
Video Object Segmentation via Structural
Feature Reconfiguration

Zhenyu Chen1, Ping Hu2, Lu Zhang1, Huchuan Lu1, You He3⋆, Shuo Wang4,
Xiaoxing Zhang4, Maodi Hu4, and Tao Li4

1 Dalian University of Technology, China
dlutczy@mail.dlut.edu.cn luzhangdut@gmail.com lhchuan@dlut.edu.cn

2 Boston University, USA
3 Naval Aeronautical University, China
pinghu@bu.edu youhe nau@163.com

4 Meituan, China
{wangshuo28, zhangxiaoxing, humaodi, litao19}@meituan.com

Abstract. Recent memory-based methods have made significant progr-
ess for semi-supervised video object segmentation, by explicitly modeling
the semantic correspondences between the target frame and the histor-
ical ones. However, the indiscriminate acceptance of historical frames
into the memory bank and the lack of fine-grained extraction for target
objects may incur high latency and information redundancy in these ap-
proaches. In this paper, we circumvent the challenges by developing a
Structural Feature Reconfiguration Network (SFRNet) . The proposed
SFRNet consists of two core sub-modules, which are Global-temporal
Attention Module (GAM) and Local-spatial Attention Module (LAM).
In GAM, we exploit self-attention-based encoders to capture the target
objects’ temporal context from historical frames. The LAM then recon-
figures features with the current frame’s spatial structural prior, which
reinforces the objectness of foreground objects and suppresses the inter-
ference from background regions. By doing so, our model reduces the re-
liance on the large memory bank containing redundant historical frames,
while instead effectively segmenting video objects with spatio-temporal
context aggregated from a small set of key frames. We conduct extensive
experiments with benchmark datasets, and the results demonstrate our
method’s favorable performance against the state-of-the-art approaches.
The code will be available at https://github.com/zy5037/SFRNet.

Keywords: Video Object Segmentation · Structural Feature Reconfig-
uration · Global-temporal Attention · Local-spatial Attention.

1 Introduction

Video Object Segmentation (VOS) aims to segment out the interested objects
along the video sequence. It has received great attention recently because of its
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Fig. 1. Visualization of key feature channels. We observe that a target frame is struc-
tured as foreground (FG) and background (BG) regions by different feature channels.
Our Local-spatial Attention Module (LAM) exploits the current frame’s spatial struc-
ture to better extract discriminative structural feature representations, hence alleviat-
ing the demand for heavy historical memory.

benefits for applications like video surveillance, video editing, and multimedia
analysis. In this paper, we focus on addressing semi-supervised video object
segmentation, where the target objects are manually annotated in the first frame.

Thanks to the recent advances in deep learning techniques, state-of-the-art
methods in VOS have achieved significant progress. Early methods typically
propagate object masks over time via motion cues like optical flow [12,21–23,42,
59] or adopting an online learning strategy [5,20,24,27,45,49] to finetune on the
first frame with annotations. However, the motion-based mask propagation may
accumulate errors and online finetuning suffers from very low efficiency. Recently,
matching-based methods have emerged as a promising solution for this task [8,
30,44,58,60]. Among these approaches, Space-Time Memory (STM) network [33]
achieves great success, by extracting the spatio-temporal context from a memory
bank, which is typically large and redundant to ensure effectiveness. In order to
optimize the memory efficiency, several follow-ups of STM [11,37,38,46,50] have
been proposed with improved encoding [38,46] and matching [11,37,50] process.
Though significant progress toward this direction has been made, maintaining
memory with both efficiency and effectiveness is still very challenging, due to
the difficulties in balancing between the memory capacity and quality.

In this work, we circumvent the challenge by proposing a Structural Feature
Reconfiguration Network (SFRNet), which alleviates the reliance on large mem-
ory banks by exploiting the spatial structural composition of testing frame. Given
a video frame, we aim to discriminate foreground objects and background regions
as different pixel sets that are spatially structured by their underlying semantic
coherence. Therefore, the segmentation of video objects should not only bene-
fit from pixel-level space-time correlations for referred object, but also a video
frame’s own spatial structural compositions as illustrated in Fig. 1. Based on
this, we design SFRNet with two core components including a Global-temporal
Attention Module (GAM) and a Local-spatial Attention Module (LAM).
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The GAM extracts pixel-level spatio-temporal context from historical key
frames with a Transformer-based architecture. And the LAM is adopted to fur-
ther enhance the feature representations with spatial composition priors of the
testing frame. To explicitly extract and represent a target frame’s spatial com-
position, we draw inspiration from image subspace composition [9,40], where the
deep model is trained to encode visual components in images as discriminative
low-rank tensors [4,41,62]. Specifically, in LAM we explicitly construct low-rank
feature maps by first collecting the contextual feature basis along the spatial
dimensions of the feature maps. These basis are then aggregated via Kronecker
Product to form a set of low-rank tensors, and finally combined with the input
feature maps to represent different semantic components of the images. With
end-to-end optimization, LAM is able to separate and encode visual informa-
tion at object/region-level as illustrated in Fig. 1, hence achieving robustness
for the quality of the temporal context aggregation in GAM. By combining
GAM and LAM, our framework avoids heavy overheads caused by maintaining
a large amount of memory, while achieving effectiveness in encoding and extract-
ing visual objects in videos. Extensive experiments are performed to analyze the
proposed method, and the results on multiple datasets [34,35,53] show that our
proposed SFRNet can effectively segment video objects.

In summary, we have the following contributions:

– We propose a Local-spatial Attention Module that characterizes deep fea-
tures with the structural composition prior to better extract video objects
from the background.

– We develop a Structural Feature Reconfiguration Network (SFRNet), which
utilizes space-time context aggregation and spatial structural composition of
target objects, to relieve the dependency on heavily accumulated historical
frames, and achieves effective video object segmentation.

– We conduct extensive experiments to demonstrate the effectiveness of the
proposed method. Our SFRNet achieves the favorable performance against
the state-of-the-art approaches on multiple datasets including DAVIS16,
DAVIS17, and YouTube-VOS.

2 Related Work

Video Object segmentation. Learning video object segmentation via deep
neural networks receives growing attention recently. To improve the model’s
generalization, early methods [5, 24, 27, 45, 49] usually rely on an online learn-
ing scheme that finetunes the deep model with the annotated first frame during
testing. Despite the improvement in accuracy, the online finetuning process is
quite time-consuming and hard to be applied in real-world applications. In recent
years, with the advances in dense prediction tasks, STM [33] and CFBI [58] pro-
pose to build robust space-time correspondence modules and show great break-
throughs in performance against previous online approaches. They thus become
the new baselines in VOS for further promotion on the accuracy [15,16,51] or effi-
ciency [11,46]. The matching-based methods [15,44] like CFBI [58] usually build
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a multi-context feature matching mechanism between the query frame and key
frames (typically the first frame and the recent frame) to encode the long-range
similarity in semantics and the short-range similarity in appearance.

On the contrary, memory-based methods [11,19,28,46,51] like STM [33] aim
to learn the pixel-wise space-time correspondence between the current frame and
the historical ones. STM [33] introduces a memory mechanism, which resorts the
non-local module to model the correspondence between query frame and memory
frames. Through non-local module, the long-range dependencies among differ-
ent frames can be established. However, simply including all the previous frames
into the memory bank without selection would lead to memory explosion and a
heavy computational burden. This motivates some recent attempts to improve
the memory encoding strategy in STM. For example, SwiftNet [46] and AFB-
URR [28] propose to further filter the redundant pixels and merge the similar
ones in memory storage to alleviate the memory growth issue. RDE-VOS [25]
instead limits the memory to a constant size to improve the model efficiency.
RPCMVOS [54] suppress error propagation through a correction mechanism to
avoid error accumulation. STCN [11] proposes to simplify the non-local calcula-
tion by replacing the original cosine distance with the L2 distance.

HMMN [38] builds a pyramid memory network where the multi-level features
are incorporated to capture robust spatio-temporal correspondence. In this pa-
per, we propose an effective memory encoding framework, in which the robust
space-time coherence can be built on the key frames.
Transformer in Videos. Transformer [43] was originally proposed as a sequence-
to-sequence model for machine translation and has become the mainstream base-
line for natural language processing. Recently, it has been successfully applied
to many computer vision tasks [6, 14, 29, 48, 61] and shown convincing perfor-
mance w.r.t convolutional neural networks. Inspired by this, many attempts are
made to explore the effectiveness of Transformer in video tasks. For example,
TimeSformer [2] and STARK [55] extends the original Transformer to estab-
lish the spatio-temporal self-attention in video sequences. TransT [7] introduces
Transformer to enhance the intra-correlation and inter-correlation, respectively.
Recently, some Transformer-based models are proposed to tackle the VOS task.
JOINT [32] incorporates the Transformer with an update mechanism for inte-
grating transductive and inductive information into a unified framework. In this
paper, we propose to build the Global-temporal Attention Module and Local-
spatial Attention Module based on Transformer, for enhancing the structural
representation of the target objects to achieve robust segmentation.

3 Method

We propose a Structural Feature Reconfiguration Network (SFRNet) for effective
and efficient video object segmentation by enhancing the spatial structural repre-
sentation of the referred objects. Given the ground-truth mask at the first frame,
the proposed network aims to predict the masks in the following video sequence.
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Fig. 2. An overview of our framework. Our network consists of an Effective Encoder
and an Efficient Encoder for the feature extraction of query frame and key frames,
respectively. The Global-temporal Attention Module (GAM) is used to construct the
space-time correspondence at pixel level. The Local-spatial Attention Module (LAM) is
used to enhance the structural composition of the target instances. Finally, the output
of the two modules together with the skip-connections from effective encoder are fed
to the decoder for mask generation.

The framework is shown in Fig. 2. We use two separate encoders to capture the
embeddings for the current input It and the key frames Ik, respectively. To fix
the memory storage issue, we use the first frame and a recent frame to form
the key frames, i.e., Ik = {I1, Ir}. Following [11,46], we implement an Effective
Encoder based on ResNet50 [17] to extract the features with rich semantics and
spatial details for the current frame. Meanwhile, an Efficient Encoder is built on
ResNet18 [17] to swiftly incorporate the memory embeddings for key frames. To
capture historical information of the target objects, the concatenation of RGB
images and predicted masks are fed to the efficient encoder as in [33].

With the extracted features of the current frame Fq ∈ RH×W×C and key
frames Fk ∈ R2×H×W×C , SFRNet achieves memory encoding and video object
segmentation via a Global-temporal Attention Module (GAM) and a Local-
spatial Attention Module (LAM). The GAM is proposed to extract information
for target object from the key-frame set, and a Transformer based attention
formulation is designed to capture the globally long-term correlation for pixels
across frames. To improve the robustness of captured features, we build LAM
to further enhance with the referred objects’ spatial structural composition,
which strengthens the objectness of foreground objects in the current frame
and suppresses the interference from background noise. The structural enhanced
features, together with GAM output and skip-connections, are fed to the decoder
model for mask generation.

We adopt a commonly used decoder architecture as [11,33,38], which stacks
several refinement modules to incorporate the skip-connections from Effective
Encoder.
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3.1 Global-temporal Attention Module

To implement GAM, we leverage the advanced Transformer [43], which shows
superior capability to model the global and long-range context in dense predic-
tion tasks [6,61]. We start by briefly reviewing the multi-head attention module
in Transformer, which is the core unit of the proposed GAM. Given the spatially
flattened dm-channel feature map X ∈ RN×dm , the attention formulation of each
head is as follows:

hi = Softmax(
QiK

⊤
i√

dk
)Vi . (1)

whereQi ∈ RN×dn ,Ki ∈ RN×dn , and Vi ∈ RN×dn are the Query, Key, and Value
vectors respectively converted from the input vector X via several linear layers,
dk is a scaling factor equal to the output channel number dn. The attention
formulation in Eq. 1 can be performed in the form of multiple heads to produce
richer representations.

MultiHead(Q,K, V ) = Concat(h1, ..., hL) ·W o. (2)

where Concat(·) denotes the concatenation along the channel dimension, L is
the number of heads, and W o ∈ R(L·dn)×dm is a linear layer that fuses the output
vectors of the multi-head attention.

With the above-mentioned multi-head attention module, we build the Global-
temporal Attention Module as in the left part of Fig. 2. Given the feature maps
Fq of the current frame (also known as query frame), we first calculate the self-
attention to exploit the spatial correlation. Specifically, we flatten the feature
map Fq ∈ RH×W×C over spatial dimensions and get a set of vectors F ′

q ∈ RN×C ,
with N = H×W . The flattened vectors are then transferred to Query, Key, and
Value vectors to formulate the multi-head attention as described in Eq. 1 and 2.

With the aggregated feature from the current frame, we then construct cross-
context attention to capture target objects’ temporal context from key frames.
The cross-context attention is also based on multi-head attention, yet imple-
mented on the enhanced current feature F ′

q and the key frames’ features Fk.
To better extract spatio-temporal context from key frames, we construct

multiple stages of attention to aggregate information in an aggressive way. In
detail, the flattened F ′

q as Query and flattened F ′
k are taken as Key and Value

in cross-context attention of the first layer. In subsequent stages, the outputs of
previous layer are sent to the self-attention for feature aggregation. The cross-
context attention of subsequent stages takes the aggregated feature as Query
and transform F ′

k as Key and Value and finally generates the outputs of GAM,
which are denoted as Xs.

3.2 Local-spatial Attention Module

Many efforts have been made to improve the efficiency of memory encoding
and matching [11, 28, 46]. Yet it is still very challenging to balance between the
efficiency and capacity, i.e., a large memory contains redundant information
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incurring heavy computational cost, and a small memory bank benefits compu-
tational efficiency yet may lack sufficient information for extracting details of
video objects. We argue that this challenge can be circumvented by exploiting
the target objects structural composition in spatial domain of the current test-
ing frame, which helps to reduce model’s reliance on the quality of historical
information, and thus avoiding large-size memory while keeping effectiveness in
representations. We propose to learn to model and exploit the spatial structure
of visual components in the the current frame. Inspired by the tensor low-rank
decomposition of deep features [9, 40], we recompose the feature maps via a set
of low-rank components, which condense the key structural components for the
objects and background regions. To this end, we build a Local-spatial Atten-
tion Module to characterize the output of cross-context features by GAM with
region-level structure prior. The framework of LAM is shown in the right part
of Fig. 2, which consists of two sub-modules: Primary Information Acquisition
and Attention Construct Module.
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Fig. 3. Illustration of the Primary Information
Acquisition (PIA) module. After pooling and
expanding, we obtain the structural features in
different spatial dimensions. “ACA” denotes the
Axis-context Attention as described in Sec. 3.2.

Primary Information Acqui-
sition (PIA). The goal of PIA
is to learn to extract the dis-
criminative basis vectors for the
structural subspaces of the cur-
rent frame. The architecture of
PIA is shown in Fig. 3. Taking
the cross-context feature Xs ∈
RH×W×C from GAM as input,
the PIA module first generates a
set of spatial basis, which are later
utilized to generate low-rank dis-
criminative components. Specifi-
cally, we implement the average
pooling on Xs along the Height,
Width, and the full spatial dimensions to extract the contextual information of
the target object and the current frame,

xh = AvgPoolH(Xs),

xw = AvgPoolW (Xs),

xc = AvgPoolHW (Xs) .

(3)

where AvgPoolH(·), AvgPoolW (·) and AvgPoolHW (·) indicate the average pool-
ing operation along height, width and spatial dimension, respectively. With this
formulation, the cross-context feature can be compressed into three groups of
basis feature vectors, which are expressed as xc ∈ R1×1×C , xh ∈ RH×1×C and
xw ∈ R1×W×C . To further enhance the representation ability of the basis vectors,
we feed them into a 1×1 convolutional layer and expand it by K times to obtain
K groups of basis for each spatial dimension, x′

c ∈ RK×1×1×C , x′
h ∈ RK×H×1×C
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and x′
w ∈ RK×1×W×C .

Axis-context Attention (ACA). After obtaining the semantic basis from
PIA, we further build an ACA to enhance intra-correlation among the extracted
basis. We implement this Axis-context Attention based on the multi-head self-
attention. Taken x′

h ∈ RK×H×1×C as example, we flatten it to shape KH × C
to produce Query, Key and Value features. Then, self-attention as defined in
Eq. 1 and 2 is applied. Following the multi-head attention layer, we further add
a norm layer and a feed forward network to enhance the fitting ability of the
subspace characteristics. Note that the ACA is also applied to x′

w and x′
c in a

similar manner.

...

...
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Fig. 4. Illustration of Attention Construct
Module (ACM). X

′
indicates the reconstructed

attention multiplied by Xs for generating final
output Fo.

Attention Construct Module
(ACM). With PIA and ACA,
we can obtain the feature basis
for different spatial dimensions,
which can be utilized to repre-
sent the structural composition of
the target objects in the testing
frame. To transform the struc-
tural prior to the original input
(i.e., Xs from Global-temporal
Attention Module), we further
propose an Attention Construct
Module. The architecture of ACM
is shown in Fig. 4. Taking the fea-
ture basis of each group as input,
the ACM first performs the low-rank structural component reconstruction by

x′
i = x′

ci ⊙ x′
hi

⊙ x′
wi
. (4)

where x′
i ∈ RH×W×C indicates the combined feature of each group and ⊙ is

Kronecker Production. By this means, the obtained feature x′
i is reconstructed to

the orginal shape. Then, the reconstructed structural components are combined
via weighted summation,

x′ =

K∑
k=1

αk · x′
k . (5)

where α= {α}Kk=1 are learnable weights. A Sigmoid function is then applied to
convert the x′ into a 3D attention matrix X ′. Finally, the attention matrix X ′

is applied to the cross-context feature Xs to construct the output feature Fo of
the local-spatial attention module, which will be fed to the decoder for mask
generation. As shown in Fig. 1, compared with the baseline model, the gener-
ated structural feature shows great capability in capturing the discriminative
embeddings of the target object and suppressing the inferential instances from
the background.
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4 Experiments

4.1 Dataset and Evaluation Metric

We evaluate the proposed SFRNet on three benchmark datasets for video ob-
ject segmentation including DAVIS2016 [34], DAVIS2017 [35], and YouTube-
VOS [53]. DAVIS2016 contains 50 high-quality videos with per-frame fine-grained
annotations. In this dataset, the multiple instances of the video sequence are
grouped as one object for segmentation. DAVIS2017 is an extension version of
DAVIS2016, and consists of 60 sequences for training and 30 sequences for test-
ing. In DAVIS-2017, instance-level video object segmentation is evaluated in
each frame. YouTube-VOS is a large scale VOS dataset, which contains 3471
video sequences for training and 474/507 videos for validation in the 2018/2019
version of dataset. Compared with the DAVIS benchmark, videos in YouTube-
VOS are more challenging with large variations in object motion, deformation
and cluttered background.

To evaluate the proposed model, we adopt three metrics including mean
region similarity (J ), mean contour accuracy (F) and their average (J&F).

4.2 Implementation Details

Parameter Settings. In our model, the number of low-rank structural compo-
nent K is set to 16 in LAM, the head numbers L in Transformer is set to 4, and
the number of attention layers in GAM is set to 3. We apply fixed Sine spatial
positional embedding in the self-attention and the cross-attention.

Training Details. Following previous methods [11,28,33,37,38,46,50], we con-
duct a two-stage training process. At first, we pretrain the model using static
image datasets [13, 26, 39, 47, 56], by constructing synthetic video data through
affinity transformation and image augmentation operations. The learning rate is

Table 1. Comparison results on DAVIS2017 validation set.

FRTM PReMVOS LWL STM CFBI CoVOS GraphMem KMN JOINT RDE HMMN STCN
Method

[36] [31] [3] [33] [58] [52] [30] [37] [32] [25] [38] [11]
SFRNet

J&F ↑ 76.7 77.8 81.6 81.8 81.9 82.4 82.8 82.8 83.5 84.2 84.7 85.4 85.9

J ↑ 73.9 73.9 79.1 79.2 79.1 79.7 80.2 80.0 80.8 80.8 81.9 82.2 82.7

F ↑ 79.6 81.7 84.1 84.3 84.6 85.1 85.2 85.6 86.2 87.5 87.5 88.6 89.1

Table 2. Comparison results on DAVIS2016 validation set.

OSMN FEELVOS FRTM CINN CoVOS STM CFBI KMN HMMN RDE
Method

[57] [44] [36] [1] [52] [33] [58] [37] [38] [25]
SFRNet (ours)

J&F ↑ 73.5 81.7 83.5 84.2 89.1 89.3 89.4 90.5 90.8 91.1 91.3

J ↑ 74.0 81.1 83.6 83.4 88.5 88.7 88.3 89.5 89.6 89.7 90.5

F ↑ 72.9 82.2 83.4 85.0 89.6 89.9 90.5 91.5 92.0 92.5 92.1

FPS 9.3 2.9 17.7 - 39.6 8.4 7.2 - 11.6 40.0 20.4
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Fig. 5. Qualitative examples on DAVIS 2017 valid, and YouTube-VOS 2019 valid sets.
The two examples show the comparisons of our method with STM and HMMN. Our
method enables robust mask prediction in different scenarios.

set to 1e-5 in the first 150k iterations and decreases by 1/10 for the next 150k
iterations. At the second stage, the pretrained model is further finetuned on
YouTube-VOS and DAVIS2017. The initial learning rate is 1e-5 and decays by
1/10 at 125k iterations. The model converges after 150k iterations. The whole
training process is conducted with 4 NVIDIA RTX 2080Ti GPUs. We use Adam
optimizer with a batch size of 16 in pretraining and 8 at the finetuning stage.
All the images and video frames are resized to 384×384 during training. The
bootstrapped cross-entropy loss is applied for model optimization.

Testing Details. During testing, we use the first frame annotation and a recent
prediction to form the key frames. The input images are kept at their original
resolution for prediction. To avoid frequently running the efficient encoder on
key frames, which decreases models’ efficiency, we update the key frame features
at fixed frequencies.

We compare the results on DAVIS2017 under different update frequencies in
Tab. 7 and found that setting updating frequency to be 3 works best for our
method.

4.3 Comparison to state-of-the-art

DAVIS Datasets. We first compare the performance on DAVIS2017 for multi-
instance video object segmentation. The results on the validation split of DAVIS-
2017 are shown in Tab. 1. As we can see, our SFRNet achieves superior per-
formance against previous online learning based methods and memory-based
methods. To further verify the generalization of our model, we conduct com-
parison experiments on the test-dev of DAVIS2017 in supplementary material,
our model again achieves better performance against previous state-of-the-art
approaches. We also evaluate the performance for single-object on DAVIS2016
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Table 3. Comparison results on YouTube-VOS 2018 validation set.

PReMVOS FRTM CoVOS STM AFB-URR CFBI KMN LWL LCM HMMN STCN JOINT
Method

[31] [36] [52] [33] [28] [58] [37] [3] [18] [38] [11] [32]
SFRNet

G ↑ 66.9 72.1 79.0 79.4 79.6 81.4 81.4 81.5 82.0 82.6 83.0 83.1 83.6

JS ↑ 71.4 72.3 79.4 79.7 78.8 81.1 81.4 80.4 82.2 82.1 81.9 81.5 82.4

FS ↑ 75.9 76.2 83.6 84.2 83.1 85.8 85.6 84.9 86.7 87.0 86.5 85.9 87.2

JU ↑ 56.5 65.9 72.6 72.8 74.1 75.3 75.3 76.4 75.7 76.8 77.9 78.7 78.1

FU ↑ 63.7 74.1 80.4 80.9 82.6 83.4 83.3 84.4 83.4 84.6 85.7 86.5 86.7

Table 4. Comparison results on YouTube-VOS 2019 validation set.

CFBI SST RDE MiVOS HMMN STCN JOINT
Method

[58] [15] [25] [10] [38] [11] [32]
SFRNet

G ↑ 81.0 81.8 81.9 82.4 82.5 82.7 82.8 83.3

JS ↑ 80.6 80.9 81.1 80.6 81.7 81.1 80.8 82.0
FS ↑ 85.1 - 85.5 84.7 86.1 85.4 84.8 86.5

JU ↑ 75.2 76.6 76.2 78.2 77.3 78.2 79.0 78.2
FU ↑ 83.0 - 84.8 85.9 85.0 85.9 86.6 86.6

in Tab. 2. As we can see, our method achieves favorable performance in terms
of both accuracy and speed.
YouTube-VOS. Tab. 3 and Tab. 4 compare the proposed SFRNet with other
state-of-the-art methods on the 2018/2019 validation sets of YouTube-VOS. Our
method surpasses these existing top competitors with better overall accuracy on
this benchmark. Among the existing approaches, JOINT [32] achieves the best
JU accuracy for unseen objects. This is because JOINT adopts an online learning
strategy, which achieve better performance for unseen categories of objects but
sacrifices the efficiency. Without testing-time finetuning on the first frame, SFR-
Net achieves competitive accuracy for unseen objects compared to JOINT [32],
and outperforms all the other methods, which demonstrates the superior gener-
alization ability of our model.
Qualitative Results. Fig. 5 lists the visual comparison between our SFR-
Net with STM [33] and HMMN [38]. As we can see, the proposed SFRNet is
able to effectively capture the structural representation of the target objects for
high-quality mask generation. Besides, the proposed Global-temporal Attention
Module and Local-spatial Attention Module cooperate to propose discrimina-
tive space-time correlation, which shows great effect in distinguishing the target
object from interfered instances.

4.4 Method Analysis

In the following, we provide detailed analysis to demonstrate the effectiveness of
the designs and modules in our method. For experiments in this part, we use the
training splits of DAVIS2017 and YouTube-VOS for model training and report
results on DAVIS2017 validation set.
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12 Z. Chen et al.

Table 5. The effectiveness analysis of
Global-temporal Attention and Local-
spatial Attention Module on DAVIS2017
validation set.

STM GAM LAM TREnc J&F J F FPS

M1 ✓ 81.2 77.8 84.6 16.4
M2 ✓ ✓ 82.5 79.4 85.7 17.8
M3 ✓ 82.9 79.5 86.3 9.1
M4 ✓ ✓ 83.5 80.3 86.7 13.1
M5 ✓ ✓ 81.7 78.7 84.8 15.4

Table 6. Performance comparison
between key-frame-based model and
memory-based model.

Architecture MEM KF J&F J F FPS

M1 STM ✓ 81.2 77.8 84.6 16.4
M2 STM ✓ 80.8 77.3 84.3 21.5
M3 STM+LAM ✓ 82.5 79.4 85.7 17.8

M4 GAM ✓ 82.9 79.5 86.3 9.1
M5 GAM ✓ 82.0 78.5 85.5 13.8
M6 GAM+LAM ✓ 83.5 80.3 86.7 13.1

Table 7. Impact of key-frames update
frequency on final accuracy.

DAVIS2017 Every 1 Every 2 Every 3

J&F 84.0 85.3 85.9

DAVIS2017 Every 4 Every 7 Every 10

J&F 85.7 83.2 83.0

Table 8. Impact of the number for
structural components.

K = 4 K = 8 K = 16 K = 20

J&F 83.3 82.9 83.5 83.2
J 80.1 79.8 80.3 80.3
F 86.5 86.1 86.7 86.1

Effectiveness of Global-temporal Attention Module. We verify the effec-
tiveness of GAM by comparing its performance with a baseline model based on
STM [33]. Compared with GAM, the STM baseline only contains a single head
self-attention architecture. Based on the results of M1 and M3 in Tab. 5, we can
observe that GAM achieves 1.7% improvement on J&F against the STM base-
line. Besides, when combined with LAM, the GAM still outperforms non-local
module by 1.0% on J&F (see M2 and M4 in Tab. 5). These results demonstrate
that the multi-layer based GAM achieves more robust results than the STM
baseline on the VOS task.

Effectiveness of Local-spatial Attention Module. At first, we show the
impact of LAM in Tab. 5. As shown, the application LAM (M2 and M4) helps
to improve J&F by 1.3% and 0.6% for both the non-local baseline (M1) and
GAM baseline (M3), respectively. To demonstrate the design of LAM, we com-
pare it with a plain Transformer Encoder. As indicated by M1 and M5 in Tab. 5,
adding a Transformer Encoder upon non-local module improves J&F by 0.5%.
Yet, replacing the Transformer Encoder with LAM ( M2 in Tab. 5) can further
improve J&F by 0.8% and the speed from 15.4 FPS to 17.8 FPS. This demon-
strates the effectiveness and efficiency of the LAM module.

Efficiency with Key-frames. In this part, we analyze the efficiency of SFR-
Net. As shown in Tab. 2, SFRNet achieves state-of-the-art accuracy at the speed
of 20.4 FPS, which is faster than most of the previous methods. As introduced in
the previous section, in SFRNet we adopt only two key frames for recording the
historical information, which is in contrast to traditional memory-based meth-
ods that always add new frames into the memory bank. As shown in Tab. 6,
for both STM-only and GAM-only baselines, adopting two-key-frame strategy
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Fig. 6. Accuracy and time analysis for different methods on DAVIS2017 validation set.

Table 9. Impact of key-frames up-
date frequency on final accuracy.

Memory Frames 2 4 6

J&F 85.9 86.1 86.3

GFLOPS 91.6 138.3 185.0

Table 10. Impact of different LAM
attention on the output of GAM.

sigmoid add multi

J&F 83.5 82.3 83.2

(M2 and M5) achieves faster speeds yet lower accuracy. This shows that a large
memory bank is critical for effectiveness while bringing in more computational
costs, which poses the challenge of balancing between capacity and efficiency in
previous memory-based designs. In contrast, as indicated by M3 and M6, our
proposed LAM with key frame based strategy keeps fast speeds while achiev-
ing the best accuracy. In Fig. 6, we compare efficiency and accuracy over time
under different model designs. As we can see, for both STM-based and GAM-
based model, the proposed LAM leads to better accuracy as well as faster and
more stable speed over time. This again demonstrates the LAM’s effectiveness
to leverage local spatial composition of testing frames, which improves models’
ability to effectively extract information from a small set of historical frames.

Update of Key-frames. In Tab. 7, we investigate the impact of updating key-
frames frequency. We notice that setting frequency every 3 frames performs best
for both datasets, and either a lower or higher frequency doesn’t perform better.
Larger memory bank and LAM attention. As shown in Tab. 9, increasing
the memory frames can still improve accuracy, yet decrease computational effi-
ciency. With only 2 memory frames, the proposed SFRNet can already achieve
state-of-the-art accuracy in the experiments showed above. This demonstrates
that GAM and LAM work complementarily to boost the effectiveness and allevi-
ate the dependence on large memory banks. In Tab. 10, we compare the different
LAM attention operation on the output feature of GAM and the sigmoid oper-
ation performs the best.

Analysis of Feature Basis in LAM. We analyze the feature basis extracted
in LAM for constructing the low-rank structural component. As discussed in
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k

Fig. 7. Visualization of feature basis in LAM. The left side shows the affinity between
the different feature basis. The right side visualizes a group of feature basis. Examples
here are based on the features basis for “Height” dimension.

Sec. 3.2, we have K discriminative structural components produced by K groups
of feature basis collected from different spatial dimensions. In Fig. 7, we visualize
correlations between all K · H feature basis for the “Height” dimension. Note
that these basis are organized by each of K groups. As we can see, the basis of
the same group has a high correlation, and the basis of different groups presents
a low correlation. This shows the orthogonality between different basis groups,
which demonstrates that the constructed structural components are representing
different aspects of structural composition for the target object as well as the
scene. One group of the feature basis are also visualized in Fig. 7. In Tab. 8, we
also vary the number of structural components in LAM and find that our model
achieves the highest accuracy when K = 16.

5 Conclusion

We present SFRNet as a novel and effective framework for semi-supervised video
object segmentation. In SFRNet, we first introduce a Global-temporal Atten-
tion Module (GAM) based on self-attention modules to capture the target ob-
jects’ temporal context across frames. Then, the Local-spatial Attention Module
(LAM) is proposed to further reconfigure features with a testing frame’s spa-
tial structural prior, so as to reinforce the objectness of foreground objects and
suppress the interference from background regions. GAM and LAM work com-
plementarily to extract target objects from video frames. Extensive experiments
are conducted to analyze the effectiveness of SFRNet. The results demonstrate
that our method achieves state-of-the-art results on multiple VOS benchmarks.
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