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Abstract. High-fidelity kinship face synthesis is a challenging task due
to the limited amount of kinship data available for training and low-
quality images. In addition, it is also hard to trace the genetic traits
between parents and children from those low-quality training images.
To address these issues, we leverage the pre-trained state-of-the-art face
synthesis model, StyleGAN2, for kinship face synthesis. To handle large
age, gender and other attribute variations between the parents and their
children, we conduct a thorough study of its rich latent spaces and differ-
ent encoder architectures for an optimized encoder design to repurpose
StyleGAN2 for kinship face synthesis. The obtained latent representa-
tion from our developed encoder pipeline with stage-wise training strikes
a better balance of editability and synthesis fidelity for identity preserv-
ing and attribute manipulations than other compared approaches. With
extensive subjective, quantitative, and qualitative evaluations, the pro-
posed approach consistently achieves better performance in terms of fa-
cial attribute heredity and image generation fidelity than other compared
state-of-the-art methods. This demonstrates the effectiveness of the pro-
posed approach which can yield promising and satisfactory kinship face
synthesis using only a single and straightforward encoder architecture.

Keywords: Kinship face synthesis · StyleGAN Encoder.

1 Introduction

With the recent popularity of deep image and face synthesis, kinship face syn-
thesis gets increasing attention in the research community of facial analysis. The
goal of kinship face synthesis is to render the possible children faces given a pair
of parental face images. This facilitates plenty of kinship-related applications,
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including producing visual effects, delineating the possible facial appearances of
a lost child after a long period of time, analyzing the facial traits of a family,
etc. However, kinship face synthesis is still a challenging and ongoing research
problem as compared with other face synthesis tasks due to a lack of large-scale
training data, severe label noise, and poor image quality. In addition, it is also
hard to trace the genetic traits between parents and children from those low-
quality training images, especially when there is interference caused by the facial
variations in illumination, pose, and other factors.

To synthesize a child face, one can use the image from a single reference
parental image or images from both parents. For the former, because the infor-
mation from the other parent is unavailable, there exist ambiguities of mapping
a parental face to its child face. Ertuğrul et al. [1] propose the first work in this
category, but the one-versus-one relation fails to capture enough information to
yield promising and satisfactory results. For the latter, although two-versus-one
relation between the parents and their children provides a good constraint for
better kinship face synthesis, the limited amount of kinship data and data noise
still restrict the generative models [2, 3], to synthesize high fidelity child faces.
This also usually results in the situations of overfitting or lacking diversity for
synthesized faces that are close to the average face when no further regular-
izations are applied. Lin et al. [4] leverage the pre-trained state-of-the-art face
synthesis model upon the FFHQ dataset, StyleGAN2 [5], and train an additional
encoder to extract latent representations encoding rich parental appearance in-
formation from the face images of parents encoding rich for kinship face synthesis
to mitigate the training data issues. Their method can effectively utilize the data
manifold of the pre-trained StyleGAN2 as a regularization to effectively restrict
the possible kinship face distributions and to synthesize meaningful and good
child faces. Nevertheless, without considering the issues of attribute data imbal-
ance and feature entanglement, the method still lacks the capability to perform
further smooth and effective manipulation over specific facial traits towards the
parents, such as face component-wise manipulation over eyes, nose, mouth, etc.
Zhang et al. [6] proposed to use multiple encoders for each component to realize
component-wise manipulation, but this introduces more efforts of training and
computational costs than others.

In general, the pipeline for kinship face synthesis can be divided into three
stages: parental feature extraction, parental feature fusion, and face rendering.
To address above issues of kinship face synthesis, we also leverage the pre-trained
StyleGAN2 for rendering due to its encoded rich face prior and superior face syn-
thesis capability. However, due to the complex nature of StyleGAN2 model and
large appearance variations (i.e., age, gender, and other facial attributes.) be-
tween parents and their children, it requires us to conduct a careful study of
its various latent spaces (i.e., Z, W, W+, S spaces.) and encoder architectures
for an optimized encoder to repurpose StyleGAN2 for kinship face synthesis. To
our knowledge, these have not been well studied for kinship face synthesis in
the literature. With thorough evaluations of different design choices as shown in
Table 1 (i.e., more details are presented in Section 4.), we propose an encoder

4480



KinStyle: Kinship Face Synthesis 3

design consisting of an image encoder and a fusion block. The image encoder
is further composed of an ID-preserved block with the design of Encoder for
Editing (e4e) by Tov et al. [7] for better disentangled latent representation and
editability in addition to an attribute block for normalizing age and gender vari-
ations of the parental representations for better synthesis fidelity. The fusion
block fuses the latent representations of the parents for the final child repre-
sentation. The obtained representation from the proposed encoder pipeline with
stage-wise training strikes a better balance of editability and synthesis fidelity
for identity preserving and attribute manipulations than other compared ap-
proaches. With extensive subjective, quantitative, and qualitative evaluations,
the proposed approach consistently achieves better synthesis results using the
Family-In-the-Wild (FIW) [8] and TSKinFace [9] datasets in terms of facial at-
tribute heredity and image generation fidelity than other compared state-of-the-
art methods. Furthermore, with our representation, we can also easily realize
a component-wise parental trait manipulation (CW-PTM) through a method
proposed by Chong et al. [10] to flexibly manipulate any desired face parts or
regions of the synthesized face towards the parents through latent interpola-
tion while ensuring the transition is smooth and continuous. Surprisingly, the
manipulation results are competitive with other approaches employing multiple
facial component encoders for the purpose. This also demonstrates the proposed
method can not only yield promising and satisfactory kinship face synthesis but
also enable the fine control of facial attributes using only a single and straight-
forward encoder architecture without the complex multi-encoder structure. This
reduces training difficulties such as tuning the hyperparameters of multiple en-
coders simultaneously.

2 Related Work

In this section, we briefly review the relevant research works for kinship image
synthesis using deep generative models.

Deep Image Synthesis: Many studies of image synthesis using a deep neural
network rely heavily on Generative Adversarial Network (GAN) [11–14]. Based
on GAN models, StyleGAN [15] was proposed to generate high-level attributes
for synthesized images and preserve linearity in the latent space of generative
models. StyleGAN encodes the latent z from the latent space Z into the feature
space W , then w is chosen from feature space and input to multiple layers of con-
volution layers in order to control various styles of the output image through the
adaptive instance normalization (AdaIN) module. Abdal et al. [16] proposed an
efficient algorithm to perform inversion of the input image into an extended fea-
ture space W+ instead of W space of a pre-trained StyleGAN for better image
reconstruction. StyleGAN2 [5] further improves the details of the synthesized
image, such as removing the blob-like artifacts by redesigning the network of
StyleGAN. Moreover, StyleGAN2 simplifies the instance normalization process
with a weight demodulation operation. The latent space of GANs has been stud-
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Fig. 1: The overview of the proposed encoder-decoder framework based on Style-
GAN2 for kinship face synthesis.

ied carefully in recent years especially in the field of computer vision [17–20]. For
facial images, it is ideal to map the source into latent space in an effort to reduce
dimension as well as provide image editing in latent space. Tov et al. proposed
Encoder for Editing [7] that allows manipulation of inverted images.

Kinship Face Synthesis: Kinship face synthesis is a recently commenced prob-
lem that aims to generate the child image given the images of parents [21]. Some
works studied generating a child image using the image of father or mother as
reference [22, 2, 23]. Nevertheless, these approaches suffer from the problem of
either low resolution or mode collapse, and thus the generated results are unsat-
isfactory. Some works use both parents’ images as input, such as the methods
proposed by Ghatas et al. [24] and Zaman et al. [25]. Still, the artifacts from
the first work are sometimes corrupted, and the second work does not take the
child image as guidance. Some recent works have further improved the synthesis
results in the kinship face synthesis problem using more advanced architectures
and loss designs. Gao et al. [3] introduce DNA-Net that leverages conditional
adversarial autoencoder to generate the child images. Zhang et al. [6] generate
child images by assigning inheritance control vector of a facial part so as to
let the child inherit the facial region from the mother or father. Lin et al. [4]
concatenate latent space embedding of a child with age and gender vector to
render child images with pre-trained StyleGAN2. ChildGAN [26] extracts the
representative semantic vectors and synthesizes the child image by macro fu-
sion and micro fusion. Our proposed method utilizes a novel designed encoder
and the method of attribute alignment, our model is capable of synthesizing the
child images that inherit designated facial regions, which leads to an outstanding
performance as well as diversity in the synthesized child images.
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3 METHODOLOGY

Our goal is to build a framework to synthesize a high-fidelity child face from a
pair of parental face images, IF and IM , while being able to smoothly control
the age, gender, and specific facial features of the synthesized face. The overview
of the proposed framework is shown in Fig. 1, which comprises three phases. The
first phase is to encode face images of the parents into the optimal latent codes,
sF and sM , while having a good compromise between fidelity and editability
for StyleGAN2. The identity information of parental face images is preserved
through the ID-Preserved block, and the age and gender attributes are further
normalized by the attribute block. In the second phase, we performs weighted
average upon the transformed latent representations of the parents into the final
representation, sC , for the child. The weights can be either manually assigned or
learned by several multilayer perceptrons (MLPs) layers. In the third phase, with
the representation, a flexible and fine manipulation of the selected region towards
the parents can be achieved through latent interpolation. In the following, we
will describe the details of each component.

3.1 Phase 1: Image Encoder

Due to the immense diversity of age, gender, and identity for the face images
of the parents and children, it is difficult to train a single encoder at a time to
acquire a latent representation that not only preserves the identity information
but also is age and gender invariant. Thus, we divide the image encoder into two
blocks, one for preserving identity information and the other for normalizing
the age and gender of the latent codes of the parents. Meanwhile, we perform
stage-wise training, which provides more flexible training strategies and requires
less computational resources. The details of each block are described as follows.

Identity-Preserved Block Let E(·) denote identity-preserved encoder block
(ID-preserved block), and GW+(·) refers to StyleGAN2 taking the latent code
in W+ space as input. The objective of the ID-preserved block is to learn the
mapping E : I → W+, preserving the identity of the input image. As shown
in Table 1, to preserve the identity information in the resultant latent represen-
tation while maximizing its editability, we adopt the Encoder for Editing (e4e)
architecture [7] with the identity loss for the purpose. Given an input image, the
encoder returns a base latent and a residual, each having the dimension R18×512.

The final output latent code is obtained by adding them together. This design
can minimize the variance between the latent codes from 18 layers of a W+

space and make the latent code more editable. In addition, this also facilitates
the age and gender normalization and other manipulations of the latent codes
of the parents for the second and later stages. Let w denote the latent code
encoded from the input image I, wbase denote the base latent code, w∆ denote
the residual, and Isyn denotes synthesized image. That is,

w = E(I) = wbase + w∆ , (1)
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Isyn = GW+(w) . (2)

For the loss function, to preserve the identity of the input image, we impose a
common identity constraint.

LID1
= 1− < R(Isyn), R(I) > , (3)

where < · , · > is cosine similarity and R(·) is a pre-trained ArcFace model that
extracts the feature map of a face from the penultimate layer.

Moreover, we add an L2 facial landmark loss to further enhance the alignment
of the synthesized face Isyn to be centered at the image. The landmarks on the
center line of the face between the nose and mouth are used for the landmark
loss, which is defined as

Lland = || Ex
land(Isyn)− C ||2 , (4)

where Ex
land(·) is a pre-trained landmark predictor and C is a vector with the

values of the x coordinate of the image center which is 512 in the rest of experi-
ments for a 1024×1024 image. Lastly, we also add two additional losses as in [7]
for image editability and quality. The first one is the an L2 regularization loss
on the residual w∆:

Lreg1 = || w∆ ||2. (5)

The second loss is the non-saturating GAN loss with R1 regularization, which
is used for forcing w not to deviate from the W+ space. Let D(·) denote a latent
discriminator.

LD
adv =− E

wr∼W+
[logD(wr)]− E

I∼I
[log(1−D(E(I)))]

+
γ

2
E

wr∼W+
[|| ∇wr

D(wr) ||22] ,

LE
adv =− E

I∼I
[logD(E(I))] .

(6)

To sum up, the total loss function of ID-preserved block is

Lenc = λID1
LID1

+ λlandLland + λreg1Lreg1 + λadvLadv. (7)

Attribute Block After the ID-preserved block, the attribute block is further
used to align the age and gender of input parental latent codes, w={wi}18i=1,
where wi ∈ R512 in W+. As mentioned in Section 2, the attribute manipulation
can be achieved by shifting the latent code along specific latent directions. Thus,
we learn an offset vector for desired modification by employing MLPs with leaky
ReLUs followed by each MLP, M(·), which take the concatenation of the latent
codes of the parents w, desired age α, and gender β values as input. For α, the
input value ranges from 0 to 1, corresponding to 0 years old to 100 years old. For
β, 1 represents male, and 0 represents female. Then, we can obtain the modified
latent code w′ by adding the original w and offsets ∆w = M(w,α, β).
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In the training process, α is sampled from Uniform[0, 1], and β is sampled
from Bernoulli(0.5). Besides arbitrary attributes, we can also use ground truth
attributes to construct a reconstruction loss and a cycle consistency loss on w.
We can further obtain three modified latent codes for each w.

w′
syn = w +M(w,α, β)

w′
rec = w +M(w,αgt, βgt)

w′
cyc = w′

syn +M(w′
syn, αgt, βgt)

(8)

where αgt, βgt denote the ground truth age and gender labels. For each w′ vector,
we can obtain the corresponding synthesized images Isyn, Irec, Icyc by passing it
into GW+(·). For the loss function of the attribute block, we first employ the
following age and gender losses.

Lage = ||α− Ca(Isyn)||2 + ||αgt − Ca(Irec)||2 + ||αgt − Ca(Icyc)||2
Lgen = H(β,Cb(Isyn)) +H(βgt, Cb(Irec)) +H(βgt, Cb(Icyc)) ,

(9)

where Ca(·) denotes a pre-trained age classifier, Cb(·) denotes a pre-trained gen-
der classifier, and H(·) denotes the cross-entropy loss. Similarly, we also use
identity loss for attribute block training. However, since the identity of a person
may become obscure as the person ages, Alaluf et al. [27] proposed an iden-
tity loss decayed with the age difference between the prediction and the ground
truth. We further extend the idea to both age and gender. The identity loss can
be formulated as

LID2 = ξ · (1− < R(Isyn), R(I) >)+

(1− < R(Irec), R(I) >) + (1− < R(Icyc), R(I) >),
(10)

where ξ is the decay coefficient, and we set ξ = 0.45+0.35 ·cos(|α−αgt| ·π)+0.2 ·
cos(|β−βgt|·π). Moreover, to make training faster and prevent latent codes from
deviating from the original W+ space, we utilize perceptual similarity losses on
the images and use L2 regularization on the offsets.

Lreg2 =||M(w,α, β)||2 + ||M(w,αgt, βgt)||2+
||M(w′

syn, αgt, βgt)||2,
Lper =||P (Ienc)− P (Isyn)||2 + ||P (Ienc)− P (Irec)||2+

||P (Ienc)− P (Icyc)||2 ,

(11)

where Ienc = GW+(E(I)) is the reconstructed image by passing the latent after
ID-preserved block to StyleGAN2, and P (·) is a pre-trained AlexNet feature
extractor upon the ImageNet dataset. Lastly, the total loss function is as follows.

Lattr = λID2LID2 + λageLage + λgenLgen + λreg2Lreg2 + λperLper. (12)

As suggested in [28], the latent codes in S space of StyleGAN2 result in a bet-
ter style mixing performance. We follow the idea and apply the affine transform
layers, A(·), available in the StyleGAN2 model to convert the latent representa-
tion of each parent, w′ vector, into s for the next stage as s = A(w′).
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3.2 Phase 2: Fusion

Once the transformed latent representations of the parents in S space are ob-
tained, we perform weighted average to blend them into one final child latent
code as follows:

sC = γ ◦ sM + (1− γ) ◦ sF , (13)

where sF and sM ∈ R9088 denote two latent codes in S space for the parents, sC
denotes the resultant child code, ◦ is the element-wise product, and γ ∈ [0, 1]9088

is the blending coefficient which can be either manually specified or learned by
a fusion network where we employ an MLP layer that takes the concatenated
vector of sF and sM as the input trained with the L2 reconstruction and ID losses
similar to the ID-preserved block. Besides S space, we also perform the blending
in W+ space for comparison, and more details can be found in Section 4.1.

3.3 Phase 3: Component-wise Parental Trait Manipulation
(CW-PTM)

With our optimized encoder pipeline of kinship face synthesis in Phase 1 and 2,
the resultant latent code for the child is suitable for editing through latent inter-
polation as compared with other methods, like StyleDNA. We can easily apply
a similar approach as in [10] to realize component-wise parental trait manipula-
tion (CW-PTM) in a single encoder-decoder framework. The relation between
each dimension of the latent code and specific facial features, such as eyes, nose,
and mouth, are obtained with K-means clustering. Then, a mask corresponding
to the facial features over the latent code can be derived accordingly. A specific
facial attribute can be transferred from one image to another by shifting the
original latent code towards the target one based on the mask. For example,
suppose the mask for the eyes is denoted by Meye, where Meye ∈ {0, 1}9088 and
one stands for the position of the latent vector controlling the synthesized face’s
eyes, as shown in Fig. 1. Therefore, we can shift the part of sC within Meye

toward starget by a coefficient ϵ. That is,

s′C = sC + ϵ ·Meye ◦ (sC − starget) , (14)

where s′C is the modified latent code, and ◦ denotes the element-wise product.
The step size ϵ will determine how similar the eye is to the target. Leveraging
this method, we can manipulate the latent code to make the synthetic child in-
herit specific parental traits. The proposed approach is not only more memory
and computation efficient but also allows more flexible and smooth manipula-
tion towards any selected regions of the parents by latent interpolation as shown
in Fig. 6b than other similar works, such as [6] which employs fixed multiple
component-wise encoders. In addition, the proposed approach avoids using mul-
tiple encoders, which increases the training difficulties due to plenty of model
parameters and hyperparameter tuning. The multiple region manipulations can
be achieved through recursively applying the same procedure.
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Fig. 2: It illustrates the ROC curves for ablation studies and the comparisons
between the proposed approach and the baseline, StyleDNA. ID stands for
ID-preserved block, A for attribute block, F for learned fusion, and CW for
component-wise parental trait manipulation. M represents directly averaging
parent latent codes without fusing them with a learned network.

4 EXPERIMENT

In this section, we show the results of the proposed approach with several recent
most representative state-of-the-art methods for quantitative, qualitative, and
subjective comparisons.

Implementation Details: We use a pre-trained and fixed StyleGAN2 model
upon the FFHQ dataset as our decoder. For the encoder, we train both ID-
preserved and attribute blocks using the FFHQ-Aging dataset [29], which con-
tains images with age and gender label information. We also perform weighted
sampling based on the number of training instances per age and gender. Then,
the learned fusion block is trained with the FIW dataset [8], which contains ap-
proximately 2,000 tri-pairs of kinship images. Since images in the FIW dataset
are low-resolution, we preprocess them with GFP-GAN for super-resolution [30]
before training. The facial landmarks are extracted using the MobileFaceNets
[31]. We pre-train the age and gender classifiers following the same setting as
[4]. Instead of one-hot vectors, age and gender conditionals are transformed to
[0, 1] and {0, 1} respectively and then duplicate 50 times each in order to facil-
itate the stable training. For hyperparameters of training, we set batch size as
6, use a standard Ranger optimizer with a learning rate 0.0001, and set the loss
weights as follows. We set λID1 = 1, λland = 0.0008, λreg = 0.0002, λadv = 0.5
for ID-preserved block; λID2 = 0.5, λgen = 1, λage = 5, λper = 0.5, λreg = 0.05
for attribute block; λID3

= 1, λ2 = 1 for the learned fusion block.

Training Pipeline: To facilitate the training process and handle the data im-
balance issues, we perform stage-wise training to train a component at a time
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while freezing the model weights in prior stages. This enables us not only to
apply relevant losses for the optimal training for each encoder block according
to their task characteristics but also to train the model using much less GPU
resources than other approaches.

4.1 Quantitative Evaluations of Different Encoder Configurations

Due to the complex nature of the StyleGAN2 model, for an optimized encoder
design, we first perform an investigation of the encoder design choices of differ-
ent latent spaces and network architectures for kinship face synthesis in terms of
AUC of the ROC curve for face verification and FID scores for image synthesis
where we measure the facial similarity between the synthesized child face and its
corresponding ground truth child face. The pre-trained ArcFace model for face
verification is used to extract the latent representations of both the prediction
and ground truth followed by cosine similarity computation. We randomly sam-
ple 100 positive and negative pairs from the test set of the FIW dataset for the
similarity computation. From Table 1, we find that encoding images toW+ space
or S space can generate offspring faces that are more realistic and more similar
to ground truths. In addition, the editability of encoded latent codes needs to be
considered in our styleGAN pipeline. The results show that the methods with
another popular pSp backbone [32] which does not account for editability at-
tained lower AUC and higher FID scores compared to the ones with e4e. Lastly,
although the learning-based fusion can achieve slightly better performance im-
provement than the manual one, there is not much difference between them if
the encoder is well designed. Then, performing fusion in W+ space or S space
attained similar AUC and FID scores. In the rest of the experiments, we select
the configuration of (6) to further conduct qualitative and subjective evaluation,
since it has the highest AUC for the best identity preservation and also yields
good perceptual quality image. For the configuration of (6), we further compare
the ROC curves of the proposed method with StyleDNA due to the public avail-
ability of its source code. As shown in Fig. 2, we can see the proposed approach
achieves the best performance with AUC 0.8101. We also show the blue curve
for the most promising result with AUC 0.8871 after applying CW-PTM us-
ing ID loss from the ground truth as the guidance. The improved number also
shows the strength of CW-PTM to explore a more resembled face to the ground
truth child face. Also, the learning-based fusion can achieve slightly better im-
provement than the manual one. In the rest of the experiments, we select the
configuration of (6) to further conduct qualitative and subjective evaluation,
since it has the highest AUC and yields good perceptual quality image.

4.2 Subjective Evaluation

To further compare the generation quality of different methods, we conduct the
subjective evaluation in two independent online sessions, 186 participants for the
first and 131 for the second. Each session contains 9 and 13 questions in total
respectively. For each session, we ask the participants to rank the synthesized

4488



KinStyle: Kinship Face Synthesis 11

Table 1: The quantitative results of pipelines with different combinations of the
encoder and the fusion method.

Encoder Fusion
AUC (↑) FID (↓)

Space Type Space Type

(1) W Resnet W Learned 0.6720 197.9197
(2) W+ e4e W+ Mean 0.8050 133.3718
(3) W+ pSp W+ Mean 0.7738 176.4417
(4) W+ e4e S Mean 0.8051 133.3681
(5) W+ pSp S Mean 0.7738 176.4349
(6) W+ e4e S Learned 0.8101 138.2808
(7) W+ pSp S Learned 0.7783 173.5681

Table 2: (a) The weighted average rank for the resemblance between the synthe-
sized child faces using different approaches and a pair of parental face images.
(b) The weighted average rank of naturalness and photo-realism for the synthe-
sized child faces of different approaches.

GT styleDNA [4] ChildGAN [26] Ours

Session I 2.83 2.92 2.33 1.92
Session II 2.27 2.82 2.18 1.55 (CW-PTM)

(a)

styleDNA [4] ChildGAN [26] Ours

Avg rank 1.57 2.59 1.84

child faces by different methods, ground truth and other state-of-the-art meth-
ods, StyleDNA [4] and ChildGAN [26] along with the ground truth according
to their perceived resemblance to the given reference face images of the parents,
where a lower rank represents a higher score (i.e., one is the most likely and four
is the least likely.). Since the code of [6] which employs multiple facial component
encoders is not publicly available and the image quality of the pdf file is low, we
do not use it for subjective evaluation. In addition, we also asked participants
to answer the extent of naturalness and photo-realism among different synthe-
sized child faces. As shown in Table 2, we compute the weighted average ranks
of rank for the resemblance between the synthesized child and the reference
parental faces. The proposed method consistently achieve the best subjective
performances as compared with other methods. For the photo-realism test in
Table 2 for the first session, the average weighted rank of the proposed approach
is close to StyleDNA. Instead of ranking, we further conducted the mean opinion
score to compare the photo-realism of the proposed approach with StyleDNA
in the second session, where the score ranges from 1 to 5, and a higher value
is better. The proposed approach achieves better average score of 3.53 than
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Fig. 3: The qualitative comparisons between the proposed approach and
StyleDNA after performing fine attribute manipulation towards the parents us-
ing CW-PTM upon the respective extracted latent representations according
to the selected facial component or region of the parent. The top row shows
the ground truth faces of the parents and their child. The proposed approach
achieves more continuous and better manipulation results than the compared
baseline, keeping the age and gender intact while performing the manipulation.

StyleDNA, 3.23. It is worth noting that the proposed approach even outper-
forms the ground truth. These results further demonstrate the strength of the
proposed approach. For more details of the questions and rank scores, we refer
interested readers to the supplementary materials.

4.3 Qualitative Evaluation

Finally, we also show various visual samples to compare the proposed approach
with other methods in terms of the capability of various attribute manipulations,
including age, gender, and parental traits. From Fig. 3, we find the synthesized
faces by the proposed approach change more smoothly when adjusting the values
of the corresponding latent codes as compared with StyleDNA (i.e., the infer-
ence code of StyleDNA is publicly available, and StyleDNA is thus chosen as the
main comparison target for the qualitative analysis.). This further demonstrates
the advantages of the proposed approach to synthesize high fidelity kin faces
while allowing smooth component-wise manipulation towards any selected facial
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Fig. 4: The results of ground truth face images along with the synthesized child
images from the proposed and other compared methods. Left most three or four
columns of (a) for FIW and (b) for TSKinFace respectively depict the ground
truth images and right four columns depict the synthesized child images, where
the compared methods include DNA-Net [3], ChildGAN [26], StyleDNA[4], and
Zhang et al. [6].

components or regions of the parents as shown in Fig. 6b. Employing multiple
encoders usually introduces additional computational costs and training difficul-
ties. We also show the synthesis results in Fig. 4 using the face images of the
FIW and TSKinFace datasets. The proposed method can synthesize the faces
with better fidelities than other approaches.

4.4 Ablation Studies

In this section, we perform ablation studies to understand the effectiveness of
each component where we indicate ID for ID-preserved block, A for attribute
block, F for learned fusion, M represents directly averaging parent latent codes
without fusing them with a learned network, and CW means the proposed
component-wise parental trait manipulation. As shown in Fig. 6a, the fidelity of
the synthesized child faces gets improved with applying more components of the
proposed framework. With the assistance of CW-PTM, we can further flexibly
make the synthesized child faces closer towards either the father or the mother or
both with different facial components or regions at the same time. Surprisingly,
from Fig. 2, the AUC scores of all the ablated results are better than StyleDNA.
This shows the strength of the proposed optimized encoder architecture and the
stage-wise training.

On the other hand, for attribute block, besides a single MLP, we further
divide the encoded latent code from the eighteen layers of the StyleGAN2 model
into three groups with a corresponding MLP for transformation where the first
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Fig. 5: This illustrates the effects using different numbers of MLP layers in the
attribute block. For the left, it uses a single MLP and three MLPs for the right.
The results using three MLPs show more prominent facial manipulation than
the one using a single MLP.

Father Mother Child

ID+A+F ID+A+M ID+MID+A+F+CW

(a)

Father Mother Child 

Closer 
Mouth

Closer
Eyes

(b)

Fig. 6: (a) It shows qualitative results using different combinations of our net-
work components for the ablation study. (b) It illustrates the proposed approach
allows flexible parental trait manipulation with any selected facial components
or regions towards parents.

three for coarse-grained, fourth to seventh layers for middle-grained, and the rest
for fine-grained detail control. Although the differences in the quantitative results
on FID of two settings are small, which are 37.056 and 36.663. However, we can
see the three MLPs results in face images with better attribute manipulation
than a single MLP one, as shown in Fig. 5.

5 Conclusion

The main contribution of our work is to conduct a thorough study of different
encoder choices of different latent spaces and encoder architectures to repurpose
StyleGAN2 for kinship face synthesis. The proposed optimized encoder striking
a better balance of editability and synthesis fidelity for kinship face synthesis
than other compared methods while allowing smooth and continuous face trait
manipulation. With extensive subjective, quantitative, and qualitative evalua-
tions, the proposed approach consistently achieves better performance in terms
of facial attribute heredity and image generation fidelity than other state-of-
the-art methods. This demonstrates the effectiveness of the proposed approach,
which can yield promising and satisfactory kinship face synthesis using only a
single straightforward encoder architecture.
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