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Abstract. Remote photoplethysmography (rPPG) offers a contactless
method for monitoring physiological signals from facial videos. Exist-
ing learning-based methods, although work effectively on intra-dataset
scenarios, degrade severely on cross-dataset testing. In this paper, we
address the cross-dataset testing as a domain generalization problem
and propose a novel DG-rPPGNet to learn a domain generalized rPPG
estimator. To this end, we develop a feature disentangled learning frame-
work to disentangle rPPG, identity, and domain features from input fa-
cial videos. Next, we propose a domain permutation strategy to further
constrain the disentangled rPPG features to be invariant to different
domains. Finally, we design a novel adversarial domain augmentation
strategy to enlarge the domain sphere of DG-rPPGNet. Our experimen-
tal results show that DG-rPPGNet outperforms other rPPG estimation
methods in many cross-domain settings on UBFC-rPPG, PURE, CO-
HFACE, and VIPL-HR datasets.

1 Introduction

Since the outbreak of new epidemics, remote estimation of human physiolog-
ical states has attracted enormous attention. Remote Photoplethysmography
(rPPG), which analyzes the blood volume changes in optical information of fa-
cial videos, is particularly useful in remote heart rate (HR) estimation. Earlier
methods [1–8] usually adopted different prior assumptions to directly analyze the
chromaticity of faces. Recent deep learning-based methods [9–19], through either
multi-stage or end-to-end training networks, have achieved significant break-
throughs in rPPG estimation.

Although existing learning-based methods performed satisfactorily in intra-
dataset testing, their cross-dataset testing performance tends to degrade severely.
This cross-dataset or cross-domain issue is especially critical in rPPG estimation,
because different rPPG datasets were recorded using their own equipment, under
different environments or lighting conditions and thus exhibit a broad diversity.
For example, the videos in UBFC-rPPG dataset [20] were recorded at 30 fps in
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a well-lighted environment; whereas the videos in COHFACE dataset [21] were
recorded at 20 fps under two illumination conditions. The PURE dataset [22]
even includes different motion settings when recording the videos. Therefore, if
the training and testing data are from different datasets, the model trained in
one dataset usually fails to generalize to another one.

We address the cross-dataset testing issue as a domain generalization (DG)
problem and assume different “domains” refer to different characteristics (e.g., il-
lumination conditions or photographic equipment) in the rPPG benchmarks. Do-
main generalization has been developed to facilitate the model to unseen domains
at the inference time. Previous methods [23–32] have shown the effectiveness of
DG on many classification tasks. However, many of these DG mechanisms, such
as contrastive loss or triplet loss, are designed for classification problems and are
inapplicable to the regression problem of rPPG estimation. Moreover, because
rPPG signals are extremely vulnerable in comparison with general video content,
any transformation across different domains (e.g., video-to-video translation, il-
lumination modification, and noise perturbation) will substantially diminish the
delicate rPPG signals.

Fig. 1: Illustration of the proposed domain augmentation.

In this paper, we propose a novel Domain Generalized rPPG Network (DG-
rPPGNet) via disentangled feature learning to address the domain generalization
problem in rPPG estimation. Through the feature disentanglement framework,
we first disentangle the rPPG, identity (ID), and domain features from the in-
put data. Next, we develop two novel strategies, including domain permutation
and domain augmentation, to cope with the disentangled feature learning. We
devise a domain permutation strategy to ensure that the disentangled rPPG fea-
tures are also invariant to different source domains. In addition, to generalize the
model towards unseen domains, we propose a learnable domain augmentation
strategy to enlarge the domain sphere during the model training. As illustrated
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in Figure 1, the proposed domain augmentation aims to generate “adversarial
domains”, which maximally degrade the prediction accuracy of the rPPG estima-
tor, to offer the model with information outside the source domain boundaries.

Our contributions are summarized below:

1) We propose a novel end-to-end training network DG-rPPGNet for rPPG
estimation. To the best of our knowledge, this is the first work focusing on
domain generalization issue in rPPG estimation.

2) We devise a disentangled feature learning framework, cooperated with do-
main permutation and domain augmentation, to significantly increase the
generalization capability of rPPG estimation on unseen domains.

3) Experimental results on UBFC-rPPG, PURE, COHFACE, and VIPL-HR
datasets show that the proposed DG-rPPGNet outperforms other rPPG es-
timation methods in cross-domain testing.

2 Related Work

2.1 Remote Photoplethysmography Estimation

Earlier methods [1–8] adopted different assumptions to design hand-crafted meth-
ods for rPPG estimations and usually do not generalize well to videos recorded
in less-controlled scenarios. The learning-based methods [9–19], either through
multi-stage processing or end-to-end training, benefit from the labeled data and
largely improve the estimation performance over traditional methods. For ex-
ample, in [14], a Dual-GAN framework is proposed to learn a noise-resistant
mapping from the pre-processed spatial-temporal maps into the ground truth
blood volume pulse (BVP) signals. In [18], a network is proposed to enhance
highly compressed videos and to recover rPPG signals from the enhanced videos.
In [10], a multi-task framework is developed to augment the rPPG dataset and
to predict rPPG signals simultaneously. In [19], a video transformer is proposed
to adaptively aggregate both local and global spatio-temporal features to en-
hance rPPG representation. Nevertheless, these learning-based methods mostly
focus on improving intra-dataset performance but rarely concern the domain
generalization issue.

2.2 Feature Disentanglement

Disentangled feature learning aims to separate the informative (or explanatory)
variations from multifactorial data and has been extensively studied for learning
task-specific feature representation in many computer vision tasks. For example,
disentangled representation learning has been included in detecting face presen-
tation attacks [33] or in unsupervised cross-domain adaptation [34]. In [35], a
cross-verified feature disentangling strategy is proposed for remote physiologi-
cal measurement. By disentangling physiological features from non-physiological
features, the authors in [35] improved the robustness of physiological measure-
ments from disentangled features.
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2.3 Domain Generalization

Domain generalization aims to learn a representation or a model from multiple
source domains and to generalize to unseen target domains. Because the target
domains are unseen in the training stage, there is no way to match the source-to-
target distributions or to minimize the cross-domain shift when developing the
model. Therefore, most domain generalization methods either focus on learning
domain-invariant representation or design different augmentation strategies to
enlarge the source domains. For example, to address the DG issue in object
detection, the authors in [27] designed a disentangled network to learn domain-
invariant representation on both the image and instance levels. In [28], to tackle
the semantic segmentation issue in real-world autonomous driving scenarios, the
authors proposed using domain randomization and pyramid consistency to learn
generalized representation. In [30], the authors proposed to augment perturbed
images to enable the image classifier to generalize to unseen domains.

3 Proposed Method

3.1 Problem Statement and Overview of DG-rPPGNet

In the domain generalization setting, we are given a set of M source domains
S = {S1, ...,SM} but have no access to the target domain T during the training
stage. Let Si = {(xj , sj , y

id
j , ydomain

j )}Ni
j=1 denote the ith source domain, and xj ,

sj , y
id
j , and ydomain

j denote the facial video, the ground truth PPG signal, the
subject ID label, and the domain label, respectively. Assuming that the unseen
target domain T has very different distribution with the source domains, our goal
is to learn a robust and well-generalized rPPG estimator to correctly predict the
rPPG signals for the facial videos from any unseen target domain.

In this paper, we propose a novel DG-rPPGNet to tackle the domain gen-
eralization problem in rPPG estimation from three aspects. First, we develop a
disentangled feature learning framework to disentangle rPPG-relevant features
from other domain-dependent variations. Second, we devise a domain permu-
tation strategy to ensure that the disentangled rPPG features are invariant to
different source domains. Finally, we design a learnable domain augmentation
strategy to augment the source domains to enable DG-rPPGNet to generalize
to unseen domains.

Figure 2 illustrates the proposed DG-rPPGNet, which includes a global fea-
ture encoder F , three extractors (i.e., SrPPG, Sid, and Sdomain) for feature disen-
tanglement, two decoders (i.e., Dfeature and Dvideo), two rPPG estimators (i.e.,

Eglobal
rPPG and Edisent

rPPG), one ID classifier Cid, and one domain classifier Cdomain.
All these components in DG-rPPGNet are jointly trained using the total loss
defined in Sec. 3.5.

3.2 Disentangled Feature Learning

In this subsection, we describe the disentangled feature learning in DG-rPPGNet
and the corresponding loss terms. For each input facial video x, we first obtain

810



Domain Generalized RPPG Network 5

Fig. 2: The proposed DG-rPPGNet, consisting of a global feature encoder F ,
a rPPG extractor SrPPG, an ID extractor Sid, a domain extractor Sdomain, a
feature decoder Dfeature, a video decoder Dvideo, two rPPG estimators Eglobal

rPPG

and Edisent
rPPG , an ID classifier Cid, and a domain classifier Cdomain.

its global feature fglobal using the global feature encoder F by,

fglobal = F (x). (1)

Next, we use three extractors SrPPG, Sid, and Sdomain to disentangle the
rPPG feature frPPG, the ID feature fid, and the domain feature fdomain from
fglobal, respectively:

frPPG = SrPPG(fglobal), (2)

fid = Sid(fglobal), and (3)

fdomain = Sdomain(fglobal). (4)

To constrain the disentangled feature learning in DG-rPPGNet, we define
three prediction consistent losses for each of the features frPPG, fid, and fdomain,
and one reconstruction loss to jointly train the model.

The prediction consistent losses are defined by minimizing the prediction
losses of the corresponding labels by,

Ldisent
rPPG = Lnp(E

global
rPPG(fglobal), s)

+ Lnp(E
disent
rPPG(frPPG), s), (5)

Ldisent
id = CE(Cid(fid), y

id), and (6)

Ldisent
domain = CE(Cdomain(fdomain), y

domain), (7)
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where Lnp is the negative Pearson correlation between the predicted signal s′

and the ground truth signal s:

Lnp(s
′, s) = 1− (s− s̄)t(s′ − s̄′)√

(s− s̄)t(s− s̄)
√
(s′ − s̄′)t(s′ − s̄′)

, (8)

and CE(·) denotes the cross-entropy loss. Note that, in Equation (5), because
rPPG signals are more vulnerable than the other two, we additionally include
Eglobal

rPPG(fglobal) to constrain the rPPG consistent loss. Since both fglobal and
frPPG capture the same rPPG signal, the double constraints in Equation (5)
not only consolidate the rPPG feature disentanglement but also accelerate the
model convergence.

We define the reconstruction loss Ldisent
rec by enforcing the decoder D =

Dvideo ◦Dfeature to reconstruct the input video in both the global feature space
fglobal and the color space x by,

Ldisent
rec = ||fglobal − f ′

global||1 + ||x− x′||1, (9)

where

f ′
global = Dfeature(frPPG, fid, fdomain), and (10)

x′ = Dvideo(f
′
global). (11)

3.3 Domain Permutation for Domain-Invariant Feature Learning

(a)

(b)

Fig. 3: Illustrations of the (a) domain permutation; and (b) domain augmenta-
tion.

In Equations (5) (6) and (7), although we constrain DG-rPPGNet to ex-
tract frPPG, fid, and fdomain from fglobal, there is no guarantee that these
features are successfully disentangled. Specifically, our major concern is that the
extracted rPPG feature frPPG should capture not only rPPG-relevant informa-
tion but also be invariant to different domains. In other words, we expect that
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frPPG should contain little or no domain-dependent variations. Therefore, in
this subsection, we devise a novel domain permutation strategy to consolidate
the feature disentanglement and further encourage SrPPG to focus on extracting
domain-invariant rPPG features.

Given one batch of input facial videos, we first extract their global features
by Equation (1) and then extract the rPPG features, ID features, and domain
features by Equations (2) (3) and (4). Next, we randomly permute the locations
of domain features {fdomain} within this batch and have the permuted domain
features {fp

domain} by,

{fp
domain} = Permute({fdomain}), (12)

where Permute(·) is a random permutation operation.
An example is given in Figure 3 (a), where the input batch consists of three

videos xd1 , xd2 , and xd3 sampled from different domains and their original do-
main features are fd1

domain, f
d2

domain, and fd3

domain, respectively. After random per-

mutation, the three videos have their new domain features as fd2

domain, f
d3

domain,

and fd1

domain, respectively. Our rationale is that, if the disentangled rPPG fea-
ture frPPG and ID feature fid are indeed invariant to different domains, then
the global feature fp

global reconstructed using the permuted domain features, i.e.,

fp
global = Dfeature(frPPG, fid, f

p
domain), (13)

should carry the same rPPG feature and ID feature as the original one fglobal.
Next, we reconstruct a video by decoding fp

global and then encode this recon-

structed video to obtain its global feature f
′p
global by,

f
′p
global = F (Dvideo(f

p
global)). (14)

Finally, we extract the three features fp
rPPG, f

p
id, and f

′p
domain from f

′p
global

by,

fp
rPPG = SrPPG(f

′p
global), (15)

fp
id = Sid(f

′p
global), and (16)

f
′p
domain = Sdomain(f

′p
global). (17)

Similar to Equations (5) (6) and (7), we define the prediction consistent losses

to constrain fp
rPPG, f

p
id, and f

′p
domain by,

Lp
rPPG = Lnp(E

global
rPPG(f

′p
global), s)

+ Lnp(E
disent
rPPG(fp

rPPG), s), (18)

Lp
id = CE(Cid(f

p
id), y

id), and (19)

Lp
domain = CE(Cdomain(f

′p
domain), P ermute(ydomain)), (20)
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where Permute(ydomain) is the ground truth domain label of f
′p
domain.

We also define a reconstruction loss Lp
rec to constrain that (1) the rPPG

and ID features should remain unchanged, before and after the domain permu-
tation; and (2) the permuted domain features and the global features should
remain the same after the decoding and re-encoding steps. We thus formulate
the reconstruction loss Lp

rec in the feature spaces by,

Lp
rec = ||frPPG − fp

rPPG||1 + ||fid − fp
id||1

+ ||fp
domain − f

′p
domain||1 + ||fp

global − f
′p
global||1. (21)

3.4 Domain Augmentation via AdaIN

In Sec. 3.2 and Sec. 3.3, the disentangled feature learning and domain permu-
tation involve only the set of source domains S in the model training but are
oblivious to any external domains. Because data augmentation is widely adopted
to alleviate the data shortage, we adopt the idea and design a domain augmen-
tation strategy to enlarge the sphere of source domains.

Unlike most generic augmentation methods, the proposed domain augmen-
tation has two specific goals. First, the augmented domains should well preserve
discriminative information in the original source domains S; and second, they
should offer diverse characteristics different from those in S so as to simulate
the unseen domains. To balance the two competing goals, we propose (1) using
AdaIN [36] to generate the augmented domains by transforming the style of S
without changing their discriminative content, and then (2) enforcing the aug-
mented domains to act as the adversaries of S so as to expand the sphere of
S. In the second part, we adopt the idea of adversary examples [37] and define
“adversarial domains” as the domains generated to mislead the rPPG estimators
and to offer unseen information to the model.

We formulate the proposed data augmentation as an adversary domain learn-
ing problem in the parameter space of AdaIN. Given one batch of input facial
videos, we extract their global features by Equation (1) and then extract the
rPPG features frPPG, ID features fid, and domain features fdomain by Equa-
tions (2) (3) and (4). respectively. Next, we use AdaIN [36] to transform the
domain feature from fdomain to fadv

domain by,

fadv
domain = AdaIN(fdomain, α, β), (22)

where

AdaIN(f, α, β) = α · f − µf

σf
+ β, (23)

α and β are two learnable parameters; µf and σf are the mean and standard
deviation of the feature map f , respectively. An example is shown in Figure 3
(b), where the domain features fdi

domain(i = 1, 2, 3) of xdi are transformed by

AdaIN into fadv,di

domain.
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To ensure fadv
domain behaves like adversarial domains, we constrain the two

parameters α and β by “maximizing” the prediction losses Lnp of the two rPPG

estimators Eglobal
rPPG and Edisent

rPPG by,

(α, β) = argmax
α,β

Lnp(E
global
rPPG(f

′adv
global), s)

+Lnp(E
disent
rPPG(fadv

rPPG), s), (24)

where f
′adv
global and fadv

rPPG are the re-encoded global feature and the extracted

rPPG feature of f
′adv
global obtained by:

f
′adv
global = F (Dvideo(f

adv
global)), and (25)

fadv
rPPG = SrPPG(f

′adv
global), (26)

and f
′adv
global is re-encoded from the reconstructed global feature fadv

global by,

fadv
global = Dfeature(frPPG, fid, f

adv
domain). (27)

To facilitate the implementation of Equation (24), we use the gradient re-

versal layer (GRL) [38] to flip the gradients (1) between F and Eglobal
rPPG, and (2)

between SrPPG and Edisent
rPPG . Hence, we reformulate Equation (24) by,

(α, β) = argmin
α,β

Lnp(E
global
rPPG(GRL(f

′adv
global)), s)

+Lnp(E
disent
rPPG(GRL(fadv

rPPG)), s). (28)

Finally, we extract the other two features fadv
id and fadv

domain from f
′adv
global by,

fadv
id = Sid(f

′adv
global), and (29)

f
′adv
domain = Sdomain(f

′adv
global). (30)

Similar to Equations (18) (19) and (21), we again impose the prediction
consistent losses Ladv

rPPG, L
adv
id and the reconstruction loss Ladv

rec to constrain the
model learning by,

Ladv
rPPG = Lnp(E

global
rPPG(f

′adv
global), s)

+ Lnp(E
disent
rPPG(fadv

rPPG), s), (31)

Ladv
id = CE(Cid(f

adv
id ), yid), and (32)

Ladv
rec = ||frPPG − fadv

rPPG||1 + ||fid − fadv
id ||1

+ ||fadv
domain − f

′adv
domain||1 + ||fadv

global − f
′adv
global||1. (33)

Here, we do not include the domain prediction consistent loss, because there
exist no ground truth labels for the adversarial domains.
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3.5 Loss Function

Finally, we include the feature disentanglement loss Ldisent
total , the domain permu-

tation loss Lp
total, and the domain augmentation loss Ladv

total to define the total
loss Ltotal:

Ltotal = Ldisent
total + Lp

total + Ladv
total, (34)

where

Ldisent
total = λ1L

disent
rPPG + λ2L

disent
id + λ3L

disent
domain + Ldisent

rec , (35)

Lp
total = λ1L

p
rPPG + λ2L

p
id + λ3L

p
domain + Lp

rec, and (36)

Ladv
total = λ1L

adv
rPPG + λ2L

adv
id + Ladv

rec , (37)

and λ1, λ2, and λ3 are hyper-parameters and are empirically set as 0.01 in all
our experiments.

3.6 Inference Stage

In the inference stage, we include only the global feature encoder F and the global
rPPG estimator Eglobal

rPPG to predict the rPPG signals of the test facial videos. We
do not include the rPPG extractor SrPPG and the rPPG estimator Edisent

rPPG during
the inference stage, because they are trained only on source domains and may
not well disentangle the features on unseen domains.

4 Experiments

4.1 Datasets and Cross-Domain Setting

The UBFC-rPPG dataset [20] consists of 42 RGB videos from 42 subjects;
i.e., each subject contributes one single video. The videos were recorded by Log-
itech C920 HD Pro at 30 fps with resolution of 640 × 480 pixels in uncompressed
8-bit format. The PPG signals and corresponding heart rates were collected by
CMS50E transmissive pulse oximeter. We follow the setting in [14] to split the
dataset into the training and testing sets with videos from 30 and 12 subjects,
respectively.

The PURE dataset [22] consists of 60 RGB videos from 10 subjects. Each
subject performs 6 different activities, including (1) sitting still and looking
directly at the camera, (2) talking, (3) slowly moving the head parallel to the
camera, (4) quickly moving the head, (5) rotating the head with 20◦ angles,
and (6) rotating the head with 35◦ angles. All videos were recorded using an
eco274CVGE camera at 30 fps and with resolution of 640 × 480 pixels. The
PPG signals were captured by using Pulox CMS50E finger clip pulse oximeter
with sampling rate of 60 Hz. To align with the videos, the PPG signals are
reduced to 30 Hz. We follow the setting in [10] to split the dataset into the
training and testing sets with videos from 7 and 3 subjects, respectively.

816



Domain Generalized RPPG Network 11

The COHFACE dataset [21] consists of 160 one-minute-long sequence
RGB videos from 40 subjects. The videos were recorded under two illumination
conditions, including (1) a well-lighted environment, and (2) a natural light
environment. All videos were recorded using Logitech HD C525 at 20 fps with
resolution of 640x480 pixels. The PPG signals were taken by a contact blood
volume pulse sensor model SA9308M. We follow the setting in [10] to split the
dataset into the training and testing sets with videos from 24 and 16 subjects,
respectively.

The VIPL-HR dataset [39] contains 2378 RGB videos from 107 subjects.
The dataset was recorded using 3 different devices under 9 scenarios. We follow
the setting in [16] and use a subject-exclusive 5-fold cross-validation protocol on
VIPL-HR. In addition, because the facial videos and PPG signals have different
sampling rates, we resample the PPG signals to match the corresponding video
frames by linear interpolation.

Cross-Domain Setting. When experimenting on these datasets, we con-
sider each dataset refers to one domain, except COHFACE, which is considered
as two domains and each one refers to either the well-lighted or natural light
settings. In Sec. 4.4 and 4.5, we adopt two experimental settings by randomly
choosing two datasets from UBFC-rPPG, PURE, and COHFACE to form the
set of source domains and then testing on (1) the remaining one (that is, we
have three cross-domain settings: “P+C→U”, “U+C→P”, and “U+P→C”) in
Sec. 4.4 and 4.5; and (2) the VIPL-HR dataset in Sec. 4.5.

4.2 Implementation Details

The architectures of the global feature encoder F , the extractor S, the decoder
D, the rPPG estimator E, and the classifier C in DG-rPPGNet are given in
the supplementary file. We train DG-rPPGNet in two stages. We first train the
disentangled feature learning model with domain permutation for 300 epochs and
then fine-tune the model with domain augmentation for 100 epochs. We train
the model using Nvidia RTX 2080 and RTX 3080 with one sample from each
domain in one batch, and use Adam optimizer with the learning rate of 0.0002.
For all the facial videos, we use [40] to detect face landmarks, crop the coarse
face area and resize the cropped areas into 80 × 80 pixels. In each epoch, we
randomly sample 60 consecutive frames from the training videos of each domain
to train DG-rPPGNet.

4.3 Evaluation Metrics

To assess the performance of DG-rPPGNet on rPPG estimation, we follow [10]
to derive heart rate (HR) from the predicted rPPG signals and then evaluate
the results in terms of the following metrics: (1) Mean absolute error (MAE), (2)
Root mean square error (RMSE), and (3) Pearson correlation coefficient (R).
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4.4 Ablation Study

We conduct ablation studies on three cross-domain settings, including “P+C→U”,
“U+C→P”, and “U+P→C”. In Table 1, Ldisent

total , Lp
total, and Ladv

total indicate that
we include the corresponding losses as defined in Equations (35) (36) and (37),
respectively, to train DG-rPPGNet.

We first evaluate the effectiveness of domain permutation. When includ-
ing Ldisent

total + Lp
total in the model training, we significantly improve the per-

formance over using Ldisent
total alone by reducing MAE about 85% and RMSE

about 86% in “P+C→U”. However, because the proposed domain permuta-
tion focuses on learning domain-invariant features within the source domains,
the model still lacks the ability to generalize to unseen domains. Neverthe-
less, although we achieve no improvement in “U+C→P” and “U+P→C” with
Ldisent
total + Lp

total, we see that the setting Ldisent
total + Lp

total + Ladv
total significantly

outperforms Ldisent
total + Ladv

total when we further include domain augmentation in
DG-rPPGNet. These results show that the proposed domain permutation works
cooperatively with domain augmentation to support the model to learn domain-
invariant and rPPG-discriminative features in the augmented domains. Finally,
when including Ladv

total in DG-rPPGNet, we see significant performance improve-
ment with reduced MAE (about 81%, 28%, and 3%; and about 92%, 50% and
42%) and RMSE (about 80%, 29%, and 6%; and about 89%, 54% and 41%),
without and with Lp

total, respectively. These results verify that the proposed do-
main augmentation substantially enlarges the domain sphere and enables the
model to generalize to unseen domains.

Table 1: Ablation study
Loss terms P+C→U U+C→P U+P→C

Ldisent
total Lp

total L
adv
total MAE↓ RMSE↓ R ↑ MAE↓ RMSE↓ R ↑ MAE↓ RMSE↓ R ↑

✓ 7.74 12.34 0.40 6.14 10.26 0.56 12.54 15.30 0.07
✓ ✓ 1.17 1.71 0.83 6.53 11.96 0.47 14.33 16.93 0.08
✓ ✓ 1.46 2.46 0.78 4.36 7.19 0.70 12.18 14.35 0.39
✓ ✓ ✓ 0.63 1.35 0.88 3.02 4.69 0.88 7.19 8.99 0.30

In Table 2, we evaluate the proposed domain augmentation by comparing
with random domain augmentation. We simulate the random domain augmenta-
tion by replacing the parameters α and β in Equation (28) with values randomly
sampled from standard Gaussian distribution. The results in Table 2 show that
the proposed method outperforms the random augmentation with reduced MAE
(by about 38%, 50% and 33%) and RMSE (by about 18%, 56% and 29%) and
verify its effectiveness on domain generalization.
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Table 2: Evaluation of Domain Augmentation

Augmentation
P+C→U U+C→P U+P→C

MAE↓ RMSE↓ R ↑ MAE↓ RMSE↓ R ↑ MAE↓ RMSE↓ R ↑
Random 1.02 1.65 0.82 6.08 10.54 0.56 10.80 12.71 0.25

Adversarial 0.63 1.35 0.88 3.02 4.69 0.88 7.19 8.99 0.30

4.5 Results and Comparison

We compare our results on the three settings: “P+C→U”, “U+C→P”, and
“U+P→C”, with previous methods [1–5, 10, 14] in Tables 3, 4, and 5, respec-
tively. Note that, the methods [1–5] (marked with †) are not learning-based
methods and thus have neither training data nor cross-domain issue. The other
learning-based methods (marked with ∗) all adopt different cross-domain settings
from ours. Although there exist no results reported under the same cross-domain
settings as ours for a fair comparison, we include their results here to assess the
relative testing performance on these rPPG datasets.

Table 3: Cross-domain test on
“P+C→U”

Method MAE↓ RMSE↓
GREEN† [2] 8.29 15.82
ICA† [3] 4.39 11.60
POS† [4] 3.52 8.38
CHROM† [1] 3.10 6.84
Multi-task* [10] 1.06 2.70
Dual-GAN* [14] 0.74 1.02
DG-rPPGNet 0.63 1.35

Table 4: Cross-domain test on
“U+C→P”

Method MAE↓ RMSE↓
LiCVPR† [5] 28.22 30.96
POS† [4] 22.25 30.20
ICA† [3] 15.23 21.25
GREE† [2] 9.03 13.92
CHROM† [1] 3.82 6.8
Multi-task* [10] 4.24 6.44
DG-rPPGNet 3.02 4.69

In Table 3, we show our results on “P+C→U” and compare with previ-
ous methods with testing results on UBFC-rPPG. We cite the performance of
the four non-learning-based methods, i.e., GREEN [2], ICA [3], POS [4], and
CHROM [1], from [9]. The two methods, Multi-task [10] and Dual-GAN [14],
are trained on PURE dataset; and their cross-domain setting is considered as
“P→U”. Table 3 shows that DG-rPPGNet achieves the best performance with
MAE 0.63 even without involving UBFC-rPPG in the training stage.

In Table 4, we show our results on “U+C→P” and compare with previ-
ous methods with testing results on PURE. We cite the result of LiCVPR [5]
from [16], and use an open source toolbox [41] to obtain the results of GREEN [2],
POS [4], and ICA [3] on PURE. The model of Multi-task [10] is trained on UBFC-
rPPG alone, i.e., its cross-domain setting here is “U→P”. We again show that
DG-rPPGNet outperforms the other methods with MAE 3.02 and RMSE 4.69.
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In Table 5, we show our results on “U+P→C” and compare with previous
methods with testing results on COHFACE. Again, we use the open source tool-
box [41] to obtain the results of POS [4], ICA [3], and GREEN [2] on COHFACE.
The results once again show that DG-rPPGNet outperforms the other methods
with MAE 7.19 and RMSE 8.99.

Table 5: Cross-domain test on
“U+P→C”

Method MAE↓ RMSE↓
POS† [4] 19.86 24.57
LiCVPR† [5] 19.98 25.59
ICA† [3] 14.27 19.28
GREEN† [2] 10.94 16.72
CHROM† [1] 7.8 12.45
DG-rPPGNet 7.19 8.99

Table 6: Cross-domain test on
VIPL-HR

Method MAE↓ RMSE↓
Averaged GT 22.21 26.70
DG-rPPGNet (U+P) 18.38 18.86
DG-rPPGNet (U+C) 18.23 18.81
DG-rPPGNet (P+C) 15.95 17.47

Finally, in Table 6, we evaluate the generalization capability of the proposed
DG-rPPGNet. We use different combinations of the three small-scale datasets
PURE, COHFACE, and UBFC-rPPG as the source domains and then test on the
large-scale dataset VIPL-HR [39]. Because there exist no similar experimental
results, we show the averaged ground truth signals (marked by “Averaged GT”)
of VIPL-HR as the baseline results for comparison. The results show that, even
trained on small-scale datasets, the proposed DG-rPPGNet substantially exceeds
the baseline results and reduces MAE (by about 17%, 18%, and 28%) and RMSE
(by about 29%, 30%, and 35%).

5 Conclusion

In this paper, we propose a DG-rPPGNet to address the domain generalization
issue in rPPG estimation. The proposed DG-rPPGNet includes (1) a feature dis-
entangled learning framework to extract rPPG, ID, and domain features from
facial videos; (2) a novel domain permutation strategy to constrain the domain
invariant property of rPPG features; and (3) an adversarial domain augmenta-
tion strategy to increase the domain generalization capability. Experimental re-
sults on UBFC-rPPG, PURE, COHFACE, and VIPL-HR datasets show that the
proposed DG-rPPGNet outperforms other rPPG estimation methods in many
cross-domain testings.
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