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Abstract. Large-scale, multimodal models trained on web data such
as OpenAI’s CLIP are becoming the foundation of many applications.
Yet, they are also more complex to understand, test, and therefore align
with human values. In this paper, we propose gScoreCAM—a state-of-
the-art method for visualizing the main objects that CLIP is looking at
in an image. On zero-shot object detection, gScoreCAM performs simi-
larly to ScoreCAM, the best prior art on CLIP, yet 8 to 10 times faster.
Our method outperforms other existing, well-known methods (HilaCAM,
RISE, and the entire CAM family) by a large margin, especially in multi-
object scenes. gScoreCAM sub-samples k = 300 channels (from 3,072
channels—i.e. reducing complexity by almost 10 times) of the highest
gradients and linearly combines them into a final “attention” visualiza-
tion. We demonstrate the utility and superiority of our method on three
datasets: ImageNet, COCO, and PartImageNet. Our work opens up in-
teresting future directions in understanding and de-biasing CLIP.

1 Introduction

Large-scale, multimodal neural networks trained on web data are becoming im-
portant “foundation models” [1] for academic research, industry applications, and
the wider society. Within only one year since release, OpenAI’s CLIP [2], which
learns to match captions and images, has powered a multitude of applications
[3], including text-to-image synthesis [4,5,6], video retrieval [7,8], visual question
answering [9], and image editing [10,11]. As foundation models are scaled up
larger and becoming more ubiquitous, it is imperative to understand how they
work internally to ensure safe deployment, avoid unexpected harms due to biases
[12,13,14], and also further improve the models’ functionality [15]. However, the
inner-workings of foundation models (here, CLIP) are still largely unknown. For
example, it is intriguing why the highly-knowledgeable CLIP model is fooled by
a simple piece of paper with text [16] (see Fig. 4). In a complex, many-object
scene (Fig. 1), which objects are important to CLIP?

Existing ViT-based interpretability methods [17,18,19] visualize the similar-
ities between image and text tokens of vision-language models. Yet, they only
perform well on single-object images [17,18,20] or require cross-attention [21],
which does not exist in CLIP ViTs [2]. On the other hand, applying well-known
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(a) Input (b) Ours (c) ScoreCAM (d) RISE

Fig. 1: In a complex COCO scene, SotA feature importance methods often pro-
duce noisy heatmaps for CLIP RN50x16, questioning what objects are the most
important to CLIP. Here, RISE [24] heatmap covers both suitcases and the “bag-
gage” text (top row) while ScoreCAM [27] highlights both the racket and the
tennis court (bottom row), yielding a poor 0.0 IoU between the highlighted re-
gion □ and the ground truth box □. By using only the top-300 channels of the
highest gradients, we (1) localize the most important objects in a complex scene
(e.g., here, racket at IoU of 0.649); and (2) produce a SotA zero-shot, open-
vocabulary, object localization method for COCO and PartImageNet.

saliency methods [22,23,24] for convolutional networks (CNNs) to CLIP ResNets
often yields noisy heatmaps (see Figs. 1 & 3) perhaps because CLIP neurons are
highly multifaceted [16,25] and responsive to a wide variety of information in an
image, including text [16,26]. We find ScoreCAM [27] to be the highest-accuracy
prior art in CLIP-based, zero-shot object localization (Table 4) but also pro-
hibitively slow. For an input image, ScoreCAM requires ≥ 3,072 forward passes
through CLIP RN50x16 to compute the CLIP scores, i.e., the coefficients for
linearly combining 3,072 layer4 channels into a heatmap. This overhead is even
higher for CLIP RN50x64, which has 4,096 layer4 channels.

To overcome this problem, we propose gScoreCAM, a simple-yet-effective
technique for reducing ScoreCAM’s theoretical time complexity by 10× by using
only the top k = 300 most important (i.e., highest-gradient) channels instead of
all 3,072 layer4 channels of CLIP RN50x16. By using the 10% most important
channels, gScoreCAM serves as (1) an interpretability technique for localizing
the most important objects in a complex scene (Fig. 1; backpack); (2) a state-of-
the-art (SotA) zero-shot, open-vocabulary, object localization method that does
not rely on any CLIP finetuning or object detectors. We find that:3

1. Compared to the CAM-based family, which proposes alternative sets of co-
efficients for linearly combining all layer4 channels into a single heatmap,
gScoreCAM is the most accurate, zero-shot object localization method for
CLIP on 2017 COCO (Sec. 4).

3 Code and an interactive demo are at https://github.com/anguyen8/gScoreCAM.
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2. gScoreCAM performs comparably to ScoreCAM, the best prior art on zero-
shot object detection using CLIP, but is ∼8× faster in practice (Sec. 5.1).

3. gScoreCAM is around 2 to 4× more accurate than the other methods (ex-
cluding ScoreCAM) on three different datasets: ImageNet [28], COCO [29],
and PartImageNet [30] (Sec. 5.1). In particular, our method performs bet-
ter in the harder cases, i.e., localizing an object in multi-object scenes or
localizing a part of an object (Sec. 5.2).

4. For both RN50x4 and RN50x16 versions of CLIP, gScoreCAM is a SotA
localization method that does not require finetuning CLIP or any specific
training to object localization (Sec. 5.3).

2 Related Work

Visualizing multimodal networks As vision-language Transformers become
increasingly more popular, many recent methods [17,18,19] were proposed to vi-
sualize the attention of these models or the similarity between image and text to-
kens [21]. Some methods [21] require cross-attention, which does not exist in both
CLIP ViTs and ResNets because cross-modal attention does not allow caching
of image or text embeddings and therefore admits a much slower retrieval speed
in practice. Other interpretability methods that do not require cross-attention
only perform well on single-object image crops [17,31,18,20]. That is, applying
the SotA ViT feature importance method (i.e., HilaCAM [17]) on CLIP ViT-
B/32 yields a localization accuracy 1.5× worse than when applying gScoreCAM
on CLIP RN50x16 (12.82 vs. 20.83; Table 4).
Feature importance methods for CNNs As ViT visualization methods are
either not applicable to or performing poorly on CLIP ViTs, an alternative tech-
nique for interpreting CLIP is applying feature importance methods for CNNs
[32,22,23] to CLIP ResNet-50 models. These methods can be grouped into two
categories: (1) white-box i.e., using gradients or activation maps (a.k.a. chan-
nels) or both to derive an attribution map e.g. [32,22,23,27]; and (2) black-box,
i.e. relying on perturbation-based analysis to compute the attribution of each
input feature [24,33,34]. In the white-box group, visualizing the image gradients
alone often yields noisy heatmaps [35,36]. CAM-based methods linearly combine
the channels at the last convolutional layer in CNNs into a single “attention”
heatmap. Because CLIP ResNets do not have a global average pooling (GAP)
layer followed by the last classification layer, the original CAM [32] is not applica-
ble to CLIP ResNets. Instead, one needs to resort to other CAM-based methods
that compute the channel coefficients differently, e.g. using gradients [22,23] or
confidence scores [27]. Compared to the CAM-based family, our method is the
SotA in CLIP-based zero-shot, object localization and uses both gradients and
scores for linearly combining the channels. Like ScoreCAM [27], our gScoreCAM
also uses CLIP scores generated for masked images and a prompt to compute
a channel’s importance weight; however, we apply ScoreCAM on only the top-
10% channels, discarding the rest. RISE [24] is a black-box version of ScoreCAM
where it generates a random mask instead of directly leveraging an activation
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map as a mask. Our gScoreCAM outperforms RISE in both efficiency and local-
ization accuracy.

3 Methods

We first describe the original Class Activation Map (CAM) method [32] and then
ScoreCAM [27] before introducing our gScoreCAM, which extends ScoreCAM.

3.1 Revisiting CAM and ScoreCAM

CAM [32] is applied to all N channels {Ai}N at the last convolutional layer
(e.g. layer4 at ResNet-50 [37]) that is followed by a GAP layer and then a linear
1000-output classification layer (whose weight matrix ∈ RN×1000). That is, for
each ImageNet class c, CAM uses the N corresponding weights {wc

i }N to linearly
combine N channels to create a saliency map Mc

CAM:

Mc
CAM =

N∑
i

Ai × softmax(wc
i ) (1)

ScoreCAM [27] is the same as CAM but uses the confidence scores of the CNN
in place of the weights wc

i in Eq. 1. Specifically, to explain why an input image
x belongs to a target class c w.r.t. a CNN fc(.), the ScoreCAM algorithm is:

1. Upsample all N channels at the last convolutional layer to the input-image
size using bilinear interpolation, yielding a set of upsampled channels {Aup

i }N ,
which serve as masks in the next step.

2. Element-wise multiply each mask Aup
i with all color channels of the input

image x and feed the resultant (masked) images to the CNN fc(.) to obtain
an output confidence score corresponding to the target class c.

3. Use the N confidence scores obtained in place of the wc
i to compute Mc

CAM
following Eq. 1.

In sum, the ScoreCAM saliency map is computed by:

Mc
ScoreCAM =

N∑
i

Ai × softmax(fc(x⊙Aup
i )) (2)

where ⊙ is the Hadamard product.

3.2 Proposed method: Gradient-guided ScoreCAM (gScoreCAM)

While performing fairly accurately with CLIP CNNs (Table 4), a major drawback
of ScoreCAM is its prohibitively slow runtime as it requires many (e.g., N =
3,072) forward passes to generate a single saliency map when CLIP RN50x16
has N = 3,072 layer4 channels. A second problem is that since the convolutional
channels inside CLIP CNNs tend to react to a diverse variety of details (including
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both graphical and textual ones) present in the input image [16], using all the
channels (as in CAM and ScoreCAM) often yields noisy heatmaps.

To address these two problems, we propose to apply ScoreCAM but only to
the top-k (e.g., k = 300 i.e. only ∼10%) of the channels of the CLIP’s image
encoder. This effectively reduces the runtime by almost 10× and yields more
object-focused heatmaps. We choose the top-k channels by ranking them using
their mean gradients over three color channels, which we empirically find to be
the best proxy for importance among common channel-ranking criteria (Sec. 4.1).

Our full algorithm for running gScoreCAM on CLIP is:

Algorithm 1 Explaining CLIP (for both ResNet- & ViT-based CLIP encoders)
Input: Input image x ∈ RW×H×C , a text prompt P , and a target layer L (in CNNs,
L is the last convolutional layer) whose activation maps are ∈ RW ′×H′

.
Output: A heatmap M ∈ RW ′×H′

.
1: Run 1 forward pass through CLIP (x, P ) to get N channels {Ai}N at layer L
2: Run 1 backward pass to get the N channel gradients at layer L
3: Take the top-k largest-gradient channels and use them as masks (as in ScoreCAM)

to generate k masked images, i.e. {x∗
i }k where k ≪ N and x∗

i = x⊙Aup
i .

4: Run k forward passes through CLIP (x∗
i , P ) to obtain k CLIP scores.

5: Use the k CLIP scores as the coefficients in place of wc
i in Eq. 1 to linearly combine

the k channels into a single heatmap (i.e., discarding all N -k other channels).

For example, in CLIP RN50x16, L is the last convolutional layer whose the
output volume is 12× 12× 3, 072 (i.e. W ′ = H ′ = 12 and N = 3, 072). For ViT-
B/32, L is the penultimate layer of size 7× 7× 768 (more details in Sec. 3.5).

3.3 Evaluation Datasets

To thoroughly understand our method’s localization capability, we test it on
three localization benchmarks of increasing granularity: (1) localizing the main
object in a single-object image (ImageNet-v2 [38]); (2) localizing one object in
multi-object scenes (2017 MS COCO [29]); and (3) localizing an object part in
a single-object image (PartImageNet [30]).
ImageNet-v2 is a re-make version of the original 1000-class ImageNet [28]
attempting to understand how well existing algorithms overfit to the common
ImageNet and generalize to a new reproduction of it. We use all 10,000 images
in train-fullsup set (a.k.a val2 in the data preparation script) annotated by
Choe et al. [39].
COCO is an 80-class dataset designed for object detection and segmentation.
COCO images often include multiple objects of different sizes and locations,
making object detection more complex than ImageNet-v2. Therefore, we expect a
significant contrast between different methods in the object detection of COCO.
We use all 50,000 images in val2017 set for our evaluation.
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PartImageNet is a variance of ImageNet, where the selected images are
further labeled at the part level. That is, it has a hierarchy label. e.g., in the bird
class, the bird will be further labeled to part level: head, body, wing, foot, and
tail. It consists of 24,000 images with 11 super-class. The object detection task
in PartImageNet is challenging; it requires the attribution method to capture
precisely the model’s attention for each part of the object. We use all 4,598
images in test set for evaluation.

3.4 Evaluation Metrics

To assess how well a saliency method localizes an object or an object part in
an image, we perform Zero-Shot object Detection (ZSD) on the three datasets
described in Sec. 3.3. Specifically, we first binarize the saliency map, derive a
predicted bounding box, and compare it with the ground truth bounding box
under two common metrics: BoxAcc [40] and MaxBoxAccV2 [39].
Inferring bounding box from a heatmap4 A common method for deriving
the bounding box from a heatmap is to maximize task performance by grid
searching for binarization threshold. An alternative approach, Otsu’s method,
is a non-task-specific binarization method, which tries to maximize foreground
and background contrast after binarization. Following Chefer et al. [17], we use
Otsu’s method to binarize the heatmap in COCO and ParImageNet evaluation
and use the grid search approach in ImageNet-v2, which is recommended by
Choe et al. [39]. Note that the choice of binarization method is trivial to the
ZSD results (see Sec. A2 for more details).
BoxAcc metric For COCO and PartImageNet, we use BoxAcc [40], which
measures the following accuracy:

BoxAcc(τ, δ) :=
1

M

∑
m

1IoU(box(h,τ)m,Bm)≥δ (3)

Where τ ∈ [0, 1] is the binarization threshold, h is the saliency generated by the
model, box(h, τ) is the tightest box around the largest-area connected component
of the binarized saliency with threshold τ , B is the ground truth box, m ∈ M
is the box index, and δ is the IoU threshold, we use δ = 0.5 in our experiments.
Note that the binarization threshold τ will be determined by Otsu’s method in
our evaluation.
MaxBoxAccV2 metric MaxBoxAccV2 [39] is defined as:

MaxBoxAccV 2(δ) :=
1

3

∑
δ

max
τ

(
BoxAcc(τ, δ)

)
(4)

where δ ∈ {0.3, 0.5, 0.7}, τ ∈ [0 : 0.05 : 0.95] is the binarization threshold to
binarize saliency maps for evaluation against the binary ground truth masks.
We use the default hyperparameters from the authors.

4 We provide a detailed description for Otsu-based bounding box inferencing in Sec. A1
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Intersection over Union (IoU) and Area Under the Curve (AUC) We
measure the IoU at threshold δ = 0.5 (Sec. 5.2) and the AUC of the IoU over
different binarization thresholds (Sec. 4.2) to better understand the differences
between multiple visualization methods.
Computation resources We conduct our experiments on 8 Nvidia RTX
1080Ti and 3 Nvidia Tesla T4 GPUs.

3.5 CLIP Networks

Model & Methods We conduct all our experiments based on the CLIP [2]
model. We use the pre-trained model RN50x16 for all CNN-based methods (ex-
cept for the experiment in Sec. 5.3, which also includes RN50x4) as it provides
the best performance among the convolutional-based variances available. For
comparison, we also apply the CNN-based saliency method to CLIP ViT-B/32
by reshaping the embedding of the target layer.
Target layers for visualization Similar to the idea in the CAM-based family,
for interpretability, in both ResNet and ViT versions of the image encoder, we
choose the valid channel closest to the CLIP prediction layer:

– RN50x16 and RN50x4: We use relu3 of the last BottleNeck in layer4, which is
the last layer of the image encoder in CLIP. RN50x16 has 3072 channels with
spatial dimension 12×12. RN50x4 has 2560 channels with spatial dimension
9× 9.

– ViT-B/32: We use the second-last ResidualAttentionBlock in VisionTransformer.
The output dimension is: 50× 1× 768, we exclude the [CLS] vector then re-
shape into 7×7×768 for CAM-based visualizations.

We choose the second-to-last layer in ViT-B/32 because the gradients in the last
layer are zero except for the [CLS] vector, and, only the [CLS] in the last layer
embedding is used for the final prediction.

The implementation of our attribution methods for CNNs is based on Py-
TorchCAM [41]. The CLIP models we used are from OpenAI [42]. Our HilaCAM
implementation is from the code released by [17].
Model hyperparameters We list some key hyperparameters of the models in
Table S2. More hyperparameters can be found in Table 19 of Radford et al. [2].
Prompts of CLIP For ImageNet-v2 and COCO, we directly use “{class
name}” (without quotation marks) as the prompt. For PartImageNet, we use
“{class name} {part name}” as the prompt.

4 Design of gScoreCAM

In this section, we first introduce two ablation studies (Sec. 4.1) to explain the
choices of hyperparameter k and the dimension reduction technique of the gradi-
ents. Secondly, we study the weight quality of CAM-based methods by measuring
the level of overlap between the target and the activation maps (Sec. 4.2). We
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find that gScoreCAM has the best weight quality among the methods that di-
rectly weigh the activation maps (Table 3). Lastly, we measure the noise level of
the weighted activation map with Total Variation [43] (Sec. 4.3). Note that the
noise level can not directly reflect the performance of the object localization but
instead indicates the confidence of the visualizing method.

4.1 Ablation Study of gScoreCAM

We first introduce why we set k = 300 in our proposed method by studying how
the hyperparameter k affects Zero-Shot object Detection (ZSD) performance.
We then compare the performance of ZSD using different pooling methods to
rank the channels.
Effects on the number of channels From Table 1, we find that gScoreCAM
reaches its peak performance as the number of channels increases to 500. We
choose k = 300 to conduct most of our experiments since it performs similarly
to k = 500 but only needs 60% of its run-time.

Table 1: k = 300 is the smallest num-
ber of channels that yield a high local-
ization accuracy on ImageNet-v2 and
COCO.

Number of ImageNet-v2 [38] COCO [29]
channels (MaxBoxAccV2) (BoxAcc)

300 (random) 55.12 18.55

20 49.83 15.72
100 54.97 19.25
200 53.75 20.50
300 56.61 20.83
400 56.60 20.89
500 57.38 20.89
600 56.55 20.89

Table 2: Taking the average of the
channel-wise gradients yields the high-
est localization accuracy when k =
300.

Pooling ImageNet-v2 [38] COCO [29]
Method (MaxBoxAccV2) (BoxAcc)

Average 56.61 20.83

Max-abs 56.46 20.62

Average-abs 54.57 20.35

Effects on the choice of gradient dimension reduction To use the gradi-
ents to guide us in choosing important channels, we first reduce the dimensions
of the gradients from Rc×w×h to Rc. Here, we study some of the most common
methods, Average-Pooling, Average-Pooling over the absolute of the gradients,
and Max-Pooling over the absolute of the gradients5. As shown in Table 2, the
best method is simple Average-Pooling. This result coincides interestingly with
the choice of GradCAM [22].

4.2 gScoreCAM Is the Best Weighting System among the
Candidates

Experiment We design an experiment to measure the quality of the weighting
systems by measuring the level of overlap of the weighted activation maps and
5 Method with -abs means operate over absolute value of the gradients.
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the ground truth. Precisely, we first measure the AUC of the IoU over different
binary thresholds (e.g., τ ∈ [0.0 : 0.05 : 0.95]) for each activation map that CAM-
based methods use. We then compute the weighted sum of the corresponding
AUC with the weights given by the method. Finally, we average the weighted
AUC of all testing samples. Note that in some methods (GradCAM, xGradCAM,
GradCAM++), in which the weights are not summed to one, we first discard
the negative values and divide the remaining by its sum. This measurement will
provide us with the upper bound of the mean weighted AUC. We set a baseline
by assuming that all activation maps have equal weights.
Results We find that the gScoreCAM weighting is 2× better than the upper
bound of GradCAM and slightly better than ScoreCAM (Table 3). The upper
bound of the mean weighted AUC of GradCAM (in ImageNet-v2) is similar to
the baseline, which explains why the ZSD performance of GradCAM is worse
than the Gaussian noise baseline in [39].

Interestingly, we find a large gap between the IoU score of a random channel
and the IoU score of the best channel (0.145 vs. 0.76). That is, a random channel
may often not capture the content of the target class. It indicates that choosing
the correct channels plays a vital role in visualizing the model’s decision.

Table 3: We directly evaluate the weighting of different CAM-based methods
and find that gScoreCAM is the best among them. The uniform baseline simply
averages all the activation maps. The total variation of the heatmap provides
information about how noisy the heatmap is. The lower total variation means
that the heatmap tends to be less noisy.

Mean weighted AUC Mean Total Variation

Baseline 0.0380 1745 ± 268

GradCAM [22] 0.0390 885 ± 484
xGradCAM [44] 0.0421 1090 ± 657

GradCAM++ [23] 0.0357 1500 ± 458
ScoreCAM [27] 0.0881 1363 ± 391

gScoreCAM (ours) 0.0936 1301 ± 422

4.3 gScoreCAM Is Less Noisy Compared to ScoreCAM

Experiment We compute the mean total variation of the heatmaps generated
by different methods.
Results The total variation provides a statistical view of the noise level of
the resulting heatmap from different methods. We find that gScoreCAM is sta-
tistically less noisy than ScoreCAM in Table 3. An interesting result is that
GradCAM is the least noisy method. Although we want the resulting heatmap
to be less noisy, the noise level itself can not guarantee better localization per-
formance.
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Why GradCAM is the least noisy method? As discussed above, Grad-
CAM provides a less noisy, lower coverage heatmap than other methods. We
study the weighted activation maps of GradCAM over 4,000 random samples
and find that the average resulting heatmap is entirely negative. Statistically,
about 47% of the weights in GradCAM are negative. On the other hand, all
the weights of gScoreCAM and ScoreCAM are positive, leading to higher total
variation and a noisier heatmap. Note that the activation maps are after ReLU;
therefore, all the activation maps are positive.

5 Experiments & Results

To directly compare performance between different methods, we use Zero-Shot
object Detection (ZSD) to evaluate the heatmaps generated by different methods
(Sec. 5.1). This evaluation provides information on how accurate the heatmap
is with respect to the object. Our experiments find that gScoreCAM is the
best method in COCO and PartImageNet (see Table 4 for details). To better
understand the ZSD results, we further study how they perform in different
scenarios, e.g., different object sizes and the number of objects in the test image
(Sec. 5.2). Lastly, we conduct the same experiment as in Sec. 5.1 but for a
different model (RN50x4), which reveals that our method is better than others
without extra hyperparameter tuning (Sec. 5.3).

5.1 Zero-Shot Object Detection Results

Since CAM-based methods aim to detect the corresponding area of a given class
or prompt, measuring the performance of ZSD will be a direct measurement of
visualization results.

Table 4: CLIP zero-shot object detection results with different CAM variances.
ScoreCAM and gScoreCAM are similar overall, while gScoreCAM is faster. The
gScoreCAM on RN-50x16 is substantially better than HilaCAM [31], a state-of-
the-art method for CLIP ViT-B/32. In contrast, gScoreCAM performs on par
with HilaCAM on ViT-B/32. The results are for CLIP RN50x16 unless noted
(ViT-B/32).

ImageNet-v2 [38] COCO [29] PartImageNet [30] Run time (s) Number of Number of
(MaxBoxAccV2) (BoxAcc) (BoxAcc) Forward passes Backward passes

GradCAM [22] 38.90 11.59 10.91 0.21 1 1
xGradCAM [44] 24.24 5.60 2.93 0.24 1 1
GradCAM++ [23] 44.15 9.68 6.57 0.39 1 1
LayerCAM [45] 43.70 9.19 12.42 0.82 1 1

GroupCAM [46] 50.85 13.06 6.16 1.99 96 1
RISE [24] 41.39 7.26 8.69 166.57 8001 0
HilaCAM [17] (ViT-B/32) 47.79 12.82 11.80 0.26 1 1

gScoreCAM (ViT-B/32) 45.26 12.73 10.67 0.84 301 1
ScoreCAM [27] 57.78 20.43 15.76 55.75 3073 0
gScoreCAM (ours) 56.61 20.83 16.34 7.40 301 1

1968



gScoreCAM: What objects is CLIP looking at? 11

ScoreCAM and gScoreCAM are the best methods among the tests
ScoreCAM and gScoreCAM outperform other methods in the object localization
tests (Table 4). In particular, they are about 1.5 to 4× better in COCO and 1.2
to 2× better in PartImageNet compared to other methods.
gScoreCAM runs 8 times faster than ScoreCAM Since the computation
of the visualization methods is model-dependent, we measure the computation
overhead by its approximate elapsed time and the forward and backward passes
required by these methods. We measure the average run-time (in seconds) for
each image-prompt pair under different CAM methods and report in Table 4.
The average run-time is measured by averaging the elapsed time of 200 samples
on a single Nvidia 1080Ti GPU.

The required forward passes of ScoreCAM are 10× more than gScoreCAM,
which means the run-time is 10× longer in theory. In our approximate experi-
ments, the actual run-time of gScoreCAM is about 8× less than ScoreCAM.
gScoreCAM performs better on complex tasks The object localization
task on ImageNet-v2 is relatively “simple” because most test images are object-
centric, and a center-gaussian baseline reaches 52.5% accuracy, as reported in
[39]. However, the same tasks on COCO and PartImageNet are much harder due
to the variety of target sizes, shapes, and locations. Interestingly, gScoreCAM
performs better on these more complex tasks compared to ScoreCAM.
Apply gScoreCAM to ViT-based CLIP Although gScoreCAM is designed
for the CNN-based model, we also apply it to the ViT-based model by reshaping
the embedding as discussed in Sec. 3.5. As shown in Table 4, we achieve a similar
performance as HilaCAM, which is the state-of-the-art method in ViT visual-
ization. One interesting note is that HilaCAM uses only attention in generating
heatmaps, and our method uses only activation. Despite the enormous difference
in the approaches, both techniques end up showing similar results.

5.2 Why Does gScoreCAM Perform Better in COCO and
PartImageNet?

Table 4 shows that gScoreCAM is slightly worse in ImageNet-v2 but better in
COCO and PartImageNet than ScoreCAM. We conduct two sets of controlled
experiments to find out why gScoreCAM is better in these two datasets.

5.2.1 gScoreCAM Performs Better in Multi-object Scenes
Experiment We conduct a controlled experiment based on the number of
objects in an image. Specifically, we measure the average IoU of different methods
when the number of classes varies. For diversity, we select images that only have
one instance per class. This experiment uses a union of the COCO and LVIS
labels because it provides more labels for each image. We measure the mean IoU
because it directly measures the level of overlap with the object. Based on the
number of classes in the images, we split the test images into three groups: (1-3,
4-6, 7-9) classes with (1150, 2790, 874) samples correspondingly.
Results We find that as the number of classes per image increases, the IoU of
all methods decreases. gScoreCAM has the lowest IoU drop, resulting in better
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Fig. 2: Controlled experiments on COCO and PartImageNet. Fig. 2a shows how
IoU changes with different methods when the number of classes per image is
different. Figs. 2b and 2c show how the object ratio affects the methods’ IoU.
The number in parenthesis of x-axis on each plot is the number of samples in
that group. In sum, gScoreCAM is more accurate than other methods
when a scene contains more objects (a) and object size (measured as
the ratio between the object size and the image size) is smaller (b–c).

performance when the number of classes per image is greater than or equal to
4. The median IoU of gScoreCAM is approximately 0.03 higher than ScoreCAM
and 0.07 to 0.10 higher than GradCAM and HilaCAM, as shown in Fig. 2a. This
advantage makes gScoreCAM performs better in COCO because about 61% of
the COCO validation images have more than three objects.

5.2.2 gScoreCAM Can Better Localize Small Objects
Experiment Similar to Sec. 5.2.1, we conduct another controlled experiment
on COCO and PartImagenet based on the size of the target part or object. This
experiment divides the test samples into three groups according to the target
ratio. The target ratio is measured by the area of the target part or object over
the full image. We divide the images into three groups: small (0-0.33), medium
(0.33-0.67), and large (0.67-1). COCO and PartImageNet have samples (13811,
607, 210) and (12727, 1222, 307) in the corresponding group.
Results As Figs. 2b and 2c show that gScoreCAM consistently has a higher
IoU in the small object groups, while ScoreCAM always has a higher IoU in the
large groups. Combined with the results in Sec. 4.3, we find that ScoreCAM tends
to generate a large and possibly noisy heatmap, resulting in better performance
in the ZSD task when the object is large. On the other hand, gScoreCAM can
better locate small objects. It is a critical capability in interpretability since we
want the resulting heatmap to be as accurate as possible. Interestingly, when
the target is a large scene (e.g., road, sea), gScoreCAM is still the best method
(see Sec. A4 for details).
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Fig. 3: In complex scenes (i.e. not ImageNet-v2), gScoreCAM outperforms other
methods, yielding more precise localization and cleaner heatmaps. IoU scores
between the ground truth (□) and inferred box (□) are shown next to each
method name. More examples in Figs. S2 and S3.

5.3 gScoreCAM Performs Better on Different CLIP Models

We repeat the ZSD experiments in Sec. 5.1 for RN50x4 to confirm that our
proposed method can generally be applied to different CLIP variations. For
generality (i.e., without further hyperparameter tuning), we use the same hy-
perparameter k = 300 as in Sec. 5.1.
Results Our proposed method has the best ZSD performance, as shown in Ta-
ble 5. The accuracy of gScoreCAM is around 2 to 4× higher than other methods
(except ScoreCAM). It suggests that gScoreCAM can be applied to other CLIP
variations without hyperparameter tuning.

Table 5: For both CLIP RN50x16 and RN50x4, gScoreCAM has the best overall
ZSD performance in the CAM-based family.

ImageNet-v2 [38] COCO [29] PartImageNet [30]
(MaxBoxAccV2) (BoxAcc) (BoxAcc)

RN50x16 RN50x4 RN50x16 RN50x4 RN50x16 RN50x4

GradCAM [22] 38.9 32.61 11.59 9.86 10.91 9.60
xGradCAM [44] 24.24 18.94 5.6 6.11 6.57 5.01

GradCAM++ [23] 44.15 46.23 9.68 10.68 2.93 8.00
LayerCAM [45] 43.7 47.01 9.19 9.87 12.42 13.36

GroupCAM [46] 50.85 22.77 13.06 1.29 6.16 3.01
ScoreCAM [27] 57.78 57.99 20.43 21.31 15.67 15.39

gScoreCAM (ours) 56.61 58.76 20.83 22.17 16.34 16.22

5.4 Qualitative Study via CLIP

We first study a progressing plot that shows how the heatmaps change with
the number of channels used by gScoreCAM. We then visually study the CLIP
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heatmap from different methods. We find that our proposed method provides a
more accessible model explanation from the visual studies.
The heatmap is getting noisier as the number of channels used by
gScoreCAM increasing Fig. 1 shows a progressing plot when the number
of channels used by gScoreCAM increases from 300 to 3072 (ScoreCAM) and
the heatmap generated by RISE (last column). We find a clear trend that the
gradient-guided ranking successfully ranks the channels by the heatmaps’ con-
tribution to the target. This visualization further confirms the result in Sec. 4.1
that we only need the top k channels to localize the target.
Visual comparison of gScoreCAM to other methods It turns out that
gScoreCAM can generate a very accurate heatmap when the target object is tiny,
as shown in Fig. 3. But other methods result in noisier or incorrect heatmaps.
These accurate heatmaps allow us to study what the model is looking at and can
be a helpful tool for studying the model. See Figs. S4 to S10 for more examples.

6 Discussion & Conclusions

Limitations One major limitation of our proposed method is that although
it is 10× faster than its predecessor; it is still not comparable to methods that
do not require multiple forward passes. Our proposed method is CNN-based; it
does not generalize well on popular transformer-based networks. One last thing
is that our proposed method introduces a hyperparameter (k).

Granny Smith

iPod

library

Granny Smith iPod Granny Smith

dough

85.6%

0.4%

0.0%

0.0%

Granny Smith

iPod

library

dough

0.1%

99.7%

0.0%

0.0%

background fence

Fig. 4: While Goh et al. [16] reported that CLIP is easily fooled by typographic
attacks, our gScoreCAM visualizations reveal interesting insights that CLIP in-
deed was able to distinguish the objects between apple, iPod and even the back-
ground. The misclassification was merely due to the fact that there are multiple
objects in the scene (i.e., ill-posed, single-label, image classification task).

Conclusions In this paper, we propose gScoreCAM, a gradient-guided CAM
method to visualize and explain multimodal models. Our design is generic such
that it can be easily applied to visualize and explain other CNN-based networks.
In a systematic analysis of different visualization methods, our method performs
the best in explaining and visualizing CLIP. We also find that our method can
solve a common problem, as shown in Fig. 4: the text in the image misleads
CLIP while giving the prediction. To the best of our knowledge, our proposed
gScoreCAM is the best method to visualize and explain current large CNN-based
models like CLIP. Therefore, we believe that gScoreCAM can help the commu-
nity better understand recent foundation models and make improvements.
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