
Shape Prior is Not All You Need:
Discovering Balance between Texture and

Shape bias in CNN

Hyunhee Chung*1[0000−0002−0113−3126],
and Kyung Ho Park*1[0000−0002−3439−9297]

SOCAR AI Research, Korea
{esther,kp}@socar.kr

Abstract. As Convolutional Neural Network (CNN) trained under Im-
ageNet is known to be biased in image texture rather than object shapes,
recent works proposed that elevating shape awareness of the CNNs makes
them similar to human visual recognition. However, beyond the ImageNet-
trained CNN, how can we make CNNs similar to human vision in the
wild? In this paper, we present a series of analyses to answer this ques-
tion. First, we propose AdaBA, a novel method of quantitatively il-
lustrating CNN’s shape and texture bias by resolving several limits of
the prior method. With the proposed AdaBA, we focused on fine-tuned
CNN’s bias landscape which previous studies have not dealt with. We
discover that fine-tuned CNNs are also biased to texture, but their bias
strengths differ along with the downstream dataset; thus, we presume a
data distribution is a root cause of texture bias exists. To tackle this root
cause, we propose a granular labeling scheme, a simple but effective so-
lution that redesigns the label space to pursue a balance between texture
and shape biases. We empirically examine that the proposed scheme es-
calates CNN’s classification and OOD detection performance. We expect
key findings and proposed methods in the study to elevate understanding
of the CNN and yield an effective solution to mitigate this texture bias.

1 Introduction

Discovering what Convolutional Neural Network (CNN) learned has become an
important but challenging problem in modern computer vision studies[16,8,5,1].
Recent studies presented that CNNs, especially those trained under the Ima-
geNet [3] dataset have texture bias that prioritizes image textures rather than
object’s shapes. This finding conflicts with human visual perceptions as humans
utilize shape information to understand images [7]. The aforementioned texture
bias of CNN is known to be a critical challenge due to the following reasons.
First, CNN’s texture bias might become a vulnerability from a security per-
spective as an adversary would attack the model by transforming the image’s
textures to mislead its understanding [14]. Second, CNN’s texture bias might
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exhibit its inductive bias being distinct from the human visual system, which
indicates insufficient robustness to be deployed in the real world. Under the in-
sufficient robustness of CNN, it risks creating fatal damage to the humans who
interact with the model (i.e., medical imaging [20,22]).

While prior analyses presented monumental findings and solutions regarding
CNN’s texture bias, we figure out several improvement avenues. First, prior stud-
ies primarily focused on analyzing the CNN’s dynamics in ImageNet and its de-
rived ones (i.e., Cue-conflict dataset [7]). While fine-tuning has become a de facto
technique in modern computer vision tasks (i.e., image recognition [18,24,11], ob-
ject detection [2,21]), there were no bias analyses on the fine-tuned CNNs. To
this end, we postulate several questions regarding the fine-tuned CNN’S dynam-
ics: Do CNNs fine-tuned on various downstream datasets show texture bias, just
as the case in ImageNet? If so, do fine-tuned CNNs show similar bias strength
regardless of the downstream dataset?

Second, we urge that the frozen label space assumption should be released
for a more practical solution against CNN’s texture bias. We denote a frozen
label space as the assumption that does not change the labeling scheme but
uses the given dataset as it was originally labeled. As Hermann et al. [14] once
proposed, a data distribution (as well as label space) of conventional datasets
(i.e., ImageNet) is a root cause of CNN’s texture bias [14]. Nevertheless, we
analyze that previously-proposed solutions have not tackled this root cause but
primarily focused on additional actions given a trained model [7,25]. Suppose the
practitioners establish a labeled dataset from unlabeled samples before model
training. What if we can mitigate the texture bias when the practitioners design
a labeling scheme? What if we can resolve texture bias before model training?
If the practitioners can resolve the texture bias by simply changing the labeling
scheme, we expect it to become a powerful solution in the real world.

To accomplish these improvement avenues, our study proposes a series of
analyses that scrutinize answers to the aforementioned questions. The contribu-
tions of our study are as follows. First, we seek a quantitative tool to analyze
CNN’s bias for an accurate understanding of its dynamics. While [15] once pre-
sented a solid baseline of this quantitative tool, we discovered several limits.
Therefore, as an advanced version of the baseline, we propose a novel bias anal-
ysis method denoted Adaptive Bias Analysis (AdaBA), and empirically examine
that our method coherently exhibits the same result as the previously-proposed
method while it improves its limits. Second, we further analyze the dynamics of
fine-tuned CNNs, which prior studies have not actively scrutinized. We analyze
that fine-tuned CNNs are also biased to textures, but the strength of texture
bias differs in downstream datasets. Thus, we presume a root cause of CNN’s
texture preference is indeed a data distribution, just as proposed in a recent
discovery [14]. Third, we propose a novel viewpoint (problem setup) to mitigate
CNN’s texture bias by redesigning the labeling scheme before model training. We
propose a Granular labeling scheme, a novel label space design to acquire a bal-
ance between texture and shape bias. Upon the synthetically-created datasets,
we experimentally examine a CNN trained under the proposed granular labeling
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scheme (which embraces the balance between texture and shape bias) is ad-
vantageous in two tasks: classification and out-of-distribution (OOD) detection.
Lastly, we further analyze how the representation acquired under the granular
labeling scheme differs from the others through measuring representation simi-
larity with Centered Kernel Alignment (CKA) [17,10].

2 Related Works

As the original motivation of CNN’s design stems from neuroscience [9,27], it has
been regarded to recognize the image based on shape information, just as human
perception[23,4]. However, Geirhos et al. empirically validates that CNNs have
texture bias, especially when they are trained under ImageNet. To reduce this
texture bias, Geirhos et al. propose a manual injection of share awareness by
style-transferring ImageNet dataset [3]. Hermann et al. (which shares the most
similar motivation with our study) unveiled the origins of texture bias and the
reason why CNNs are inherently biased to texture information in the ImageNet
dataset; The data distribution of ImageNet causes the model to classify labels
by texture characteristics, not shape information. Moreover, this study further
claimed that simply elevating shape awareness does not always contribute to
the best performance; thus, a careful approach to bias mitigation should be
considered. Beyond the aforementioned analyses on ImageNet-trained CNNs,
Islam et al. designed a method of quantitatively analyzing CNN’s shape and
texture biases[15].

3 Adaptive Bias Analysis (AdaBA)

3.1 Baseline and its Improvement Avenues

Before performing analyses, we strongly necessitate an effective, quantitative
tool to understand the CNN’s texture and shape bias in a more precise manner.
While Islam et al. presented a solid baseline approach, we scrutinized several
improvement avenues. The detailed limits of the baseline is described below. For
descriptions on the baseline, please refer to the original publication [15], and we
also provided brief illustrations in the supplementary materials.

Dependence on heuristically-defined texture patterns The baseline re-
quires heuristically-defined texture patterns to create shape and texture pairs.
We analyze it induces the proposed method to exhibit CNN’s bias focused on
this heuristically-chosen texture, not the original texture information included
in the original sample. If we desire to claim that ‘CNN trained on dataset X
is biased to textures’, defining the shape and texture pairs should not rely on
heuristically-chosen texture patterns. Instead, we presume an improved approach
should be capable of establishing shape and texture pairs without any human
interventions.
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Training additional style transfer model Furthermore, the baseline also
requires establishing an additional style transfer method to create texture and
shape pairs. Then, it implies that we should additionally train an auxiliary model
to utilize the baseline. We further expect this point as a risky factor of the
baseline. What if the style transfer model is not qualified enough to provide
texture-invariant samples?

Misled interpretation on bias score derived from Softmax Function
Last but not least, we figured out the case where the final bias scores are not
consistently sustained with the calculated mutual information which implicitly
describes the strength of bias. Referring to the baseline’s score calculation pro-
cedures, it applies a softmax operation to the set of mutual information from
texture pair, shape pair, and residuals. For example, suppose the case where the
set of mutual information is [-0.9959, 0.8498, 1] for texture, shape, and residuals,
respectively. As mutual information exhibits similar implications to the correla-
tion coefficient, the aforementioned set shows a strong texture bias rather than
shape. But, when we apply a softmax operation to this set, a mutual information
score for texture becomes 0.22 while this score for shape becomes 0.77, exhibit-
ing high shape bias. We analyze the softmax operation as a risk of reversing
the original mutual information on texture and shape information, which might
cause a misinterpretation of CNN’s bias.

Fig. 1. Illustration of AdaBA. (a) defining texture and shape pair with shape and
texture score respectively, (b) extracting mutual information from defined pair, (c) we
use raw mutual information with absolute value. Note that mutual information of (b)
defined in Islam et al. [15]

3.2 Methodology

Considering the baseline’s improvement avenues, we design a novel approach to
analyze CNN’s bias in a quantitative manner. We denote our approach as the
Adaptive Bias Analysis (AdaBA), as the proposed method can yield shape and
texture bias scores adaptive to the dataset where the CNN is trained. We visual-
ized an overall architecture of AdaBA in Figure 1. The proposed AdaBA resolves
the aforementioned drawbacks by changing baseline approach’s two components:
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1) Texture and shape pair generation without auxiliary components, 2) Redesign-
ing bias score by eliminating softmax operation. The detailed descriptions are
described below.

Texture and shape pair generation without auxiliary components To
resolve the first and second drawbacks of the baseline, AdaBA creates shape
and texture pairs leveraging the theoretical definition of texture and shape pro-
posed in style transfer studies. Referring to the design philosophy of the baseline,
the texture pair includes two samples that have similar textures and different
shapes. For a shape pair, vice versa. The pair generation procedures of AdaBA
are as follows. First, it extracts the feature map from CNN on a given image
sampled from the target dataset. We denote F a as a feature map of the image
Ia. Second, it generates two matrices of shape matrix and gram matrix, which
are proposed in style-transfer studies [6]. A shape matrix can be defined as Fij ,
and the texture(gram) matrix is justified as

∑
k F

a
ikF

b
jk where i, j indicates width

and heights at the feature map. Note that gram matrix implicit the meaning of
texture information in a given image [6]. Third, for every sample in the dataset,
it calculates the shape and gram matrix. It then selects a single sample as an
anchor and calculates both shape score and texture score with the other sam-
ples following the equations provided in 1 and 2, respectively (i.e., measures the
shape and texture scores from a pair consists of one anchor sample and one the
other sample). The shape score exhibits a euclidean distance of shape matrices
over the euclidean distance between gram matrices. The large shape score means
a large shape difference over texture difference; thus, it implies two samples in a
pair have dissimilar shape characteristics over the texture information. For the
texture score, vice versa. Note that the texture score is a reciprocal of the shape
score. Lastly, given an anchor sample, we establish a shape pair by selecting
another sample that records the lowest shape score. For a texture sample, the
texture pair is established with another sample with the lowest texture score.
Throughout these procedures, key benefits of AdaBA’s pair generation are par-
ticularly vivid. It does not require heuristically-chosen texture patterns or an
additional style-transferring model, while it establishes shape and texture pairs
based on a solid theoretical definition of texture and shape.

Shape Score =
Euclidean(F a

ij , F
b
ij)

Euclidean(
∑

k F
a
ikF

b
jk,

∑
k F

a
ikF

b
jk)

(1)

Texture Score =
Euclidean(

∑
k F

a
ikF

b
jk,

∑
k F

a
ikF

b
jk)

Euclidean(F a
ij , F

b
ij)

(2)

Redesigning bias score by eliminating softmax operation AdaBA em-
ploys the absolute value of calculated mutual information on shape and textures
instead of softmax operation. As we discovered the use of softmax operation risks
misleading CNN’s bias, we designed AdaBA to eliminate its use. By eliminating
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the use of softmax operation on MIs, we presume the risk of bias misinterpre-
tation decreases compared to the baseline approach. Given mutual information
values on texture and shape, our study used an absolute value of them as the
final texture and shape bias score. We presume the mutual information values
resulting from the CNN include the original representation of the biases without
much noise; thus, retrieving an absolute value of each mutual information better
describes the CNN’s biases.

3.3 Validation on AdaBA

To prove a usefulness of the proposed AdaBA, we establish two questions for
examining AdaBA’s validity: 1) whether the AdaBA generates shape and texture
pairs well, 2) whether the AdaBA yields bias analysis results on ImageNet-
trained CNNs consistent with previously-proven discoveries. Upon the proven
validity of AdaBA, we further scrutinize the behaviors of fine-tuned CNNs, which
is absent in prior works.

Does AdaBA generate the pair well? First, as our AdaBA aims to alternate
the baseline’s pair generation procedure, we hereby examine whether the estab-
lished shape and texture pairs well consistent with the original purpose; shape
pairs should include samples that share a similar shape and dissimilar texture,
while texture pairs include samples that have dissimilar shapes and similar tex-
ture. Given a concatenated dataset that includes both original CIFAR-10 and
Stylized CIFAR-10, we sampled several shapes and texture pairs (which are es-
tablished through AdaBA) and visualized them in Figure 2. Following the estab-
lished pairs, we qualitatively evaluate that the generated shape and texture pair
satisfy their original purpose; therefore, the proposed AdaBA effectively creates
those pairs without heuristically-defined patterns and auxiliary style-transfer
model.

(a) Retrieved shape Pairs (b) Retrieved texture Pairs

Fig. 2. Generated shape and texture pairs with AdaBA. We observe that generated
shape and texture pairs fully satisfy the original purpose of pair generation.

Does AdaBA yield consistent results with prior discoveries? Further-
more, our study also aims to evaluate whether the proposed AdaBA effectively
describes CNN’s shape and texture bias. We actively referred to their evalua-
tion logic of the baseline study, which is a state-of-the-art. The baseline study
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evaluated their approach’s performance by comparing the resulted shape and
texture bias scores with prior studies’ discoveries. For example, various studies
suggested that ImageNet-trained CNNs are biased toward image textures rather
than shapes. The baseline approach also yields a higher texture bias score than
the shape score; thus, the prior studies and the baseline approach are saying
the same proposition, so this study urges that their approach is correct. Please
refer to the original publication [15] for more detailed explanations. Upon this
evaluation logic, we examine whether the AdaBA yields bias analysis results con-
sistent with the following discoveries [15]: 1) ImageNet-trained CNN is biased to
the texture, 2) Style-transferring reduces this texture bias. For the dataset in these
examinations, we alternatively used TinyImageNet (a subsample of ImageNet)
as analyses on the original ImageNet required large computation overheads.

To implement a CNN trained under TinyImageNet, we trained the ResNet-50
model with the TinyImageNet dataset. With these trained CNNs, we compared
the bias analysis results at AdaBA and the baseline to prove whether our ap-
proach yields similar analysis results consistent with the previous well-proven
discoveries. Note that we also showed the baseline method’s analysis results as
it is known to show similar results to previous discoveries. The results are shown
in Table 1.

Table 1. Bias analysis on TinyImageNet

Dataset
AdaBA Baseline

Shape Texture Shape
Texture Shape Texture Shape

Texture

Original 0.2202 0.3756 0.5863 518 1530 0.3386
Stylized 0.3842 0.3295 1.1660 755 1293 0.5839

From the results, we discov-
ered that AdaBA consistently accom-
plishes similar results to the previous
discoveries. First, we figure out that
both AdaBA and baseline method
yields texture bias of TinyImageNet-
trained CNN (which is a proxy of ImageNet-trained one), where this texture bias
has been proved in previous works. Second, we also discovered both approaches
yield that the CNNs trained under the style-transferred samples exhibit a re-
duced texture bias rather than the one trained with original samples. The AdaBA
and baseline method exhibits an increased Shape

Texture value, where the larger value
implies enhanced shape bias and reduced texture bias. Throughout these results,
we conclude that the proposed AdaBA exhibits bias analysis results consistent
with the baselines while it improves the baseline’s limits simultaneously. We ac-
knowledge that the proposed AdaBA should be examined in various datasets or
problem settings but skipped in this work as our study primarily focuses on the
proposing solution to mitigate texture bias, not analyzing the bias.

3.4 Bias Analysis on Fine-tuned CNNs with AdaBA

Upon the theoretical and experimental justification of our AdaBA, we extend
our focus toward the fine-tuned CNNs. As no analyses exist on the fine-tuned
CNNs’ biases, we hereby scrutinize them. We postulate two questions regarding
fine-tuned CNN’s bias as follows: 1) What bias do CNNs fine-tuned in vari-
ous benchmark datasets expose? Do they show texture bias just as it showed
in ImageNet? 2) Does style transferring indeed mitigate texture bias in the fine-
tuned CNNs, just as it does in ImageNet? While prior study [7] suggested that
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style-transferring contributes to mitigating texture bias, is this method also
valid in the fine-tuning regime? For implementation details, we employ four
conventionally-utilized benchmark datasets: CIFAR-10, CIFAR-100, TinyIma-
geNet, and Stanford Cars. Given these datasets, we fine-tuned the ResNet-50
classifier from the ImageNet-trained weights and retrieved shape and texture
scores from our AdaBA and the baseline method. To answer the first question,
we examine whether the fine-tuned CNNs are also implicit texture bias, as in
ImageNet-trained CNN. Moreover, for the second question, we style-transfer
CIFAR-10 with AdaIN and fine-tune the CNN on this style-transferred dataset.
We then compare its texture and shape bias with the one fine-tuned in the
original CIFAR-10 dataset. Throughout these setups, the experiment results are
shown in Table 2 and Table 3, and key findings are illustrated as follows.

Table 2. Bias analysis on Fine-tuned CNNs. AdaBA results in similar trends to the
baseline method. Note that MI means mutual information.

Dataset
AdaBA Baseline

ShapeMI TextureMI Shape Texture ShapeMI TextureMI Shape Texture

CIFAR-10 -0.2170 0.7271 0.2170 0.7271 -0.0994 -0.1039 1026 1022
CIFAR-100 -0.1631 0.2174 0.1631 0.2174 -0.4479 0.4659 586 1462

TinyImageNet -0.2202 0.3756 0.2202 0.3756 -0.4731 0.5674 534 1514
Stanford-Cars -0.0045 0.7894 0.0045 0.7894 0.4339 -0.5646 1496 552

Fine-tuned CNNs exhibit texture bias, but their strengths depend
on the downstream dataset We scrutinize that fine-tuned CNNs also bear
texture bias just as the one trained in ImageNet; thus, the analysis proposed
in Geirhos et al. [7] is also valid in the fine-tuning scenario. Furthermore, we
hypothesize a recent study of Hermann et al.[14] on the origins of CNN’s texture
preferences also supports this result, implying that both ImageNet and widely-
used benchmark datasets’ data distribution become a root cause of texture bias.
As Hermann et al.[14] once noted, we also suspect that the model architecture is
not a big concern, but the data distribution or label space design provokes this
bias.

Table 3. Bias analysis on CIFAR-10

Dataset
AdaBA (Ours) Baseline

Shape Texture Shape
Texture Shape Texture Shape

Texture

Original 0.2170 0.7217 0.2984 180 1259 0.1430
Stylized 0.2882 0.1576 1.8286 330 516 0.6395

Style-transferring do mit-
igate fine-tuned CNN’s
texture bias Following Ta-
ble 3, we observe that style-
transferring the downstream
dataset contributes to miti-
gating the texture bias of the fine-tuned CNN. Just as the prior study pointed
out, we presume style-transferring samples unify the texture information in the
dataset, thus enhancing the awareness of shape information to the CNN. As a
comparative strength of shape over the texture increases after style transfer, we
result that the method proposed in [7] is also valid under the fine-tuning regime.

4167



Shape Prior is Not All You Need 9

4 Mitigating Texture Bias by Redesigning Label Space

4.1 Granular Labeling Scheme

Objective Upon the takeaway that data distribution is one promising cause of
CNN’s texture bias, then, how can we figure out the optimal balance between
texture and shape bias? Prior works primarily focused on mitigating texture bias
under the frozen label space, which implies that a training set was regarded as
a sanctuary. But, our study ideates that a practical solution should release this
assumption and changes the data distribution by redesigning the label space.
Accordingly, we suggest a novel labeling scheme denoted as a Granular labeling
scheme where the samples belonging to each label share the shape and texture
characteristics simultaneously, while conventional label spaces are established
based on the human practitioner’s needs.

(a) Unlabeled (b) Shape-biased (c) Texture-biased (d) Granular (Ours)

Fig. 3. Various labeling schemes that we utilized in the study. Given unlabeled samples
shown in (a), the machine learning practitioners can create various labeling schemes:
shape-biased, texture-biased, and granular schemes.

Dataset As we aim to examine the effectiveness of various labeling schemes, we
necessitate a set of unlabeled samples that can be annotated under various la-
beling schemes. To the best of our knowledge, we could not figure out publicized
datasets fulfilling this requirement; thus, we synthetically created the dataset.
Given CIFAR-10, first, we style-transferred the original CIFAR-10 where its sam-
ples bear similar shapes and dissimilar textures from the original CIFAR-10. As
we showed in Figure 3, our study concatenated them with the original CIFAR-10
and regarded it as a set of unlabeled samples; thus, the concatenated samples
have ten shapes (airplane, automobile, · · · ), and two textures (Natural and Artis-
tic). Given these concatenated samples, we created different training and test
sets based on various labeling schemes. We denote a concatenated dataset con-
sisting of original CIFAR-10 with three styles (Mosaic Realism, Rococo, and
Neoplasticism) as Concatenated Set 1, 2, and 3, respectively.

Labeling Scheme We postulated three labeling schemes that the machine
learning practitioners would utilize: Shape-biased, Texture-biased, and Granu-
lar labeling scheme (which is our proposition). Suppose the practitioners have a
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set of unlabeled samples as shown in Figure 3. (a), where there exists two shape
characteristics (airplane, truck) and two texture characteristics (natural, artis-
tic). Under the shape-biased scheme shown in Figure 3. (b), the practitioners
can establish two labels of airplane and truck, and samples within each label
share similar shape characteristics but different textures (i.e., samples in label 1
have a similar airplane-like object, but their texture varies). Conversely, under
the texture-biased scheme shown in Figure 3. (c), samples at each label share
similar texture characteristics but dissimilar shapes (i.e., samples in label 1 share
natural texture but have different objects). Lastly, the granular labeling scheme
(a novel labeling scheme proposed in our study) lets the samples at each label be
differentiated in both shape and texture characteristics; thus, the number of la-
bels increases compared to the prior ones. Referring to Figure 3. (d), the samples
in label 1 have different shape and texture characteristics from the other labels.
Based on these schemes, we examined whether the proposed granular labeling
scheme conveys better representation power to the model for various computer
vision tasks.

Classification Setting and Evaluation Our study posits two classification
tasks: shape classification and texture classification. Suppose we solve a binary
classification between truck and airplane labels given a concatenated dataset
(which simultaneously includes Natural and Shape texture) for shape classifi-
cation. In this case, the practitioners conventionally design a labeling scheme
where the samples at each class share similar objects and different textures.
The samples in the truck label share look-a-like truck objects, but their textures
vary from Natural to Artistic ones. Following the defined labeling schemes in
section 4.1 (b), we can say the practitioners followed the shape-biased labeling
scheme, and the model would solve binary classification between truck and air-
plane labels. As the granular scheme divides each label more finite manner, the
model shall solve a 4-class classification with the following labels: (truck, natu-
ral), (truck, artistic), (airplane, natural), and (airplane, artistic). For a proper
comparative evaluation, we concatenated the prediction results under the gran-
ular scheme based on the shape property. For example, we concatenated (truck,
natural) and (truck, artistic) prediction results as a truck label, and the airplane
label consists of prediction results of (airplane, natural) and (airplane, artistic).
Therefore, the model under the granular scheme solves the 4-class classification,
but the machine learning practitioners can practically acquire binary labels by
concatenating prediction results fit to their classification objective. Last but not
least, we utilized Accuracy and F1-score as evaluation metrics.

4.2 Bias Analysis on Concatenated Sets

In this section, we aimed to determine whether the strength of texture changes
depending on the labeling scheme. Moreover, we further examine whether our
granular scheme achieves a different bias level compared to the other schemes.
Given three concatenated sets, we performed bias analysis with the proposed
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AdaBA and measured the strength difference between texture and shape bias
(denoted as Diff ). Following the results of Table 4, we scrutinized that different
labeling schemes exhibit different bias landscapes of the CNN; thus, redesign-
ing the label space would presumably influence a balance between texture and
shape biases. We further discovered that our proposed granular scheme achieves
a balanced point between shape-biased and texture-biased schemes’ one-side
bias. This implies representation with conventional labeling schemes (i.e., shape-
biased or texture-biased) overly biased to one side, but the proposed granular
scheme can contribute to the balanced landscape of CNN’s bias in texture and
shape.

Table 4. Bias analysis on CNNs trained under various labeling schemes. Note that
Diff implies an absolute value of difference between Shape and Texture scores.

Labeling Scheme
Training Sets

C-Set1 C-Set2 C-Set3
Shape Texture Diff Shape Texture Diff Shape Texture Diff

Granular 0.5588 0.2785 0.2803 0.2356 0.6270 0.3914 0.6227 0.8230 0.2003
Texture-biased 0.3526 0.4641 0.1115 0.0584 0.7532 0.6948 0.5330 0.6587 0.1258
Shape-biased 0.1698 0.9615 0.7917 0.9959 0.8498 0.1461 0.0461 0.9460 0.9000

5 Is Granular Labeling Scheme Advantageous in
Classification Performance?

5.1 Setup

We first and foremost examined whether the proposed granular labeling scheme
contributes to better performance at two classification tasks: shape classifica-
tion and texture classification. The shape classification is a 10-class classification
where the samples at each label include similar object shapes and different tex-
tures of natural and artistic. For the shape classification, we primarily compared
the proposed granular scheme’s performance with a shape-biased scheme. Note
that the CNN trained under the granular scheme solves 20-class classification
while the shape-biased scheme lets the model solve 10-class classification. On the
other hand, the texture classification is a binary classification with two labels:
natural and artistic. We validate the effectiveness of the granular scheme with
the texture-biased scheme. While the granular scheme shares the same setting
with the one at shape classification, the texture-biased scheme takes binary label
space: the samples at each class share similar textures and different shapes. We
followed the evaluation procedures described in section 4.1 for a proper compar-
ative study. The experiment results are described in Table 5.

5.2 Analysis

We discovered the proposed granular labeling scheme contributed to precise clas-
sification performances compared to other paradigms. We hypothesize conveying
both shape and texture characteristics contributed to more qualified represen-
tation, and this improved representation supported a significant classification
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performance at both tasks. Throughout the experiment results, we reconfirmed
a common notion: the samples within a single label shall share similar character-
istics, and the more minimized variance contributes to the better representation
power for classification. Accordingly, we figured out that a simple label space
change can improve classification performance; thus, this finding can be a useful
guideline for machine learning practitioners.

Table 5. Shape and texture classification results under various labeling schemes. De-
note that C-set means concatenated sets.

Labeling Scheme
Training Sets

C-Set1 C-Set2 C-Set3

Shape Classification

Accuracy F1-score Accuracy F1-score Accuracy F1-score

Shape-biased 0.7751 0.8625 0.7851 0.8679 0.6990 0.8153
Granular 0.7835 0.8884 0.7858 0.8769 0.7337 0.8403

Texture Classification

Accuracy F1-score Accuracy F1-score Accuracy F1-score

Texture-biased 0.9611 0.9796 0.9621 0.9804 0.9837 0.9916
Granular 0.9857 0.9905 0.9900 0.9938 0.9933 0.9950

6 Does Granular Labeling Scheme Contribute to Better
OOD Detection?

6.1 Setup

Furthermore, we validate whether the proposed granular labeling scheme con-
tributes to better OOD detection performance. Among previous OOD detection
methods [12,13,19], we employed an approach proposed in Vaze et al.[26] due to
its supreme performance in various benchmark datasets. As we trained the CNN
with the dataset stemming from CIFAR-10, we utilized two OOD datasets that
do not share the same semantics with the training set: CIFAR-100 and SVHN.
Furthermore, we synthetically created additional OOD samples for a more pre-
cise experiment: a stylized OOD dataset. The stylized OOD dataset includes
samples that have been style-transferred with the AdaIn under the same proce-
dure of creating the training set. Note that we created style-transferred OOD
samples using the same style type used in the training set. (i.e., If the training
set includes stylized samples in Rococo type, the OOD dataset also includes
stylized OOD samples with Rococo type) We established the OOD detectors
based on three CNNs trained under different labeling schemes and examined
which labeling scheme contributes to better OOD detection performance. Fol-
lowing prior OOD detection studies, we also employed Area Under ROC curve
(AUROC) for an evaluation metric to comprehensively evaluate the OOD detec-
tion performance under various threshold levels. Note that we utilized the same
implementation settings with the one elaborated on section 5. We described
experiment results in Table 6.

6.2 Analogy

We figured out a model trained under the granular labeling scheme was not
always superficial in detecting OOD samples. While the granular scheme ac-
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complished precise OOD detection performance in the Stylized OOD dataset,
the shape-biased scheme achieved better performance in most original OOD
datasets. We presume an underlying reason for this result also lies in the overfit-
ted representations under the granular labeling schemes. As the granular label-
ing scheme acquires overly optimized representations to the training samples, it
weakens the general understanding of various samples, including the ones that
exist at different distributions. Based on the results of the OOD detection, we
expect the proposed granular scheme is vulnerable in vision tasks which include
samples at different distributions. Still, we acknowledge our analogy is at an em-
pirical level; thus, a more in-depth analysis of this phenomenon is highly required
in the follow-up studies.

Table 6. The OOD detection performances under various labeling schemes. Denote
that C-set means concatenated sets.

OOD Set Labeling scheme
Original OOD Style-Transfered OOD

C-Set1 C-Set2 C-Set3 C-Set1 C-Set2 C-Set3

CIFAR-100
Shape-biased 0.7787 0.8068 0.7023 0.7154 0.7391 0.7153

Texture-biased 0.4604 0.5564 0.6598 0.7524 0.7317 0.6102
OURS 0.6745 0.7651 0.7942 0.8636 0.8696 0.7527

SVHN
Shape-biased 0.7734 0.7981 0.6876 0.7756 0.5583 0.7458

Texture-biased 0.4355 0.4575 0.4764 0.7503 0.5446 0.5841
OURS 0.7187 0.7587 0.6943 0.8892 0.5858 0.7746

7 What Representation Do Various Schemes Acquire?

7.1 Setup

While we discover that the proposed granular scheme acquires a balance be-
tween texture and shape information, the follow-up question arises: How does
the learned representation look like? To excavate an answer, we compared the
representation similarities among CNNs trained under various labeling schemes
with CKA [17]. We analyzed layer-wise representation similarity within a single
model, that implies a similarity among convolution layers in a single CNN. We
aim to analyze the knowledge capacity of a trained model. Suppose particular
layers in a single model acquires representations similar to the other layers. This
case implies that the model failed to learn various characteristics of the training
samples; thus, it limits the representation power of a given sample. Conversely,
if layers within the same model bear lower similarities to each other, it shows
that the model can illustrate various characteristics of a given sample; thus, the
model considers a wide range of patterns exists to solve a classification task.
Upon the aforementioned setups, we visualized layer-wise representation simi-
larities within each model Figure 4. Note that both x and y-axis in the figure
imply the convolution layers index at ResNet-50.

7.2 Analogy

Following the results in Figure 4, we figured out the CNN trained under the gran-
ular scheme has a large capacity of knowledge as its layer-wise representation
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similarity is comparatively lower than the others. While the CNNs trained un-
der shape-biased and texture-biased schemes bear many similar representations
within their layers, the model trained under the proposed scheme has smaller
similar representations. We analyze this smaller similarity among layers let the
model scrutinize various patterns of a given sample, and this larger knowledge
capacity contributed to the precise classification performance. We figured out
the effectiveness of the proposed granular labeling scheme comes from the qual-
ity of representation. The representation trained under the proposed scheme has
a larger knowledge capacity, and it acquires a presumably qualified contextual
understanding of a given data at high-level layers of the neural networks. For
more in-depth analyses, we additionally revealed that a CNN trained under the
granular labeling scheme exhibits distinct high-level representations from the
other schemes; thus, this distinct representation particularly contributes to bet-
ter performances. We skipped the description in this paper due to page limits,
please refer the supplementary materials for detailed analyses.

(a) Shape-biased (b) Texture-biased (c) Granular (Ours)

Fig. 4. Layer-wise representation similarities among layers within the same model.

8 Conclusion

Throughout the study, we present a series of analyses that scrutinize CNN’s
texture and shape bias. First, we propose AdaBA, a novel bias analysis method
that sustains the baseline method’s performance as well as more lightweight pro-
cedures. Upon the AdaBA, we explore how the fine-tuned CNNs expose a biased
landscape in various downstream datasets and result in a data distribution is
a root cause of texture bias of fine-tuned CNNs, as well as ImageNet-trained
CNNs [14]. To this end, we suggest a granular labeling scheme that can mit-
igate the CNN’s texture preference by simply redesigning the label space. We
empirically examine that the granular labeling scheme exhibits a balanced bias
between texture and shape, and it yields escalated performances on classifica-
tion and OOD detection. Lastly, we analyze that the granular labeling scheme
acquires more qualified representation power, describing a fruitful illustration of
a given sample.
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