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Abstract. Deep learning algorithms for Multi-view Stereo (MVS) have
surpassed traditional MVS methods in recent years, due to enhanced
reconstruction quality and runtime. Deep-learning based methods, on
the other side, continue to generate overly smoothed depths, resulting in
poor reconstruction. In this paper, we aim to Boost Depth Estimation
(BDE) for MVS and present an approach, termed as BDE-MVSNet,
for reconstructing high-quality point clouds with precise depth predic-
tion. We present a non-linear strategy that derives an adaptive depth
range (ADR) from the estimated probability, motivated by distinctive
differences in estimated probability between foreground and background
pixels. ADR also tends to decrease fuzzy boundaries via upsampling low-
resolution depth maps between stages. Additionally, we provide a novel
structure-guided normal ranking (SGNR) loss that imposes geometrical
consistency in boundary areas by using the surface normal vector. Exten-
sive experiments on DTU dataset, Tanks and Temples benchmark, and
BlendedMVS dataset demonstrate that our method outperforms known
methods and achieves state-of-the-art performance.

1 Introduction

Multi-view Stereo (MVS) is the process of reconstructing the dense 3D geom-
etry of an observed scene using posed images and camera parameters. It is a
key problem in computer vision, with applications to various domains such as
augmented and virtual reality, robotics, and 3D modeling. Although MVS has
been studied for several decades, computing a high-quality 3D reconstruction in
the presence of occlusions, low-textured regions, and blur remains a challenge
[1]. Convolutional Neural Networks (CNNs) were adopted by MVS methods as
an alternative for hand-crafted matching metrics and regularization schemes
[2,3,4,5,6] following the success of deep learning in many fields of computer vi-
sion, offering a significant improvement to the completeness of the reconstructed
model and the runtime required for generating it [7,8,9,10,11,12,13]. The basic
learning-based MVS approach [7] begins with the extraction of deep features
using a 2D CNN. The corresponding cost maps, each generated by considering
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(a) RGB (b) Vis-MVSNet (c) Ours (d) Ground truth

Fig. 1. Comparison of depth maps. (a) RGB images. (b)-(d) Depth maps predicted by
Vis-MVSNet [9] and our approach, and the respective ground truth depth. Our method
predicts much more accurate depth compared to Vis-MVSNet [9].The resolution of
input images is 640× 512.

the variance of warped activation maps, are then stacked to form a cost vol-
ume over different depth hypotheses. Before applying Softmax and regressing
the depth of the reference image, a 3D CNN is applied to finalize the cost vol-
ume normalization. Recent state-of-the-art MVS approaches have recommended
various optimizations, such as using coarse-to-fine processing of activation maps
[8,9,10,11,12], since runtime and memory expand cubically with spatial resolu-
tion and have a complexity of O(n3). The above mentioned methods using depth
range estimation in pixels [10,11] and imposing pixel-wise visibility constraints
[9]. Despite these recent advancements, learning-based MVS methods still pro-
duce overly smoothed depth and imprecise boundaries, which are harmful to the
reconstruction results.

In this work, we propose a MVS method, named BDE-MVSNet, which aims
at boosting depth estimation, especially on the boundaries and the background
areas in multi-view stereo tasks. The uncertainty associated with depth estima-
tion in the foreground and background/boundary regions motivated our method.
After a single estimating step, we observe that the depth at foreground pixels is
assigned with high probability, whereas the depth at background pixels is com-
monly assigned with low probability. Thus, we propose an adaptive depth range
(ADR) method that computes the depth range per pixel in a non-linear way
from its probability. As a consequence, depth ranges for boundary and back-
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ground pixels are kept broad, while foreground depth is sampled precisely, pro-
ducing improved accuracy. We take inspiration from Monocular Depth Estima-
tion (MDE) approaches [14,15,16] and present a novel structure-guided normal
ranking (SGNR) loss, which promotes geometrical consistency using the surface
normal vector, to improve depth regression. With the help of ADR strategy
and SGNR loss, we estimate the depth with only two stages while process-
ing relative high-resolution images. Without the requirement to up-sample the
low-resolution depth maps, this method provides an alternative to three-stage
cascade approaches like Vis-MVSNet [9], UCSNet [10] and CasMVSNet [8]. We
employ Vis-MVSNet [9] as our baseline and implement our method upon it.
Fig. 1 shows depth images predicted by Vis-MVSNet [9] and our method. BDE-
MVSNet is able to produce much more accurate depth and sharper boundaries,
even in challenging scenarios. We evaluate BDE-MVSNet on commonly bench-
marked MVS datasets, namely DTU [17], Tanks and Temples [18] and Blended-
MVS [19]. Extensive experiments show BDE-MVSNet achieves state-of-the-art
performances.

To summarize, the following are our main contributions.

– We propose BDE-MVSNet which can predict accurate depth and reconstruct
high-quality point clouds.

– We introduce ADR strategy to derive a per-pixel depth interval in a non-
linear manner, which helps predict accurate depth in only two stages.

– We propose SGNR loss and show it can help in predicting sharp boundary
and in decreasing tailing errors in the reconstructed point cloud.

– We qualify the performance of our method on multiple MVS datasets and
show it achieves state-of-the-art performance.

2 Related Work

2.1 Learning-based MVS

The accuracy and efficiency of learning-based methods are directly affected by
the number of depth hypotheses, the interval from which they are sampled and
the spatial resolution of the activation maps, which determine the dimensions
of the regularized cost volume [8]. Recent state-of-the-art learning-based MVS
methods have suggested different strategies for extending the basic learned MVS
paradigm (MVSNet [7]) and optimizing the aforementioned trade-offs. Different
recurrent models were suggested for regularizing the cost volume in a sequen-
tial manner [20,21,22]. However, while decreasing memory consumption, sequen-
tial processing does not scale well with spatial resolution. Cascade methods
[8,10,9,11,12,13] proposed instead to form a feature pyramid and regress depth
maps in a coarse-to-fine manner. Typically, at the coarsest stage, depth is re-
gressed as in the MVSNet paradigm. As the resolution increases, the number of
depth hypotheses is decreased, resulting in improved efficiency. The depth range
at a given stage is often centered around the depth estimated at the previous
coarser stage resulting in more accurate depth ranges to sample from [8,10,9,11].
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Fig. 2.Overview of BDE-MVSNet. We use a visibility-aware architecture, similar to [9],
but apply only two processing stages using the same resolution feature maps. Our
ADR strategy determines the per-pixel depth range at the second stage based on
the estimated probability. We further apply our SGNR loss to enforce geometrical
consistency.

One drawback of coarse-to-fine methods is the need to up-sample depth maps
from stage to stage, which can yield fuzzy boundaries.

2.2 MVS Loss Functions

Learning-based MVS methods are typically optimized to minimize the L1 loss
between the predicted depth map and ground truth (GT) depth [7,8,12,21,10] or
cross-entropy loss between the predicted probability volume and the GT proba-
bility, which is generated by one-hot encoding [22,20,21]. A recent extension to
this formulation is introduced by Vis-MVSNet [9], where the per-pixel visibility
is explicitly addressed by computing the cost volume per pair of reference and
source images before constructing and regularizing the joint cost volume. The
common L1 loss is also extended to minimize the depth maps estimated in a
pairwise and joint manner. Other extensions are also proposed to improve ge-
ometrical consistency through constraints on the surface normal vector [23,24].
Besides multi-view depth estimation, MDE approaches [14,15,25,26,27] also of-
fered novel strategies for improving depth prediction. For example, ranking loss
[14,15] and structure-guided point sampling [16] were shown to improve depth
accuracy. In this work, we extend propose a novel SGNR loss based on MDE
strategies and surface normal vector constraints.

3 Method

Given a collection of images and camera parameters (intrinsic matrices K, ro-
tation matrices R and translation vector t), our proposed BDE-MVSNet aims
to predict a dense depth map d ∈ Rh×w for each reference image I0 ∈ Rh×w×3,
using respective m source images {Ii}mi=1 with highest co-visibility.
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3.1 Network Architecture

The main architecture of our proposed BDE-MVSNet is shown in Fig. 2. It
first extracts deep feature maps through a 2D U-Net from both reference and
source images. Then, the feature maps feed into two branches, which refer to the
two visibility aware-stages [9] with the same spatial resolution to construct and
regularize 3D cost volumes. Between the two steps, our ADR strategy is used to
calculate a per-pixel depth interval depending on the probability of the previous
depth estimate. We train our model with a novel loss, whose components are the
Vis-MVSNet loss and our proposed SGNR loss, which computes the structure
map from the ground truth depth map and samples pair-wise points to calculate
the normal ranking loss.

Feature Extraction We use a 2D U-Net to extract deep features from reference
I0 and source {Ii}mi=1 and process the finest-resolution feature maps, of size
h
2 × w

2 × 32.

Cost Volume Construction Following [7,9], we construct pair-wise and joint
cost volumes using differentiable homography warping and group-wise correla-
tion. The warping process from Ii to I0 can be described as:

Hi,j = KiRi(I −
(t0 − ti)a

T
0

dj
)RT

0 K
−1
0 , (1)

where Hi,j refers to the homography matrix at depth dj and a0 denotes the
principle axis of the reference image. We first compute pairwise cost volumes
and respective probability volumes [9] using group-wise correlation [28] and 3D
CNN, which will then be fused to construct the final cost volume. Then, we apply
a depth-wise 3D CNN with shape 1× 1× 1 and a Softmax function to compute
the probability volume P ∈ RN×h

2 ×
w
2 . The final depth with its probability map

can be obtained from P using regression or winner-take-all. The generation of
cost volume is identical for both stages, e.g. uses same spatial resolution and
same sampling strategy. The main difference between the two stages lies in the
prior depth range derivation. For the first stage, we use a fixed prior depth range
for all pixels as in previous methods. While for the second stage, we update the
depth range for each pixel using our ADR strategy (Section 3.2).

Depth Regression Given the probability volume P , we regress the predicted
depth d(p) of each pixel p in the reference image by taking the probability-
weighted mean of all N hypotheses:

d(p) =

N∑
j=1

dj · P (p, j). (2)

Depth Fusion At inference time, we apply our model to regress the depth maps
of all images and then filter and fuse them to reconstruct the 3D point cloud as
in [8], based on photometric and geometric consistency.
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Fig. 3. Illustration of ADR. The left column shows comparison of ADR and linear
strategy [11,10]. The right column shows the ditribution of the first stage’s probability
on DTU validation set [17].

3.2 Adaptive Depth Range

At the end of the first stage, the network produces a probability volume P and
an estimated depth map d. Given these two outputs, we can obtain an estimated
probability P for each pixel, as in MVSNet [7]. The probability P (p) at pixel
p provides an measurement for the uncertainty. We leverage this information
for adapting the depth range at the next stage. We propose a non-linear strat-
egy motivated by distinctive differences in pixel uncertainty between foreground
and background areas. As shown in Fig. 3, when analyzing the distribution of
estimated probability, we find foreground pixels are typically assigned with a
probability of 0.9 ∼ 0.999, while pixels at boundary and background regions
present a probability of 0.3 ∼ 0.7 and < 0.3 respectively. For depth estimations
with high uncertainty, we would like to sample from a relatively wide range to
decrease error rate. On the other hand, when the estimation is made with high
certainty, a narrow range can help in achieving improved accuracy. Following
this intuition, we propose our novel Adaptive Depth Range (ADR) method.

Given a depth range [dmin,i, dmax,i], a fixed depth interval δ and a fixed num-
ber of depth hypotheses Ni for stage i, we can obtain the j-th depth hypothesis
dj,i at the i-th stage, {

dj,i = dmin,i + (j − 1) · δ
dmax,i = dmin,i +Ni · δ

, (3)

We simply take a fixed [dmin,i, dmax,i] for all pixels in the first stage (i = 1).
While for the second stage, our ADR strategy computes a pixel-specific depth
range [d1(p) − ADR(p), d1(p) + ADR(p)] based on the estimated depth d1(p)
and probability P 1(p), where ADR(p) can be written as,

ADR(p) =
1

2
·N2 · s(p) · δ. (4)
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(a) (b)

(c) (d)

Fig. 4. Illustration of our structure-guided sampling scheme. (a)-(b): Sobel operator
in y and x direction. (c): Gradient of center pixel (red point). (d): Four sampled points
(in green) around a center point (in black) at a boundary area.

s(p) is a pixel-specific scaling factor which can be obtained by,

s(p) = cos(k · P 2

1(p)), (5)

where k is a hyper-parameter (we set it to 1.2) which controls the range scaling.
We illustrate the differences between the linear strategy employed by [11,10]
and our ADR strategy in Fig. 3. ADR tries to maintain a large depth range for
low-probability pixels and strictly narrow the depth range for high-probability
pixels, which helps to assign proper depth range and predict accurate depth in
fewer stages.

3.3 Structure-Guided Normal Ranking Loss

Inspired by recent advancements in MDE, we propose to modify the pairwise
ranking loss [14] for MVS, and suggest imposing geometric consistency by up-
dating the ordinal label using the surface normal. Our proposed SGNR loss
mainly consists of two steps: structure-guided sampling and pairwise normal
ranking loss.

Structure-Guided Sampling In order to accommodate for the typical MVS
setting (dataset), where the background is usually masked in both RGB and
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depth images, we propose a modified version of four-point sampling scheme [16]
to sample the point pairs S = {(pi,0, pi,1)}Ni=1. Given a reference image I, we
first convert it to a gray-scale image I∗ and use the Sobel operator to get the
gradient maps Gx, Gy and gradient magnitude G (Fig. 4(a)-(c)). Before we get
the final edge map, we compute a solid-region mask to avoid sampling points
in masked background regions. We execute this operation by reducing 16 pixels
along the orthogonal line crossing the background-mask to get the solid-region
mask Msolid ∈ Rh×w. Then the final edge map E can be obtained by applying
a solid-region mask to avoid sampling points in masked background regions by

E = I∗[G(p) ≥ α ·max(G)]p∈Msolid
, (6)

where α is a threshold which controls the density of E, and we set it to 0.05 in
our experiments.

For each edge point e = (x, y) ∈ E, we sample four points {(xk, yk)}3k=0 by{
xk = x+ δkGx(e)/G(e)
yk = y + δkGy(e)/G(e)

, (7)

where we sample δ0 < δ1 < 0 < δ2 < δ3 within a small distance range β
from the edge point. Given four sampled points p0, p1, p2, p3, we form three
pairs of points for pairwise ranking: [(p0, p1), (p1, p2), (p2, p3)]. Similar to [16], we
also sample some points using a random sampling scheme in order to preserve
global structures. Specifically, we sample 3n pairs points through the four-point
sampling scheme and n pairs through the random sampling scheme, where n is
set to 1000 in our experiments.

Pairwise Normal Ranking Loss The pair-wise ranking loss performs well in
the majority of cases, however it loses geometry consistency in plane or boundary
regions. Take a look at the box-like object in Fig. 4(d), where a sample of four
points is chosen from the area around an edge point at the object’s boundary.
Contrary to the [14], we believe it is irrational to suppose nearby points have the
same depth estimation while ignoring their crucial geometrical constraints. In our
work, we consider the inner point pair (p0, p1) and outer point pair (p2, p3) have
the same surface normal vector, due to the pairs are relatively close in spatial.
To better leverage the geometrical constraints, we propose to incorporate the
surface normal vector in the loss formulation. After we have the GT depth map
D∗ with its corresponding camera intrinsic matrix K and the sampled points
set S from our 4-point sampling scheme, we first select eight neighboring points
{(xn,i, yn,i)}7i=0 for each point p in S. In order to calculate the surface normal
np ∈ R3×1of p, we unproject the center point p and its neighboring points into
3D space as below,

P ∗ = K−1D∗(p)p (8)

Then, we compute the surface normal vector using three points for eight times
as below,

−−→
N∗

p,i =
−−−−→
P ∗P ∗

i,0 ×
−−−−→
P ∗P ∗

i,1, (9)
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where {(P ∗
i,0, P

∗
i,1)}7i=0 indicates two neighboring points of center point P ∗. The

final surface normal of p in GT depth map is presented as,

−→
N∗

p =
1

8

7∑
i=0

−−→
N∗

p,i (10)

We can compute the surface normal map N∗ and N with respect to GT depth
map D∗ and predicted depth map D in this way. After that, we calculate the
surface normal vectors at each point and assign an ordinal label to each pair of
points (p0, p1) ∈ S based on their cosine similarity,

l =

{
1, | cos(n∗

0, n
∗
1)| ≤ 1

1+τ

0, otherwise
, (11)

where n∗
0 and n∗

1 are the GT depth-derived surface normal vectors corresponding
to p0 and p1, and τ is a tolerance threshold. The SGNR loss for (p0, p1) is then
given by,

ϕsgnr(p0, p1) =

{
log(1 + exp(− tan( |n0,n1|+ϵ

2 ))), l = 1

(tan( |n0,n1|+ϵ
2 ))2, l = 0

, (12)

where n0 and n1 are the surface normal vectors computed using the predicted
depth map for p0 and p1 respectively, |n0, n1| refers to the angle between n0 and
n1, ϵ is a perturbation which we set to 1× 10−4.

In a word, the SGNR loss enforces the model to predict similar normal vectors
for pairs with similar surface normals and dissimilar them otherwise. Our total
SGNR loss is given by,

Lsgnr =
1

|S|
∑

(p0,p1)∈S

ϕsgnr(p0, p1). (13)

where |S| refers to the number of point pairs.

3.4 Total Loss Function

The total loss function of BDE-MVSNet is composed of SGNR loss and the
losses in Vis-MVSNet: the pair-wise L1 loss Lpair

1 , the pair-wise joint loss Ljoint

and the L1 loss of the final depth map Lfinal for each stage. The final loss
formulation is thus given by,

Ltotal =

2∑
k=1

λk[L
final
1,k +

1

m

m∑
i=1

(Lpair
1,k,i + Ljoint

k,i ) + αLsgnr,k], (14)

where λk is the weight for k-th stage, m is the number of source images and α
is the weight of Lsgnr, which we set to be 0.5.
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Table 1. Accuracy, completeness and overall scores of different MVS methods on the
DTU test set. The resolution of input images is 864× 1152.

Method Acc.(mm) ↓ Comp.(mm) ↓ Overall(mm) ↓
Gipuma [30] 0.283 0.873 0.758
COLMAP [31] 0.400 0.664 0.532
MVSNet [7] 0.396 0.527 0.462
Vis-MVSNet [9] 0.369 0.361 0.365
PatchmatchNet [12] 0.427 0.277 0.352
CVP-MVSNet [32] 0.296 0.406 0.351
CasMVSNet [8] 0.346 0.351 0.348
UCSNet [10] 0.338 0.346 0.344
DDR-Net [11] 0.339 0.320 0.329

BDE-MVSNet 0.338 0.302 0.320

4 Experiments

4.1 Datasets

We evaluate our method using three commonly benchmarked MVS datasets:
DTU [17], BlendedMVS [19] and Tanks and Temples [18]. DTU is an indoor-
scene dataset, consisting of 124 scenes, scanned from 49 or 64 views under 7
different lighting conditions. BlendedMVS is a large-scale dataset that contains
17,000 MVS training samples covering a variety of 113 scenes. Tanks and Temples
contains multiple realistic scenes. All the settings of evaluation datasets follow
Vis-MVSNet [9].

4.2 Implementation Details

Our method is implemented with PyTorch [29] and trained on eight NVIDIA
Tesla V100 cards. We optimize our network with Adam using a batch size of 16
and an initial learning rate of 0.001. We train for 160K iterations and decrease
the learning rate by half at the 100K, 120K and 140K iterations. During train-
ing, we use an image resolution of o 640 × 512 and set the number of source
images to 3. For depth sampling strategy, we set Dmax = 128 and the initial
depth interval δ = 1. We set Nd,1, Nd,2 = 32, 16 for the number of depth hy-
potheses for stage 1 and 2 respectively. The ADR factor k is set to 1.2 and the
weight of loss λk is set to 1.0 for all experiments.

4.3 Evaluation on DTU

Our proposed method benchmarked on the DTU [17] evaluation set. DTU dataset
is divided into training, validation and evaluation sets. We train our model on
the DTU training set and test on the evaluation set. We set the depth range to
[425mm, 905mm] and use 5 source views per image at a resolution of 1152×864
for depth estimation. As shown in Table 1, the Gipuma [30] and Patchmatch-
Net [12] methods achieve the best accuracy and completeness respectively, while
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Fig. 5. Comparison of reconstructed point clouds on DTU validation set [17] between
Vis-MVSNet and ours.

BDE-MVSNet outperforms other learning-based methods and traditional meth-
ods in terms of overall performance. Some qualitative results are shown in Fig. 5,
compared with baseline method [9], BDE-MVSNet is able to reconstruct better
point cloud results.

Table 2. The F-score of MVS methods on the Tanks and Temples intermediate test set
(higher is better). The best method is highlighted in bold for each scene. The resolution
of input images is 1920× 1080.

Method Pub. Mean Family Francis Horse L.H. M60 Panther P.G. Train

MVSNet [7] ECCV18’ 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
R-MVSNet [20] CVPR19’ 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38
CVP-MVSNet [32] CVPR20’ 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54
UCSNet [10] CVPR20’ 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89
DDR-Net [11] Arxiv20’ 54.91 76.18 53.36 43.43 55.20 55.57 52.28 56.04 47.17
CasMVSNet [8] CVPR20’ 56.42 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56
D2HC-RMVSNet [21] ECCV20’ 59.20 74.69 56.04 49.42 60.08 59.81 59.61 60.04 53.92
Vis-MVSNet [9] BMVC20’ 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07
AA-RMVSNet [33] ICCV21’ 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90
EPP-MVSNet [34] ICCV21’ 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30

BDE-MVSNet (Ours) - 62.30 79.71 67.33 49.52 64.68 62.43 58.28 58.15 58.32

4.4 Evaluation on Tanks and Temples

We evaluate our method on the Tanks and Temples dataset’s intermediate set,
[18]. To train BDE-MVSNet, we utilize the training set of the BlendedMVS
dataset [19]. We set the number of source views to 7 and tested on images with
a resolution of 1920 × 1080. All other hyper-parameters are set to the same
values as in the training stage. The Table 2 reports the F-score of our method
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Vis-MVSNet Ours Ground truth

Fig. 6. 3D model of a challenging scene from BlendedMVS [19], reconstructed by Vis-
MVSNet [9] and ours.
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Fig. 7. More 3D model result of challenging scenes from BlendedMVS [19], recon-
structed by Vis-MVSNet [9] and ours.

as well as other state-of-the-art learning-based MVS algorithms. BDE-MVSNet
outperforms existing approaches in almost every scene due to superior depth
prediction.

4.5 Evaluation on BlendedMVS

While MVS benchmarking typically concentrates only on the final output (the
point cloud), we also report the quality of the predicted depth maps.

We follow the depth evaluation protocol of BlendedMVS [19] and report three
metrics: the mean absolute error between the predicted and the ground truth
depth maps, denoted as end point error (EPE), and the proportion in % of
pixels with an error > 1 and > 3 in the scaled depth maps, denoted as e1 and
e3, respectively.

We set the number of source images m = 5 with a resolution of 640 × 512
and set all other hyper-parameters as in the training phase. We train our model
on the BlendedMVS dataset and evaluate using its validation set (Table 4). Our
approach outperforms other state-of-the-art methods in terms of depth quality
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Table 3. The effect of depth range update strategy on the quality of the depth esti-
mation. Linear strategy is used in [11,10]. The resolution of input images is 640× 512.

Depth Range Strategy EPE ↓ e1 ↓ e3 ↓
None 1.35 17.82 6.55
Linear 1.24 16.81 5.67
ADR (ours) 1.09 15.63 5.61

Table 4. Accuracy (EPE, e1, e3), memory and runtime for depth map estimation
results obtained with different MVS methods and ours. Results are reported for the
BlendedMVS [19] validation set, using image resolution of 640× 512.

Method EPE ↓ e1 ↓ e3 ↓ Memory Runtime

MVSNet [7] 1.49 21.98 8.32 5.50G 1.18s
CasMVSNet [8] 1.43 19.01 9.77 2.71G 0.44s
CVP-MVSNet [32] 1.90 19.73 10.24 - -
DDR-Net [11] 1.41 18.08 8.32 - -
Vis-MVSNet [9] 1.47 18.47 7.59 1.85G 0.56s

Ours 1.06 15.14 5.13 1.81G 0.47s

by a large margin. A qualitative comparison on a challenging scene between Vis-
MVSNet and ours is shown in Fig. 6. Thanks to the predicted accurate depth,
BDE-MVSNet is able to reduce the tailing error in the final point cloud result.

Predicted depth

RGB

Stage 1

Stage 2

(a)

RGB

Predicted depth

Stage 1

Stage 2

(b)

RGB

Predicted depth

Stage 1

Stage 2

(c)

Fig. 8. Comparison between proposed
ADR strategy with linear strategy [11,10]
in 2 examples.

4.6 Runtime and Memory
Analysis

We measure the runtime and mem-
ory cost of depth estimation using
our method and several state-of-the-
art methods on a Tesla V100 GPU as
shown in Table 4. Our method achieves
an improved memory and runtime cost
compared to VisMVSNet [9], MVSNet
[7]. Also provides a better runtime-
memory trade-off compared to Cas-
MVSNet.

4.7 Ablation Study

We carry out ablation experiments
in order to evaluate the contribution
of our proposed ADR strategy and
SGNR loss. As shown in Table 5, ADR
is the main contributor for the ob-
served reduction in EPE, e1 and e3
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Table 5. Ablation study on the BlendedMVS validation set. The resolution of input
images is 640× 512.

ADR SGNR EPE ↓ e1 ↓ e3 ↓
- - 1.35 17.82 6.55
- ✓ 1.30 16.98 5.99
✓ - 1.09 15.63 5.61
✓ ✓ 1.06 15.14 5.13

values. When employing it together with the SGNR loss we achieve a further
improvement in depth accuracy.

We further compare the linear strategy employed by [11,10] to our proposed
ADR strategy. The Table 3 reports the EPE, e1 and e3 of our model, when
trained without updating the depth range between stages and when doing so ei-
ther with a linear strategy or with ADR. While the linear depth update improves
performance, ADR achieves better depth accuracy.

As shown in Fig.8. On the left, we show the RGB images and the corre-
sponding predicted depth maps. On the right, we show the probability details
of a pixel (red point in images) with depth intervals (pink). (a): For a point
with high probability, ADR and linear strategy both narrow the depth range
and predict accurate depth in the second stage. (b): For a point with medium
probability at the boundary edge, ADR keeps the depth interval large and pre-
dicts accurate depth. (c): For the same point with (b), linear strategy narrows
the depth interval and gets the wrong depth.

5 Conclusion

In this paper, we present BDE-MVSNet to boost depth estimation for multi-
view stereo. We propose a non-linear method for deriving per-pixel depth range
and a novel structure-guided normal ranking loss. Together these optimizations
yield more accurate depth prediction and 3D reconstruction. To the best of our
knowledge, our work is the first to directly tackle boundary prediction and can
be used to improve the performance of learning-based MVS methods. As a result,
our proposed BDE-MVSNet achieves state-of-the-art performance on multiple
datasets.
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