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Abstract. Automatic human matting is highly desired for many real
applications. We investigate recent human matting methods and show
that common bad cases happen when semantic human segmentation fails.
This indicates that semantic understanding is crucial for robust human
matting. From this, we develop a fast yet accurate human matting frame-
work, named Semantic Guided Human Matting (SGHM). It builds on
a semantic human segmentation network and introduces a light-weight
matting module with only marginal computational cost. Unlike previous
works, our framework is data efficient, which requires a small amount
of matting ground-truth to learn to estimate high quality object mat-
tes. Our experiments show that trained with merely 200 matting im-
ages, our method can generalize well to real-world datasets, and outper-
form recent methods on multiple benchmarks, while remaining efficient.
Considering the unbearable labeling cost of matting data and widely
available segmentation data, our method becomes a practical and effec-
tive solution for the task of human matting. Source code is available at
https://github.com/cxgincsu/SemanticGuidedHumanMatting.

1 Introduction

Human matting aims to predict an alpha matte to extract human foreground
from an input image or video, which has many important applications in visual
processing. To achieve that, a green screen is often required for studio solutions.
However, a green screen is not always available in many real scenarios, such as
daily video conferencing and background replacement effects shot with mobile
devices. Therefore, human matting methods without a green screen are highly
desired. Many previous works use an additional trimap for matting, which indi-
cates three kinds of regions in an image, namely foreground, background, and
unknown. However, it requires careful manual annotation to obtain a trimap.
Background matting approaches [1, 2] are recently proposed which use a pre-
recorded background image as a prior. Though decent results are obtained, it
only can handle cases with a static background and a fixed camera pose.
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2 X. Chen et al.

Fig. 1. Limitation of existing method and motivations of this work. (a) Common failure
cases of latest works [1, 3] happen when semantic understanding fails. (b) Traditional
matting methods rely on the input of a trimap. Since matting details are located around
the human mask boundaries [4], the coarse segmentation mask can also be leveraged
as a prior in matting. (c) Currently, segmentation data is much easier to annotate, and
the amount of publicly available data is much larger than that of matting data. (d)
Compositing foreground with different backgrounds can enlarge the matting dataset
size but it has a domain gap as it looks unreal [5].

Many recent works focus on developing methods towards automatic human
matting. Some early attempts [6, 7] try to generate pseudo trimap as a first
step and predict a matte from the trimap. Due to limited training data, these
methods cannot generalize well to real-world examples [2]. Another drawback of
these methods is that they cannot run in real-time which is required for many
applications, such as background replacement in live video conferencing. The
recent work MODNet [3] proposes a fast and fully automatic portrait matting
method. RVM [8] is another recent work which leverages temporal information
in a video to improve robustness and stability.

In this work, we aim to develop a robust, accurate, and fast method for auto-
matic human matting, which shares the same goal as MODNet [3] and RVM [8].
We investigate the failure cases of existing automatic methods on real-world ex-
amples and observe that these failure cases are often due to inaccurate semantic
understanding. As shown in Fig. 1 (a), parts of the background are wrongly
predicted as foreground or part of human body are wrongly segmented. This in-
dicates a weak semantic understanding ability of these state-of-the-art (SOTA)
methods. In order to enhance their ability of semantic understanding while keep-
ing fine-grained details of matting, we seek to utilize semantic segmentation task
to guide matting process. There are three reasons behind this motivation. 1) Seg-
mentation mask determines the overall accuracy of foreground and background
predictions, and fine-grained structures only appear around the mask. This in-
dicates that a semantic human mask can replace a trimap (Fig. 1 (b)) and be
used as a prior condition for matting [4]. 2) The labeling of high-quality matting
requires skillful annotators and is very time-consuming. For that, the amount of
available training data for matting is quite limited (at the order of hundreds and
thousands) compare to segmentation task, which require only simple line draw-
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ings around boundaries. As a matter of fact, there are many human segmentation
datasets at a scale that is two or more magnitude larger (Fig. 1 (c)). A larger
amount of data is of great significance to the generalization ability on real-world
images. 3) Synthetic datasets created by compositing images (Fig. 1 (d)) are
also used in training matting models, but they have a clear limitation due to the
drastic domain gap between synthetic and real-world images. This prevents the
trained models from generalizing to real-world examples. The work [5] analyzes
the domain gap issue systematically. Our approach does not suffer from this
issue by using less of such data.

Based on the above analysis, We propose a multi-stage framework to predict
semantic segmentation mask and matting alpha successively. A segmentation
sub-network is first employed for the task of segmentation, and then it is reused
to guide the matting process to focus on the surrounding area of the segmen-
tation mask. To achieve real-time efficiency as well as better performance, we
let the two tasks share the encoder part of the model, which has been proved
superior to separated encoders in [5]. By this design, our matting module suc-
cessfully handled many challenging cases. In summary, our network consists of a
shared encoder, a segmentation decoder and a matting decoder, and the segmen-
tation decoder feeds useful intermediate information to the matting decoder. In
training, a two-stage pipeline is proposed. Firstly, the encoder and the segmen-
tation decoder are trained with publicly available segmentation datasets. With
these data, our segmentation sub-network is trained to predict robust human
masks. Secondly, 269 matting images are employed to train the matting decoder.
To comprehensively evaluate the performance of matting methods, we adopt 5
benchmarks to carry out qualitative and quantitative comparison. One of them
is our self-collected dataset from complex scenarios, such as diverse background,
multiple human, body accessories, and low light. Our method outperforms all
other methods across all benchmarks.

We summarize our contribution as follows:

1. We develop a robust, accurate and efficient human matting framework, which
utilizes shared encoder for both segmentation and matting. It gives our
method the ability to use powerful semantic understanding to guide mat-
ting process meanwhile help to reduce computation.

2. The proposed framework can make fully use of coarse mask training data
and reduce matting reliance on high-quality and large number of annotations.
With only about 200 matting images, our method is able to produce high
quality alpha details.

3. Extensive experiments show our method achieves the state-of-the-art results
on multiple benchmarks.

2 Related Work

In this section, we review matting with auxiliary input and automatic matting,
which are related to our work. We also review segmentation as segmentation
provides the rough mask of human region.
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Matting with auxiliary input. Early methods are mostly optimization or
filter based which require an additional trimap as input [9–19]. Deep learning
is introduced in trimap-based matting methods in [20–22] that use a deep net-
work for trimap-based matting. These trimap-based methods are often general
to different matting target objects but it requires the user to provide trimap
annotations. Background mattings [2, 1] are recently proposed to replace the
trimap input with a pre-recorded background image as a prior condition. Al-
though background matting can generate decent results on static background,
it cannot be applied to camera moving circumstances. Recently proposed mask-
guided method [4] achieves SOTA results once a coarse is provided. In their
work, mask is generated from manual annotation or segmentation output, which
greatly limits the convenience of use. Our goal is to incorporate the mask gener-
ation into the matting process, so as to realize fully automatic matting and still
keeping real-time running.

Automatic matting. Fully automatic matting without any additional in-
put has been pursued [23–25]. Methods in [26, 27] studies class agnostic matting
but cannot generalize well. Some methods like [6, 7, 28–30] dedicate to human
matting. In this direction, the latest MODNet [3] aims at fast portrait matting
and RVM [8] is towards robust human matting using temporal information. For
MODNet, it performs well in the portrait image, but easily fails in full body im-
age. Recent work P3M-Net [31] proposes a dual decoder to do human matting,
which is similar to us. But there are several significant differences: 1) P3M-Net
use segmentation decoder to generate a pseudo trimap while our segmentation
predicts real mask. P3M-Net predicts alpha details only on trimap unknown re-
gion. This setting tends to output false matting results when trimap is wrongly
predicted. Our matting decoder treats mask as guidance and regresses alpha at
the whole image. Under this setting, the matting decoder is given an opportunity
to correct semantic errors. 2) Our segmentation decoder and matting decoder
are trained at two separate stages. At the segmentation training stage, the seg-
mentation decoder is strongly supervised by a large dataset. As a result, the
segmentation decoder predicts more robust results than the weakly supervised
result in P3M-Net. 3) Another advantage of our model is it is data-efficient in
that we only use a very small amount of high-precision data to train the matting
decoder.

Segmentation. Semantic segmentation assigns a semantic class label to ev-
ery pixel in the scene. Its difference with matting is that it predicts a hard bi-
nary mask that belongs to either foreground or background and cannot generate
fine details and transparent value as in matte. So directly applying segmenta-
tion mask to image and video composition will generate hard boundary at the
foreground object, leaving noticeable artifacts when replacing the backgrounds.
However, segmentation can provide strong semantic cues of the object location
which facilitate our matting task. Many deep learning-based semantic segmen-
tation are fully convolutional and some effective modules like Atrous Spatial
Pyramid Pooling (ASPP) [32] are proposed. We follow them in our segmenta-
tion network design.
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3 Method

Given a color image I, the matting task can be formulated as follows:

I = αF + (1− α)B, α ∈ [0, 1], (1)

where F,B are foreground and background, and α is the alpha matte denoting
where is foreground part located. For image matting problem, we should predict
the alpha matte from the input color image, which is a hard and ill-posed task.
As mentioned earlier, existing methods rely on additional auxiliary inputs like
trimap or pre-captured background. Automatic method like RVM is not robust
against semantic error. Based on this, we try to design a framework to bet-
ter leverage the semantic prior from segmentation, but produce fine detail and
transparent matte values. A straightforward way is to rely on a semantic seg-
mentation mask and generate the matting results using a new matting network.
This setup is developed and demonstrated in mask-guided (MG) matting [4]. The
two-step setup treats segmentation and matting as two separate tasks and has
a few drawbacks. First of all, the matting network only uses the predicted seg-
mentation map and ignores the rich semantic features. Second, using a separate
matting network will extract features again from image and introduce additional
computation, which slows down the speed noticeably on high resolution.

Fig. 2. The network structure of our SGHM. High-resolution image is first downsam-
pled for the shared encoder, then the segmentation decoder is used to generate a coarse
semantic mask prediction. We propose an Attentive Shortcut Module(ASM) to adap-
tively fuse shared features and masks. Finally, the matting decoder refines the unknown
area of human margin and predicts the alpha matte.

Based on above analysis, we propose a new human matting method named
Semantic Guided Human Matting (SGHM), which uses a segmentation network
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to guide human matting. Specifically, we share the encoder between segmentation
and matting task. Thus, matting task can learn accurate semantic understanding
from reusing the rich semantic features in encoder and focus on predicting alpha
details in matting decoder.

As shown in Fig. 2, our SGHM consists of a shared encoder to extract image
features, a segmentation decoder to predict image segmentation mask, and a
matting decoder with Progressive Refinement Module (PRM) [4] to predict a
high-resolution matting result. We propose to use an Attentive Shortcut Mod-
ule (ASM) to combine the features from encoder and mask from segmentation
decoder for matting decoder.

3.1 Shared Encoder

As mentioned above, we propose to improve matting results by using semantic
human segmentation features. So we make the segmentation and matting tasks
share an encoder. More specifically, we first train the encoder and segmentation
decoder as segmentation model, and then fix the parameters of the encoder and
train the matting decoder with segmentation features extracted from encoder.
We adopt ResNet50 [33] as feature extraction backbone followed by a ASPP
module [32] for shared encoder, which extracted features at 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64

scale for two decoders with an input image at 1
4 scale, which can be denoted as

F0, F1, F2, F3, F4.

3.2 Segmentation Decoder

Our segmentation decoder is a light-weight and efficient module, which contains
4 convolution layers and 4 up-sample layers. For each convolution layer, it can
be defined as:

Xi = Conv(Concat(Upsample(Xi+1), Fi), i = 3, 2, 1, 0, (2)

where Fi is the feature from shared encoder and Xi is the output feature of
convolution layer. In particular, X4 = F4 is the direct input of segmentation
decoder. Following each convolution layer, a batch normalization layer and a
ReLU layer are attached except the last one. Finally, we obtain the output seg-
mentation mask S. We denote our segmentation branch as SGHM-S in reporting
the results later.

3.3 Matting Decoder

Our matting decoder inputs the segmentation features and segmentation mask of
different scales, outputs the matting results at 1, 1

4 ,
1
8 scale. Firstly, we use ASM

module to combine the features from encoder and segmentation mask. Then we
sequentially process the features of different scales by several upsample blocks.
We predict matting results at 1, 1

4 ,
1
8 scale by output modules. Finally, we adopt
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PRM module to produce the final high-resolution matting result based on the
matting results at three output scales.
Attentive Shortcut Module. Our model proposed to use semantic segmenta-
tion to improve human matting by sharing encoder of segmentation and matting.
In addition to features from shared encoder , we also feed the segmentation mask
of different scales as input of matting decoder. For matting decoder, how to fuse
the features and mask from segmentation is of vital importance. One direct way
is to concatenate these two inputs for further processing. We propose to use
ASM to fuse these two inputs. With the help of ASM, we can get more adaptive
features for matting decoder. Specifically, the ASM contains two convolution lay-
ers, two SpectralNorm layers [34] and an efficient channel attention layer [35].
Channel attention can produce an adaptive feature by calculating a channel-wise
weight vector corresponding to input feature.
Upsample Block. Upsample block process input features sequentially from 1

64
scale to the original scale. First, it element-wisely adds the feature of the current
scale and the feature of the previous scale upsampled by residual blocks from
1
64 scale to 1

2 scale. Then, for 1
2 scale and 1 scale, we replace the residual blocks

with a single transposed convolution layer with batch normalization and ReLU
for efficiency.
Output Block. We predict matting result at 1, 1

4 ,
1
8 scale. For each output

scale, we attach a matting result prediction block after the upsample block.
Each prediction block contains a convolution layer, batch normalization layer,
ReLU and convolution layer sequentially.
Progressive Refinement Module. We adopt Progressive Refinement Module
(PRM) [4] to further refine the output matting alphas from output blocks. PRM
can selectively fuse the matting alphas from the previous scale and the current
scale with a self-guidance mask, which can preserve the confident regions from
the previous scale and focus on refining uncertain regions at the current scale.
Specifically, the self-guidance mask of the current scale is generated from matting
alpha obtained at the previous scale as follows:

gl =

{
0 0 < αl−1 < 1,

1 otherwise,
(3)

where αl−1 is the matting alpha of previous scale.The αl−1 is upsampled to
match the size of the raw matting output α′

l of the current scale. With the self-
guidance mask gl, the refined matting alpha of current scale can be calculated
as following:

αl = α′
lgl + αl−1(1− gl). (4)

Note that features in confident region predicted from the previous scale are
preserved and the current scale only focuses on refining the uncertain region.

4 Training

We train our SGHM model in two stages. First, we train the segmentation net-
work using widely available segmentation datasets. In this stage, the parameters
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of shared encoder and segmentation decoder are updated simultaneously. After
segmentation net is trained, the shared encoder can extract powerful semantic
features to provide information for the matting task. Next, we fix the shared en-
coder and segmentation decoder, and train the matting decoder only. The coarse
mask output from segmentation net is also used as the input at this stage. Dur-
ing inference, the two decoders are executed successively. Segmentation mask is
first predicted and fed to matting decoder to produce matting result.

4.1 Segmentation Training

We train the segmentation sub-network with about 47.2k paired images, which
are from SPD[36] (about 2.5k), Portrait Matting [7] (about 1.7k), dataset re-
leased in [37](about 5.2k), human parsing dataset [38] (about 4.7k), Privacy-
Preserving dataset [31] (about 9.4k) and green screen dataset from BMV2 [1]
(about 23.7k). We treat green screen data as segmentation mask since it pro-
vides more body posture diversity than alpha details. Note that we drop some
image pairs by annotation checking, and collect about 35k background images
from internet for random background composition.

We adopt Binary Cross Entropy (BCE) loss to train segmentation model. For
data augmentation, we adopt random affine transformation, random horizontal
flipping, random noise, random color jitters, random composite, and random
crop to 320 × 320. We train our segmentation model on 8 NVIDIA Tesla A100
GPUs with a batch size of 10 for each GPU. We use Adam as optimizer, and the
learning rate is initialized to 5e−4. The model is totally trained for 100 epochs
with a cosine learning rate decay scheduler.

4.2 Matting Training

We train matting model on the foreground images of AIM [20] dataset except
transparent object images. The total foreground images are 269, and we use MS
COCO dataset as background images.

Following MG [4], we adopt l1 regression loss, composition loss [20], Laplacian
loss [39] for training matting model. We denote the ground-truth alpha with
α̂ and the prediction alpha with α. Then the combined loss function can be
formulated as:

L(α̂, α) = Ll1(α̂, α) + Lcomp(α̂, α) + Llap(α̂, α). (5)

We apply this combined loss on all output matting alphas at 1, 1
4 ,

1
8 scale with

adaptive weights gl calculated in Eq. 3 to force the training to more focused on
the unknown region at each scale. Moreover, we set different weights for different
scales to form the final loss function as follows:

Ltot =
∑
l

ωlL(α̂l · gl, αl · gl), (6)

where ωl is the loss weight of different scales. We set ω 1
8
: ω 1

4
: ω1 = 1 : 2 : 3 in

our experiments.
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We train our matting model with 100, 000 iterations on 4 NVIDIA Tesla A100
GPUs with a batch size of 8 for each GPU. We use Adam as optimizer, and the
learning rate is initialized to 1e−3. We adopt the same data augmentation with
training of segmentation, with a random crop of 1280×1280. We also adopt mask
perturbation for augmentation. Note that we fix the parameters of segmentation
model during training matting module, which can force the matting decoder to
focus more on features to predict alpha details. If not fixed matting performance
will drop as it will overfit to the small set of matting data.

5 Experiment

5.1 Benchmarks

To verify the effectiveness of the proposed method, we evaluate the performance
on the following 5 benchmarks, including three real-world datasets and two com-
position datasets.
AIM [20]. We select 12 human images from AIM dataset for testing. Each
foreground human image is composited to 20 backgrounds which are selected
from top-240 of BG-20K[40] test set.
D646 [26]. Similar to AIM, 11 foreground images are composited with the last
220 backgrounds from BG-20K test set.
PPM-100 [3]. This dataset provides 100 finely annotated portrait images with
various backgrounds. Images from PPM-100 are more realistic and natural than
composition images.
P3M-500-NP [31]. We use the face kept images rather than face masked from
P3M. The purpose is to avoid the unknown impact of face blur on evaluation.
This benchmark has a great diversity of body postures.
RWCSM-289. To further verify our model generalization, we build a real-world
complex scene matting dataset, denoted as RWCSM-289. It contains a variety of
complex living and working scenarios. Its sources are hand-hold captured videos,
online video meetings, TV shows, live videos, and Vlogs. Many of them come
from youtube and are used by RVM [8]. It is worth noting that this dataset
include motion and multi-person scenes, which is helpful to evaluate model ro-
bustness. The ground truth alpha is annotated by PhotoShop.

5.2 Quantitative Comparison

We compare our approach with the state-of-the-art automatic matting methods,
including LFM [27], SHM [6], HATT [26], BSHM [41], MODNet [3], P3MNet [31],
video matting method RVM [8] and mask-guided method MG [4]. We use infer-
ence size 512 for MODNet since it provides the best results on PPM-100. For
RVM, We generate 10 frames video by repeating 10 times for every single image
and take last frame result as evaluation target. For P3MNet the recommended
testing resize strategy is used. For MG, we feed our segmentation result to its
network as mask guidance. Both MG and our method keep the short size of
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Table 1. Quantitative results on real-world benchmarks. ’↓’ : lower values are better.

Dataset Method MAD↓ MSE↓ Grad↓ Conn↓

LFM 15.80 9.40 - -
SHM 15.20 7.20 - -
HATT 13.70 6.70 - -

PPM-100 BSHM 11.40 6.30 - -
P3MNet 15.61 12.86 56.37 130.42
MODNet 8.60 4.40 64.26 80.82
RVM 10.95 6.53 63.13 105.19

SGHM (ours) 5.97 2.58 48.20 51.17

LFM 18.80 13.10 31.93 19.50
SHM 12.20 9.30 20.30 17.09
HATT 17.60 7.20 19.99 27.42

P3M-500-NP P3MNet 6.50 3.50 10.35 12.51
MODNet 12.82 7.41 16.02 20.23
RVM 11.10 7.06 15.30 19.17

SGHM (ours) 6.49 3.11 11.39 10.16

P3MNet 32.92 31.09 28.42 77.37
RWCSM-289 MODNet 18.95 15.76 19.65 46.18

RVM 14.36 11.25 15.68 28.52
SGHM (ours) 9.23 6.57 13.52 18.68

images to 1280 when testing. We use mean absolute difference (MAD), mean
squared error (MSE), spatial gradient (Grad) [42], and connectivity (Conn) [42]
as alpha matting quality metrics. Note that MAD and MSE values are scaled
by 103 and all metrics are calculated over the whole image.

Table 1 and Table 2 show the results of different matting methods evalu-
ated on real-world and composition datasets. It shows that our method outper-
forms other methods across all real-world datasets in all metrics. Specifically,
our method is ahead of compared method on PPM-100. On P3M-500-NP, we
achieve the results (MAD 6.49, MSE 3.11) that are on par with the P3MNet
(MAD 6.50, MSE 3.50) by only introducing face-masked P3M data into the
segmentation stage. For complex scene data RWCSM-289 which covers more di-
versity of background, number of humans, body accessories, illumination, and
image resolution, we significantly outperform P3MNet and MODNet, and are
better than video-based approach RVM. On the composition datasets, SGHM
still achieves the best results, showing consistently excellent performance of the
proposed method.

5.3 Qualitative Comparison

This section shows qualitative comparisons on real-world benchmarks. We reveal
alpha details in Fig. 3 and model robustness in Fig. 4. In Fig. 3 rows 1 to 4, we
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Robust Human Matting via Semantic Guidance 11

Fig. 3. Visual comparison of different methods on alpha details. SGHM-S denotes the
segmentation results of our method. SGHM denotes the final matting results. SGHM-
S+MG denotes using SGHM-S as extra input for MG. Our proposed method produces
superior results from coarse to fine. Best viewed on monitor with zooming in for detail.

compare hair details and find ours predict fine-grained hair details comparable
to mask-based method MG, which are more accurate than P3MNet, MODNet
and RVM. Multiple body postures are displayed in rows 5 to 8. Other methods
tend to get semantic errors (can be found in MODNet at row of 6, MG at row
of 7, P3MNet at row 5) while SGHM produces more accurate alpha matte. It is
worth noting that our method has the ability to correct semantic errors in the
coarse masks (see row 1, 6 and 8 from SGHM-S to SGHM).

In Fig. 4, we select two SOTA methods MODNet and RVM for robustness
comparison from four categories of videos. The extracted foreground is com-
posited with a green background for visualization. Our method predicts much
fewer semantic errors and demonstrates better robustness against semantic un-
derstanding errors than the other two methods.
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12 X. Chen et al.

Table 2. Quantitative results on composition benchmarks. ’↓’ : lower values are better.

Dataset Method MAD↓ MSE↓ Grad↓ Conn↓

P3MNet 44.78 37.70 43.02 100.80
AIM MODNet 33.18 23.58 29.08 74.47

RVM 27.07 17.54 28.84 60.73
SGHM (ours) 14.34 7.18 19.29 29.40

P3MNet 20.25 15.27 36.93 54.74
D646 MODNet 10.52 4.72 32.62 28.61

RVM 10.50 4.94 35.24 28.60
SGHM (ours) 6.59 2.19 19.07 17.02

Table 3. Size and Speed Comparison. The matting metrics are evaluated on PPM-100
dataset and the speed is evaluated on HD size on an NVIDIA A100 GPU. SGHM-S is
the segmentation branch of our method. It runs at over 100 FPS as it is on 1/4 of full
image resolution.

Method #Parameters (M) FPS MAD MSE

MODNet 6.49 20.76 8.60 4.40
RVM 3.75 71.81 10.95 6.53
SGHM-S 40.22 106.14 11.84 5.72
SGHM-S+MG 69.92 18.14 8.83 4.18
SGHM 43.94 34.76 5.97 2.58

5.4 Size and Speed Comparison

As mentioned in Section 3, MG uses a segmentation mask as extra input to its
matting network. Unlike MG, we incorporate the mask generation stage into
matting framework. Since MG uses an independent matting network, it intro-
duces more parameters and its total parameter number is the combination of
segmentation and matting networks. The speed is thus slowed down. Our SGHM
shares the encoder with the segmentation, which causes marginal extra param-
eters. SGHM also runs faster than MG on the same setting and can achieve 34
FPS on HD image (1920×1080) on NVIDIA A100. For the matting quality, our
method achieves better performance. This shows we have both speed and accu-
racy advantages over MG. MODNet and RVM are also compared. Although they
have fewer parameters, they both have limitation. MODNet runs slower on HD
inference size (20.76 FPS) than 512 (81.01 FPS). RVM predicts unsatisfactory
fine-grained alpha results across all benchmarks.

5.5 Ablation Studies

Role of Segmentation Task. We propose to introduce segmentation task to
improve the performance and generalization of alpha matting in two ways. One
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Robust Human Matting via Semantic Guidance 13

Fig. 4. Visual comparison of different methods on four categories of videos. Our method
is more robust to semantic errors.

is sharing encoder features and other is coarse mask guidance. Table 4 shows
our ablation study results on PPM-100. The results lead to two conclusions:
(1) Sharing semantic features is very beneficial to matting task, which helps to
reduce MAD from 7.83 to 5.97. (2) Mask guidance plays an indispensable role in
guiding matting process, as matting performance drops dramatically when mask
guidance is removed. Since our matting model is trained on only hundreds of
images, robust semantic features and good mask guidance are both helpful for
improving model generalization.

Role of ASM.We propose ASM to combine semantic features and segmentation
mask for matting decoder. As listed in the fourth and fifth rows of Table 4, model
gets worse results without ASM. SpectralNorm and ECA layer are the two key
components in ASM. In-depth analysis reveals that MAD drops from 5.97 to 7.11
when ECA layer is removed, while MAD is 6.33 when SpectralNorm is removed.
This indicates ECA layer contributes more as it channel-wisely re-weight the
features to adapt them for matting. Note that in the first row, we remove the
mask input to only use the features from encoder and keep the same Conv layers
with proposed ASM.
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Table 4. Ablation study on different settings, tested on PPM-100.

ASM Mask guidance Sharing encoder weights MAD MSE
√

17.23 8.54√
10.46 5.07√ √
7.83 4.04√ √
7.50 3.52√ √ √
5.97 2.58

Table 5. Results of different training datasets sizes, tested on PPM-100. The Large-
Seg dataset consists of 140k human masks which are collected from multiple publicly
available datasets. The size of D646 is 362 which is selected from the Distinctions-646
training set.

Segmentation Matting
Dataset Size Dataset Size MAD MSE

Baseline 40k 200+ 5.97 2.58
+LargeSeg 170k 200+ 5.16 2.04
+D646 40k 600+ 5.71 2.45

Role of Dataset Size. We further conduct an experiment to verify the data ef-
ficiency of our method. As can be seen in Table 5, a larger segmentation dataset
improves matting results significantly, while increasing the matting dataset size
improves slightly. Note that it is easy to collect these human segmentation masks
from publicly available datasets. But labeling fine-grained matting requires a
much higher annotation skill level and it is time and money costing. This is an
important and practical finding that we can efficiently improve matting perfor-
mance by collecting more coarse human masks in an easy and fast way rather
than paying for the high cost fine-detailed alpha annotating.

6 Conclusion

In this work, we investigate the major challenge in robust human matting and
reveal that it is from the semantic understanding. Based on this, we propose a
semantic guided human matting method. We introduce an additional matting
decoder to the semantic segmentation network. By reusing the features from
semantic segmentation encoder, the matting decoder is aware of global semantic
information and also can generate fine matting details. With very small number
of matting data, we can train a robust, accurate and real-time matting model
which achieves top performance on multiple benchmark datasets. We believe that
our proposed framework is a practical pipeline for matting application which
does not rely on large number of high annotation cost matting data.
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