
DILane: Dynamic Instance-Aware Network for
Lane Detection

Zhengyun Cheng, Guanwen ZhangB, Changhao Wang, and Wei Zhou

Northwestern Polytechnical University, Xi’an, China
guanwen.zh@nwpu.edu.cn

Abstract. Lane detection is a challenging task in computer vision and a
critical technology in autonomous driving. The task requires the predic-
tion of the topology of lane lines in complex scenarios; moreover, different
types and instances of lane lines need to be distinguished. Most existing
studies are based only on a single-level feature map extracted by deep
neural networks. However, both high-level and low-level features are im-
portant for lane detection, because lanes are easily affected by illumina-
tion and occlusion, i.e., texture information is unavailable in non-visual
evidence case; when the lanes are clearly visible, the curved and slender
texture information plays a more important role in improving the detec-
tion accuracy. In this study, the proposed DILane utilizes both high-level
and low-level features for accurate lane detection. First, in contrast to
mainstream detection methods of predefined fixed-position anchors, we
define learnable anchors to perform statistics of potential lane locations.
Second, we propose a dynamic head aiming at leveraging low-level tex-
ture information to conditionally enhance high-level semantic features
for each proposed instance. Finally, we present a self-attention module
to gather global information in parallel, which remarkably improves de-
tection accuracy. The experimental results on two mainstream public
benchmarks demonstrate that our proposed method outperforms pre-
vious works with the F1 score of 79.43% for CULane and 97.80% for
TuSimple dataset while achieving 148+ FPS.
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1 Introduction

With the recent development of artificial intelligence, various autonomous driv-
ing technologies [1] have achieved satisfying results. Lane detection is a funda-
mental perception task in autonomous driving with a wide range of applications,
such as adaptive cruise control, lane keeping assistance, and high-definition map-
ping. To ensure the safety of autonomous driving and ensure basic driving be-
tween lane lines, lane detection requires high accurate and real-time. However,
in actual driving scenarios, lane lines are considerably affected by complex envi-
ronments such as extreme lighting conditions, occlusion, and lane line damage;

Code is available at https://github.com/CZY-Code/DILane
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these are very common and make the task of lane detection challenging. The
traditional lane detection methods [1, 2] usually rely on texture information of
the lane line for feature extraction; then they obtain the topology structure of
the lane line through post-processing regression. Yet, traditional methods lack
robustness in complex real-world scenarios.
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Fig. 1. Illustration of different scenarios in lane detection. Blue lines are ground truth,
while green and red lines are true positive and false positive cases. (a) Lane detection
is accurate in normal scenes (despite the level of features we focus on). (b) Detailed
localization of lanes is inaccurate when we only utilize high-level features in the curve
scene. While facing the non-visual evidence case, e.g., (c) occlusions and (d) no-line,
only utilizing low-level features will increase false negative samples.

Owing to the effective feature extraction capability of deep convolutional
networks [3], most recent studies have focused on deep learning [4,5] to address
the task of lane detection and achieved impressive performance on mainstream
datasets [5, 6]. However, there still lacks an efficient and effective lane represen-
tation. Given a front-view image captured by a camera mounted on the vehi-
cle, segmentation-based method [7] outputs a segmentation map with per-pixel
predictions and do not consider lanes as a whole unit. They predict a single
feature map and overlook important semantic information because the lane it-
self has a slender topology and is easily occluded in the actual scene; moreover,
it faces the problem of high label imbalance and time-consuming. Parameter-
based [8,9] and keypoint-based [10,11] methods significantly improved inference
speed, which model the lanes as holistic curves and treat lane line detection as
a lane points localization and association problem respectively. However, those
methods struggle to achieve higher performance because the polynomial coef-
ficients are difficult to learn, and also the key points that are easily occluded
will considerably affect the accuracy of lane line detection. Recently proposed
anchor-based methods [12] regress the offsets between predefined fixed anchor
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points and lane points, then non-maximum suppression (NMS) [13] is applied to
select lane lines with the highest confidence. However, the tremendous number
of fixed anchors leads to inefficient calculations in NMS procedure.

To address the aforementioned issues, we propose a novel method named
DILane. For efficiency, we perform learnable anchors to replace the fixed anchors.
In our observations and analysis, the distribution of lane lines in the image is
statistical, i.e., most of lane lines start at the bottom or lower side of the image
and end at the vanishing point [14]. Besides, the distance between lane lines is
generally far from each other. Thus, the tremendous number of predefined fixed
anchor is inefficient, the much less learnable anchors are expected to represent
where lane lines are most likely to appear after the optimization.

For effectiveness, we perform dynamic head and self-attention in parallel to
gather local and global information respectively. As shown in Fig. 1, the lane line
has a high probability of being occluded and damaged in practical application
scenarios which is different from other detection tasks [15, 16]. Only leveraging
low-level features that contain texture information will lead to an increase in
false negative samples. Besides, lane lines are thin and have a long geometric
shape at the same time, only using high-level features that mostly carry seman-
tic information will cause localization inaccuracy. The proposed dynamic head
conditionally enhanced high-level features with low-level features for each pro-
posed lane instance. Inspired by iFormer [17], the self-attention is performed in
parallel not only provide a possible implementation for instance interaction but
also flexibly model discriminative information scattered within a wide frequency
range.

Our contributions are as follows: 1) we propose learnable anchors that are
the statistics of potential lane location in the image. 2) we develop a dynamic
head to conditionally enhance high-level features with corresponding low-level
features. 3) self-attention is utilized in parallel for global information aggre-
gation. 4) the proposed method achieves state-of-the-art performance on two
mainstream benchmarks of lane detection with high speed.

2 Related works

According to the representation of lanes, current convolutional neural network
(CNN)-based lane detection methods can be divided into four main categories:
segmentation-based, anchor-based, keypoint-based, and parameter-based meth-
ods, as shown in Fig. 2.

2.1 Segmentation-based methods

Segmentation-based algorithms typically adopt a pixel-wise prediction formula-
tion; i.e., they treat lane detection as a semantic segmentation task, with each
pixel classified as either a lane area or background. LaneNet [18] considered lane
detection as an instance segmentation problem, a binary segmentation branch
and embedding branch were included to disentangle the segmented results into
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Fig. 2. Lane detection strategies. (a) Segmentation-based methods use per-pixel clas-
sification into several categories. (b) Anchor-based methods regress offsets between
sampled points and predefined anchor points. (c) Keypoint-based methods use key-
point estimation and association. (d) Parameter-based methods regress parameters of
lane curves.

lane instances. To distinguish different lane lines, SCNN [5] proposed a message-
passing mechanism to address the no visual evidence problem, which captures
the strong spatial relationship for lanes. Based on the SCNN, RESA [7] aggre-
gates spatial information by shifting the sliced feature map recurrently in the
vertical and horizontal directions. To achieve real-time requirements in prac-
tice, ENet-SAD [19] presented a knowledge distillation approach for transferring
knowledge from large networks to small networks. CurveLane-NAS [20] proposed
a neural architecture search (NAS) to find a better network for lane detection,
which is extremely computationally expensive and requires 5,000 GPU hours per
dataset.

2.2 Anchor-based methods

The methods of constructing an anchor can be divided into two types: line an-
chors and row anchors. In line anchor-based methods, a line-CNN [21] obtains
a feature vector from each boundary position for regression and classification.
LaneATT [12] predefined a set of fixed anchors for feature pooling, and pro-
posed a attention mechanism for lane detection, which is potentially useful in
other domains where the objects being detected are correlated. SGNet [22] pro-
posed a vanishing point guided anchoring mechanism and multilevel structural
constraints to improve performance. CLRNet [23] detected lanes with high-level
semantic features, and then performed refinement based on low-level features.
The row anchor-based approach selects the locations of lanes at predefined rows
of the image, UFLD [24, 25] proposed a simple formulation of lane detection
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aiming at extremely fast speeds and solving the non-visual cue problem. Cond-
LaneNet [26] aimed to resolve lane instance-level discrimination based on con-
ditional convolution and row anchor-based formulation.

2.3 Keypoint-based methods

Inspired by human pose estimation [27], some studies have treated lane detec-
tion as a keypoint estimation and association problem. PINet [28] used a stacked
hourglass network to predict keypoint positions and cast a clustering problem of
the predicted keypoints as an instance segmentation problem. In FastDraw [4],
the author proposes a novel learning-based approach to decode the lane struc-
tures, which avoids the need for clustering post-processing steps. FOLOLane [10]
decomposed lane detection into the subtasks of modeling local geometry and pre-
dicting global structures in a bottom-up manner. GANet [11] proposed a novel
global association network to formulate lane detection from a new keypoint-based
perspective that directly regresses each keypoint to its lane.

2.4 Parameter-based methods

The parameter-based methods treat lane lines as a parameter regression problem.
PolyLaneNet [29] outputted polynomials that represent each lane marking in the
image along with the domains for these polynomials and confidence scores for
each lane. LSTR [9] developed a transformer-based network to capture long and
thin structures for lanes and global context. BezierLaneNet [8] exploited the
classic cubic Bezier curve because of its easy computation, stability, and high
degree of freedom of transformation to model thin and long geometric shape
properties of lane lines. Eigenlanes [30] propose a algorithm to detect structurally
diverse road lanes in the eigenlane space which are data-driven lane descriptors,
each lane is represented by a linear combination of eigenlanes.

3 Proposed method

In this paper, we propose a novel learnable anchor-based method called DILane
to detect structurally diverse road lanes. Fig. 3 presents an overview of the
proposed method.

The proposed DILane receives an input RGB image I ∈ R3×Hi×Wi which is
captured from a front-facing camera mounted on the vehicle, and predicts lanes
L = {l1, l2, . . . , lN}. The li = {clsi, Six, Siy, θi, leni, (∆x0

i , ∆x1
i , . . . ,∆xK−1

i )},
where the clsi is classification outputs, the x- and y-coordinates of start point
are defined as Six and Siy, θi is the slope of the anchor, leni is valid length
of the lane, and K is the predefined maximum length of the lane with equally
spaced coordinates in the y-axis, and ∆xi ∈ RK is the horizontal offsets between
the predictions and anchor lines. To generate these outputs, a backbone with
FPN [31] is used to produce multi-level feature maps. The dynamic head and self-
attention module receive multi-level features which are pooled by the learnable
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Fig. 3. Overview of DILane. (a) Backbone with FPN generates multi-level feature
maps. (b) Each learnable anchor is used to pool high-level and low-level features from
top and bottom layers, respectively. (c) Segmentation branch is only valid during train-
ing. (d) Detect head contains two components, the self-attention is used to aggregate
global information, and dynamic head is used for local feature enhancement.

anchors from feature maps. The final feature for regression is concatenated by
the outputs of dynamic head and self-attention module.

3.1 Learnable anchor

Previous anchor-based methods predefined one anchor at every possible location.
Obviously, the location of lanes is statistically distributed, thus we replace a
large number of fixed anchors with a small set of learnable anchors. In common
object detection, objects are represented by rectangular boxes, but a lane is
thin and long with strong shape priors. Thus, we define each anchor by a 4-
dimensional vector regi = {Six, Siy, θi, leni}, which denotes the normalized x
and y coordinates of the starting point, direction θ and length. For every fixed
yki = k · Hi

K−1 , each predicted x-coordinate x̂k
i can be calculated as following:

x̂k
i =

1

tan θi
· (yki − Siy) + Six +∆xk

i . (1)

The parameters of the learnable anchor regi were updated with the backprop-
agation of the algorithm during training. Following Line-CNN [21], we simply
initialize the learnable anchor to make the algorithm converge faster, as shown
in Fig. 4.
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Fig. 4. Learnable anchor initialization. Anchors emitting from the starting points on
the left/right/lower boundary. A straight anchor is set with a certain orientation and
each starting point is associated with a group of anchors.

Conceptually, these learned anchors are the statistics of potential lane line
locations in the training set and can be seen as an initial guess of the regions
that are most likely to encompass the lane lines in the image, regardless of
the input. Notably, proposals from a large number of fixed anchors are time-
consuming and ineffective. Instead, a reasonable statistic can already qualify as
a candidate. From this perspective, DILane can be categorized as a sparse lane
detector.
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Fig. 5. Details of dynamic head and self-attention (LN: layer-norm; ⊗: 1D-
convolution). (a) High-level feature and corresponding low-level feature are fed into
its dynamic head to generate enhanced feature for each proposal. (b) Structure of self-
attention which consists of two transformer encoder layers [32].
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3.2 Dynamic head

Motivated by dynamic algorithms [33, 34], we propose the dynamic head based
on conditional convolution - a convolution operation with dynamic kernel param-
eters [35, 36]. Sparse R-CNN [37] introduced a concept termed proposal feature
F ∈ Rd, which is a high-dimensional latent vector that is expected to encode
rich instance characteristics. For lane detection, texture information is critical
to detection accuracy when the lane line is clearly visible or less affected by the
background environment; still, there are more cases where lane lines are occluded
or affected by extreme lighting conditions.

Considering that bottom layers contribute more in capturing details while top
layers play a significant role in modeling semantic information. To obtain more
useful information dynamically under a non-visual evidence situation, we propose
a dynamic head to enhance instance features, which utilizes the extracted low-
level texture features to conditionally enrich high-level features.

Every anchor i has its corresponding feature vector FH pooled from the
high-level feature map and FL pooled from the low-level feature map, which
carries different semantic information. Where the part of the anchor is out-
side the boundaries of the feature map, both FH and FL are zero-padded. For
each proposal instance, the high-level feature is fed into its own head, which
is conditioned on a specific low-level feature. Fig. 5 illustrates the dynamic in-
stance enhancement. in the k-th dynamic head, the k-th low-level feature FL

generates 1D-convolution kernel parameters instance-wisely for the correspond-
ing k-th high-level feature FH . The high-level feature FH ∈ RH×C interact with
the corresponding low-level proposal feature FL ∈ RH×C to supplement texture
information and output final enriched feature F local

R ∈ RC for next step.

3.3 Self-attention

Depending on the characteristics of the CNN to gather information from nearby
pixels, each feature vector mostly carries local information. Thus, we utilize a
global attention mechanism to gather the global context for each proposal feature
to achieve better performance. Recent studies [38,39] have shown that the trans-
former has a strong capability to build long-range dependence, which achieves
surprisingly high performance in many NLP tasks, e.g., machine translation [40]
and question answering [41]. Its success has led researchers to investigate its
adaptation to the computer vision field, and Vision Transformer (ViT) [42] is a
pioneer that is applied to image classification with raw image patches as input.

For each high-level feature FH ∈ RH×C , we carry out a fully connected layer
to reduce the channels and generate F ′

H ∈ RC . We regard each instance feature
vector F ′

H as a single token and put all feature vectors as a sequence into a
self-attention module, which consists of two transformer encoders for gathering
global information. The output of self-attention module F global

R ∈ RC concate-
nate with F local

R which is generated by dynamic head in Sec. 3.2 and obtain
FR = [F local

R , F global
R ] for final regression.
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3.4 Loss Function

Label assignment. DILane infers a fixed-size set of N predictions in a single pass
through the detector, where the N is set significantly larger than the typical
number of lane lines in an image. The first difficulty is scoring the predicted
lanes with respect to the ground truth. Our loss produces an optimal bipartite
matching between the predicted and ground truth lanes, and then optimizes the
lane-specific losses. We denote the ground truth as G and the set of N predictions
as P = {p1, p2, . . . , pN}. Assuming N is larger than the maximum number of
lanes in the single image, we consider G = {g1, g2, . . . , gN} as a set of N padded
with ∅ (no lane). To find a bipartite matching between these two sets, we search
for a permutation of N elements with the lowest cost, which is expressed as:

σ̂ = argmin
σ

N∑
i

Lmatch(pi, gσ(i)), (2)

where Lmatch(pi, gσ(i)) is the pairwise matching cost between a prediction pi and
ground truth with index σ(i). This optimal assignment is computed efficiently
using the Hungarian algorithm described in [43].

The matching cost considers both the class prediction and similarity of the
predicted and ground truth lanes. Each element i of the ground truth set can be
seen as gi = {clsi, regi = {Six, Siy, θi, leni}, ∆Xi = {∆x0

i , ∆x1
i , . . . ,∆xK−1

i }}.
For the prediction with index σ(i), we define the probability of class clsi as
p̂σ(i)(clsi) and the predicted parameters as ˆregσ(i). With these notations, we
define Lmatch(pi, gσ(i)) as:

Lmatch(pi, gσ(i)) =
(
p̂σ(i)(clsi)

)α ·
(
1− L1(regi, ˆregσ(i))− L∆Xi

)(1−α)

, (3)

where α is set to 0.2 by default, and the above equations can be efficiently solved
using the Hungarian algorithm. In Eq. 3, L∆Xi

is used to measure the average
L1-distance between the predicted x-direction offsets and ground truth, which
is defined as:

L∆Xi
=

1

K

K∑
j=0

L1(∆xj
i , ∆̂x

j

i ). (4)

Training loss. Our training loss includes three parts, i.e., classification, matched
sample, and segmentation loss, which is only used during training. The overall
loss is the weighted sum of all losses:

LTotal = λcls · Lcls + λseg · Lseg +

N∑
i=1

1{clsi ̸=∅}Lmatch(pi, gσ̂(i)). (5)

In Eq. 5, the Lmatch(pi, gσ̂(i)) is used to measure the distance between predicted
lane pi with corresponding ground truth with index σ̂(i), and is defined as:

Lmatch(pi, gσ̂(i)) = λreg · Lreg(pi, gσ̂(i)) + λIoUi
· LIoU (pi, gσ̂(i)). (6)
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We used focal loss [44] Lcls to solve the imbalance between positive and negative
examples. The regression loss Lreg is the smooth-l1 distance for positive lane
parameters. For the x-direction offset loss LIoU , we followed the process in [23] to
calculate the distance between the predicted positive samples and ground truth.
Additionally, we added an auxiliary binary segmentation branch to segment the
lane line or background during training, and expected the bottom-up detail
perception to enforce the learning of spatial details.

4 Experiment

4.1 Datasets

To evaluate the performance of the proposed method, we conducted experiments
on two well-known datasets: CULane [5] and TuSimple [6]. The CULane dataset
contains 88,880 training images and 34, 680 test images, including 9 challenging
scenarios collected on urban roads with 590×1640 pixels. The TuSimple dataset
was collected only on highways with high-quality images, consisting of 3,626
images for training and 2, 782 images for testing, all of which had 720 × 1280
pixels.

4.2 Implementation details

Except when explicitly indicated, all input images were resized to Hi × Wi =
320 × 800 pixels. For all training sessions, the AdamW optimizer was used for
20 and 70 epochs on CULane and TuSimple with an initial learning rate of 5e-3.
The backbone parameters were initialized by the pretrained ResNet-18/34. Data
augmentation was applied to the training phase, and random affine transforma-
tion was performed (with translation, rotation, and scaling) along with random
horizontal flip. Moreover, we empirically and experimentally set the number of
points K = 72, and the intersection over union (IoU) threshold of the NMS was
set to 0.5. All experiments were performed on a machine with an Intel i7-10700K
processor and a single RTX 2080Ti processor.

4.3 Metrics

The F1 score is the only metric for the CULane dataset, which is based on the
IoU. Because the IoU relies on areas instead of points, a lane is represented as
a thick line connecting the respective points. In particular, the official metric
of the dataset considers the lanes as 30-pixels-thick lines. Only when the IoU
between the prediction and ground truth is greater than 0.5, can the predicted
lane lines be considered as positive. The F1 score is the harmonic mean of the
precision and recall, which is defined as:

F1 =
2× Precision×Recall

Precision+Recall
, (7)
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where Precision = TP
TP+FP and Recall = TP

TP+FN .
For TuSimple dataset, the three standard official metrics are the false discov-

ery rate FDR = FP
TP+FP , false negative rate FNR = FN

TP+FN , and the accuracy
is defined as:

Acc =

∑
clip Cclip∑
clip Sclip

, (8)

where Sclip is the total number of points in the clip, and Cclip is the predicted
lane points in the same clip. When the predicted lane point is within 20 pixels
of the ground truth, it is regarded as a true positive. If a lane is to be considered
as a true positive, 85% of the points must be correct.

4.4 Result

The results of our method on the CULane dataset compared with those of other
popular methods are shown in Table 1. We can see that the lanes can be detected
with accurate location and precise shape, even in complex scenarios. As demon-
strated, our method achieves the state-of-the-art performance on the CULane
benchmark with an F1 score of 79.43%. We can clearly see that the proposed
method consistently outperforms other popular methods in most categories while
maintaining 148+ FPS. After comparing our ResNet18-based method with other
methods, the proposed method is faster than most other methods with 179 FPS
and achieves an F1 score of 78.96%. These observations demonstrate the effi-
ciency and robustness of our proposed method.

Table 1. Comparison with state-of-the-art methods on CULane dataset. F1 score
(“%” is omitted) is used to evaluate the results of total and 9 sub-categories with IoU
threshold equal to 0.5. For “Cross”, only FP values are shown.

Method Total Normal Crowd Dazzle Shadow No-line Arrow Curve Cross Night FPS

SCNN [5] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5
RESA-R34 [7] 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80 45.5
UFLD-R18 [24] 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 282
UFLD-R34 [24] 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 170

PINet [28] 74.40 90.30 72.30 66.30 68.40 49.80 83.70 65.20 1427 67.70 25
LaneATT-R18 [12] 75.09 91.11 72.96 65.72 70.91 48.35 85.47 63.37 1170 68.95 250
LaneATT-R34 [12] 76.68 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 171
SGNet-R18 [22] 76.12 91.42 74.05 66.89 72.17 50.16 87.13 67.02 1164 70.67 117
SGNet-R34 [22] 77.27 92.07 75.41 67.75 74.31 50.90 87.97 69.65 1373 72.69 92

Laneformer-R18 [45] 71.71 88.60 69.02 64.07 65.02 45.00 81.55 60.46 25 64.76 -
Laneformer-R34 [45] 74.70 90.74 72.31 69.12 71.57 47.37 85.07 65.90 26 67.77 -

[8]-R18 73.67 90.22 71.55 62.49 70.91 45.30 84.09 58.98 996 68.70 213
[8]-R34 75.57 91.59 73.20 69.20 76.74 48.05 87.16 62.45 888 69.90 150

Eigenlanes-R18 [30] 76.50 91.50 74.80 69.70 72.30 51.10 87.70 62.00 1507 71.40 -
Eigenlanes-R34 [30] 77.20 91.70 76.00 69.80 74.10 52.20 87.70 62.90 1507 71.80 -

Ours-R18 78.96 93.27 77.28 71.98 77.63 53.27 89.96 68.45 1372 74.56 179
Ours-R34 79.43 93.81 77.70 71.80 78.99 54.12 89.69 70.11 1230 74.79 148

Additionally, the comparison of our method on TuSimple dataset is shown
in Table 2. Our method achieves the highest F1 score of 97.80% on TuSimple
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dataset. Comparing with the baseline LaneATT [12], our ResNet18 version sur-
passes 0.90% on F1 and 1.18% on accuracy respectively. Notably, our method
performs best with 2.35% on FDR rate and achieves remarkable 2.05% on FNR
rate.

Table 2. Comparison with state-of-the-art methods on TuSimple dataset. All measures
were computed using the official source code [5].

Method F1(%) Acc(%) FDR(%) FNR(%)

SCNN [5] 95.97 96.53 6.17 1.80
RESA-R34 [7] 96.93 96.82 3.63 2.48
UFLD-R18 [24] 87.87 95.82 19.05 3.92
UFLD-R34 [24] 88.02 95.86 18.91 3.75

LaneATT-R18 [12] 96.71 95.57 3.56 3.01
LaneATT-R34 [12] 96.77 95.63 3.53 2.92

Laneformer-R18 [45] 96.63 96.54 4.35 2.36
Laneformer-R34 [45] 95.61 96.56 5.39 3.37

BezierLaneNet-R18 [8] 95.05 95.41 5.30 4.60
BezierLaneNet-R34 [8] 95.50 95.65 5.10 3.90

Eigenlanes [30] 96.40 95.62 3.20 3.99

Ours-R18 97.61 96.75 2.56 2.22
Ours-R34 97.80 96.82 2.35 2.05

4.5 Ablation analysis

We verify the impact of the major modules through experiments on CULane
dataset to show the performance and analyze each part of the proposed method.
The results of the overall ablation study is presented in Table 3.

Table 3. Ablation studies on each component.

Baseline Learnable Anchor Dynamic Head Att-cascade Att-parallel F1(%)√
- - - - 75.09√ √

- - - 78.26√ √ √
- - 78.47√ √ √ √

- 78.71√ √ √
-

√
78.96

We take LaneATT [12] with Resnet-18 as our baseline, and gradually add
the learnable anchor, dynamic head and self-attention. These three major com-
ponents improve the F1 score by 3.17%, 0.21% and 0.24% respectively. The last
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row of the table indicates that constructing dynamic head and self-attention in
parallel brings in a gain of 0.25% F1 comparing with cascade mode.

Learnable Anchor. The number of learnable anchors has a significant impact
on the detection results. We explored the impact by controlling the number of
learnable anchors, as shown in Table 4.

Table 4. Effectiveness of the number of learnable anchors.

Anchors 100 200 300 500 1000

F1(%) 77.82 78.96 78.98 79.01 79.02
Recall(%) 73.11 73.67 73.78 73.79 73.82

FPS 190 179 160 122 96

As the proposal number increases, F1 and recall rate continue to improve,
and the computational consumption also increases. In some cases, being efficient
is crucial for lane detection, it might even be necessary to trade some accuracy
to achieve the application’s requirement. We set the number of anchors to 200
to balance efficiency and effectiveness in later experiments.

Feature enhancement. We conducted comparative experiments using differ-
ent level features. We first use features from the top and bottom layers to perform
feature enhancement with learnable embedding, then combined the features of
different layers for comparison. The experiment are summarized in Table 5.

Table 5. Different feature enhancement settings.

Setting FH FL FL + FH FH + FL

F1(%) 77.68 78.26 78.64 78.96

In Table 5, the “FH ” and “FL” mean enhancing high-level and low-level fea-
tures with learnable embeddings. The “FH+FL” and “FL+FH ” mean enhancing
high-level and low-level features with another level feature. the experiment shows
enhancing high-level feature with low-level feature performs best.

Visualization. The qualitative results for CULane and TuSimple datasets are
shown in Fig. 6. Particularly, we select one image from each of the nine subcat-
egories of CULane dataset for visualization. These visualizations demonstrate
that our proposed DILane is able to provide high quality lane representation.
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(a) Visualization on CULane dataset

(b) Visualization on TuSimple dataset

Fig. 6. Visualization on the Tusimple and the CULane dataset. Blue lines are ground-
truth, while green and red lines are true-positive and false-positive.

5 Conclusion

In this paper, we propose the Dynamic Instance-Aware Network (DILane) for
lane detection. We introduce the learnable anchors which significantly improved
the efficiency. Comparing with previous anchor-based methods [12, 22] which
predefined 1,000 fixed anchors, our method performs better (+2.14%) which
only predefined 200 learnable anchors. Notably, our proposed dynamic head
and self-attention in parallel, which focus on cross-level feature enhancement
and instance interaction, improved the effectiveness remarkably (+0.7%). Our
method achieves the state-of-the-art performance on both CULane and TuSimple
datasets with F1 score of 79.43% and 97.80% while running at 148+ FPS.
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