verify
the e�ectiveness of our text feature recti�cation mechanism in scene text spot-
ting. Table 3 compares the spotting performance with our recti�cation model, a

2639



12 L. Chen et al.

Table 4. Scene text spotting results on TotalText and CTW1500. 'None' and 'Full'
are f -measure of spotting using no lexicon and the full lexicon in recognition respec-
tively. 'Det' is the f -measure of text detection results. 'FPS' is the inference speed on
TotalText. In each column, the best result is shown in bold and the second best result
is shown with underline. Methods marked with ∗ exploited additional character-level
labels besides the common word-level labels in training and are not included in rank-
ing.

Method TotalText CTW1500 FPS

Det None Full Det None Full

TextNet [37] 63.5 54.0 - - - - -

FOTS [22] - - - 62.8 21.1 39.7 -

Qin et al.[31] 83.3 67.8 - - - - 4.8

TextDragon [5] 80.3 48.8 74.8 83.6 39.7 72.4 -

ABCNet [23] - 64.2 75.7 - 45.2 74.1 17.9

Text Perceptron [30] 85.2 69.7 78.3 84.6 57.0 - -

PAN++ [42] 86.0 68.6 78.6 - - - 21.1

ABCNet v2 [25] 87.0 70.4 78.1 84.7 57.5 77.2 10

Mask TextSpotter [29] ∗ 83.9 52.9 71.8 - - - 4.8

CharNet [46] ∗ 85.6 66.6 - - - - -

Mask TextSpotter v3 [18] ∗ - 71.2 78.4 - - - -

Ours 86.6 67.8 80.0 84.9 59.6 75.0 8.6

STN-based recti�cation model similar to [34] for adaptive text shape deforma-
tion, and a baseline model that removes the recti�cation module from the spot-
ting network (i.e., feeding features of a text region directly to the text recognition
module).

Table 3. Text spotting performance with
variant recti�cation models
Model TotalText ICDAR2015

P R F P R F

Baseline 75.8 73.0 74.4 69.9 69.0 69.5

STN 80.8 72.8 76.6 71.7 69.0 70.3

Ours 81.2 78.9 80.0 72.2 69.3 70.7

As shown in Table 3, introducing
adaptive recti�cation of text features
ahead of recognition signi�cantly en-
hances the text spotting performance
owing to the recti�ed, more regular rep-
resentation of the text, especially on
benchmarks with curved/irregular text
instances like TotalText as expected.
Figure 5 shows some examples of text
spotting results obtained by the base-
line model and our recti�cation-based
model respectively. The improved spot-
ting accuracy achieved by our model shows its e�ectiveness for arbitrary-shaped
scene text spotting.

4.4 Comparison with State-of-the-Arts

We compare the performance of our text spotting method with some state-
of-the-art methods on both curved and multi-oriented text benchmarks in Ta-
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Table 5. Scene text spotting results on ICDAR2015. 'S', 'W', and 'G' are f -measure of
spotting using the strong (100 words), weak (1000+ words), and generic (90K words)
lexicons respectively. Methods marked with ∗ exploited additional character-level labels
besides the common word-level labels in training and are not included in ranking.

Method Word Spotting End-to-End Recognition FPS

S W G S W G

Deep TextSpotter [1] 58.0 53.0 51.0 54.0 51.0 47.0 9.0

TextBoxes++ [19] 76.5 69.0 54.4 73.3 65.9 51.9 -

FOTS [22] 84.7 79.3 63.3 81.1 75.9 60.8 7.5

He et al.[11] 85.0 80.0 65.0 82.0 77.0 63.0 -

TextDragon [5] 86.2 81.6 68.0 82.5 78.3 65.2 2.6

Text Perceptron [30] 84.1 79.4 67.9 80.5 76.6 65.1 -

PAN++ [42] - - - 82.7 78.2 69.2 13.8

ABCNet v2 [25] - - - 82.7 78.5 73.0 10

Mask TextSpotter [29] ∗ 79.3 74.5 64.2 79.3 73.0 62.4 2.6

CharNet [46] ∗ - - - 83.1 79.2 69.1 -

Mask TextSpotter v3 [18] ∗ 83.1 79.1 75.1 83.3 78.1 74.2 2.5

Ours 82.7 77.0 70.7 82.7 76.6 70.6 6.2

bles 4 and 5. Note that, besides the word-level annotations of text, some methods
(marked with ∗) further exploited external character-level annotations as extra
supervision information, which are not available in the benchmark datasets.

Curved Text Spotting. Table 4 shows that our method achieves the best
results in two text spotting and one text detection tasks on TotalText and
CTW1500 curved text datasets and comparable results in the rest of detec-
tion/spotting tasks, which demonstrate the method's capability to accurately
localize and recognize various curved text in natural images.

Particularly, compared to Text Perceptron which combined a TPS-based fea-
ture recti�cation module with a focusing attention recognizer [3] and ABCNet
which employed a Bezier curve-based feature sampling mechanism for recogniz-
ing irregular text, our recti�cation and spotting model achieves higher perfor-
mance on most evaluation metrics on the two curved text benchmarks. ABCNet
v2 further extended the ABCNet's backbone (e.g. introducing the BiFPN and
CoordConv modules) and its training mechanism for enhanced performance.
When the ResNet+FPN backbone of ABCNet is used, which is similar to that
employed in our model, it achieves a text spotting f -measure of 67.4 on Total-
Text and 54.6 on CTW1500 using no lexicon [25]. On the other hand, unlike
our method employing common word-level annotations of text as supervision
information, Mask TextSpotter v3 exploited both word-level and character-level
annotations (e.g. bounding boxes and category indices of characters) for train-
ing the model and employed a combinatory text recognition strategy integrating
character-level pixel voting and spatial attention mechanisms.
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Multi-Oriented Text Spotting. On ICDAR2015 which consists of multi-
oriented but mostly straight text instances, as shown in Table 5, our method also
achieves comparable text spotting performance among the methods that simi-
larly exploit only word-level annotations of text and common training datasets.
The good results of our method on the curved and multi-oriented text bench-
marks demonstrate its e�ectiveness in spotting scene text in arbitrary shapes.

4.5 Qualitative Results

Figure 6 shows some text spotting results of our method. The proposed spotting
network robustly detects and recognizes various scene text with largely varied
appearances and qualities. More examples of scene text spotting results and
discussions of limitations can be found in the supplementary material.
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Fig. 6. Examples of text spotting results. Detected text instances are marked with
green boxes, with corresponding recognition results shown nearby.

5 Conclusions

We present a method for accurately spotting arbitrary-shaped scene text in nat-
ural images. A parametric text representation and regression model based on
the spline centerline is proposed to capture the distinctive global shape charac-
teristics of text for robustly localizing text instances with varied appearances.
The method further spatially recti�es the feature representation of an irregularly
shaped text with an adaptive deformation model before feeding it to the text
recognition network, which e�ectively improves the text spotting accuracy. In
the future work, we will explore integrating e�ective language models with the
recognition network and further improving the collaboration between detection
and recognition modules for enhancing the performance of the method.
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