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Abstract. Existing thin cloud removal methods treat this image restora-
tion task as a point estimation problem, and produce a single cloud-free
image following a deterministic pipeline. In this paper, we propose a
novel thin cloud removal network via Conditional Variational Autoen-
coders (CVAE) to generate multiple reasonable cloud-free images for
each input cloud image. We analyze the image degradation process with
a probabilistic graphical model and design the network in an encoder-
decoder fashion. Since the diversity in sampling from the latent space, the
proposed method can avoid the shortcoming caused by the inaccuracy
of a single estimation. With the uncertainty analysis, we can generate a
more accurate clear image based on these multiple predictions. Further-
more, we create a new benchmark dataset with cloud and clear image
pairs from real-world scenes, overcoming the problem of poor generaliza-
tion performance caused by training on synthetic datasets. Quantitative
and qualitative experiments show that the proposed method significantly
outperforms state-of-the-art methods on real-world cloud images. The
source code and dataset are available at https://github.com/haidong-
Ding/Cloud-Removal.

1 Introduction

Remote sensing images often suffer from absorption and scattering effects caused
by thin clouds, resulting in degraded images. These low-quality images limit their
utilization on subsequent high-level computer vision tasks, e.g., object detection
[1,2,3] and segmentation [4,5,6]. Therefore, it is significant to develop an effective
method for single remote sensing image de-clouding.

Existing methods can generally be divided into two categories: prior-based
approaches and data-driven approaches. Prior-based cloud removal models [7,8,9]
are mainly built upon the atmospheric scattering model with various physical
assumptions imposed on image statistics. These prior-based methods are more
explanatory but can not perform well when the statistical prior does not hold in
real-world images.

To alleviate these limitations, data-driven methods adopt the deep learning
approach to train the network in supervised learning paradigm. Several methods
[10,11,12] directly learn how to generate clear images from their cloud counter-
parts in an end-to-end manner. Such algorithms are based on learning from
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large amounts of data and can produce decent results. However, the end-to-end
training fashion usually regards de-clouding as a black box problem, making it
poorly interpretable. To avoid this issue, other methods [13,14,15] combine the
imaging model with Convolutional Neural Networks (CNNs). They mainly fo-
cus on building a neural network to replace part of the physical model in the
conventional methods.

Although many excellent works have shown outstanding results, there are
still many difficulties and misconceptions about the thin cloud removal task.
Therefore, it is necessary to examine this problem in a broader context, two of
which are highlighted below.

1) The role of synthetic datasets. It is hard to obtain image pairs with and
without thin clouds in real-world scenes, so most algorithms [13,16,17] are trained
on synthetic datasets. The differences between the synthetic and the real-world
images make the network learn the law of data synthesis rather than the essence
of image degradation during the optimization process. In addition, the synthetic
dataset is based on the physical model of image degradation, so it is worth con-
sidering whether to rely on this physical model when designing the algorithm.
As a result, this type of method can show excellent performance on synthetic
data while performing poorly in real-world scenes. It demonstrates that the use
of synthetic datasets inhibits the generalization performance of the model to a
certain extent.

2) The diversity of solutions. A single cloud image loses some essential in-
formation of scene radiance, and recovering a completely clear image from it is
equivalent to using little information to recover the whole scene structure, which
makes this problem highly ill-posed. Therefore, this low-level computer vision
problem is inherently uncertain. The exact value of each pixel in the clear image
cannot be obtained by using only the degraded image without other auxiliary
information. To our best knowledge, none of the existing methods take this into
consideration. All of them established a one-to-one mapping from cloud image
to cloud-free image. Therefore, considering uncertainty has great potential to
improve the performance of cloud removal algorithms.

To address the aforementioned challenges, we propose a probabilistic model
via CVAE for remote sensing image thin cloud removal. Based on the above anal-
ysis of uncertainty, we tackle this problem from the perspective of multi-solution.
Each time the output from the proposed method is a sample of possible solu-
tions. Our method is not based on an explicit prior model to avoid the insufficient
understanding of the image degradation mechanism. Meanwhile, we do not use
synthetic datasets so that the underlying de-clouding principles can be learned
directly from real-world cloud images. The diverse output can ultimately en-
hance the generalization ability of the proposed thin cloud removal network.

Our contributions can be summarized as follows:

– Aiming at the uncertainty of thin cloud removal, we propose a probabilistic
model based on CVAE for remote sensing image de-clouding, which solves
this multi-solution problem from a probabilistic perspective. The network
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outputs multiple interpretable results, which fits the property of indefinite
solutions to the problem.

– We propose an encoder network based on Vision Transformer (ViT) and a
multi-scale feature fusion decoder network to achieve a one-to-many mapping
from cloud image to clear image.

– We create a new benchmark dataset for single image thin cloud removal.
The cloud and clear image pairs are from different moments of the same real
scene to overcome the low generalization performance of the model due to
training on synthetic datasets.

2 Related Work

2.1 Prior-Based Methods

Most conventional methods are based on the physical prior, estimate some im-
portant quantities (e.g., the transmission map) in the model, and then recover a
clear image from its cloud counterpart. Chavez [18] proposed an additive model
to describe the generation principle of cloud images under the assumption that
the distance between the sensor and the ground is fixed. He et al. [9] proposed a
dark channel prior based on statistical laws, showing that the pixel value of one
or more color channels tends to zero in the non-sky area of the image, which is
used to estimate the transmission map. Fattal et al. [19] proposed a color-lines
prior to estimate the transmission map based on the distribution of images in
the RGB color space. Berman et al. [20] assumed that the color of a clear image
can be approximated by hundreds of distinct colors, and proposed a dehazing
algorithm based on this novel non-local prior. Xu et al. [21] proposed a method
based on signal transmission and airspace hybrid analysis, combined with atmo-
spheric scattering theory to remove clouds.

These prior knowledge-based methods show superior statistical properties in
specific scenarios but fail easily in real-world images where physical assumptions
do not hold.

2.2 Data-Driven Methods

In recent years, thanks to the establishment of large-scale datasets and the devel-
opment of deep learning techniques, many data-driven supervised cloud removal
methods have been proposed to overcome the shortcomings of traditional meth-
ods. Mao et al. [22] proposed a deep encoder-decoder framework and added skip
connections to improve the efficiency of image restoration. Praveer Singh et al.
[23] proposed an adversarial training-based network named Cloud-GAN to di-
rectly learn the mapping relationship between cloud and clear images. Qin et
al. [16] proposed a multi-scale deblurring convolutional neural network with the
residual structure to remove the thin cloud. Li et al. [11] designed an end-to-end
residual symmetric connection network for thin cloud removal. Xu et al. [10]
introduced a generative adversarial network based on the attention mechanism
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to guide the network to invest more efforts in denser cloud regions.
Inspired by traditional methods, some researchers combine deep learning

technology with imaging physical models. Cai et al. [14] showed that medium
transmission estimation can be reformulated as a learnable end-to-end system.
Ren et al. [24] used deep learning to learn the transmission map and solve at-
mospheric scattering model. Zheng et al. [17] combined the existing atmospheric
scattering model with UNet to remove thin clouds. According to the additive
model of cloud images, Zi et al. [13] utilized deep neural networks combined
with the imaging model to achieve thin cloud removal.

Although these data-driven methods have made immense progress in thin
cloud removal performance, all of them achieve a one-to-one mapping with re-
spect to the input. They only found a reasonable one out of all the solutions
to this multi-solution problem. Unlike existing methods, we treat single image
cloud removal as an indeterminate solution problem. We combine cloud removal
with uncertainty analysis to better solve this ill-posed problem.

3 Uncertainty Cloud Removal Framework

3.1 Analysis of Image Degradation Process

Several researchers [18,25,26] have proposed that the satellite image degradation
process can be described as an additive model (1):

S = G+ C . (1)

or a non-linear model (2):

S = (1− C) ·G+ C . (2)

where S, G, and C represent cloud images acquired by satellite sensors, clear
ground scene images, and thin cloud thickness maps, respectively.

However, designing a network based on the explicit model raises two ques-
tions: whether the model fully conforms to the degradation process and whether
the unknown variables can be estimated accurately. Both of these factors can
affect the outcome of recovery and even lead to failure.

To tackle these problems, firstly, we do not rely on the atmosphere scat-
tering model of satellite images. We note that these model-based algorithms
have a common idea: estimate the unknown variables from the observed images
and then combine the imaging model to restore clear images. In our method,
we redefine the unobservable variables as degeneration factors, which results in
low-quality images. The image degradation system is determined by the cloud
image, clear image, and degradation factors. Instead of giving the relationship
between these three variables, we leverage the powerful representation ability of
the neural network to express implicitly.

We analyze image degradation employing a probabilistic graphical model, as
shown in Figure 1. The observable variable X is the cloud image obtained by
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Fig. 1. The probabilistic graphical model for the degradation process of cloud images.
The solid black line represents the generative model, and the dashed black line repre-
sents the variational approximation. θ and ϕ are the parameters of the model.

the satellite sensor, which can be decomposed into degeneration factors W and
ground scene information Y . The ground scene Y is more complex and change-
able, which results in describing its generation mechanism with a probability
graph model is a challenging task. So it is more feasible to infer degeneration
factors W from cloud images.

Since the essential intrinsic relationship between these three variables is un-
known, variable W cannot be obtained explicitly. To get this crucial variable, we
assume that the latent variable z determines its generation. Because the cloud
image contains the information of degeneration factors, we estimate z through
X and then generate W from a sampling of z.

Due to the diversity of the sampling process, multiple estimations can be
generated. This diversity mitigates the problems caused by inaccurate estima-
tions and makes the algorithm more robust.

The overall model framework is based on the CVAE, the inference network
estimates the variational distribution, and the generative network achieves final
cloud-free results.

The variational lower bound of the model is as follows (detailed derivation
is available in supplementary material):

log pθ(Y |X) = −DKL(qϕ(z|X)||pθ(z|X)) + Eqϕ(z|X)[log pθ(Y |X, z)] . (3)

where the proposal distribution qϕ(z|X) is introduced to approximate the pos-
terior pθ(z|X); the latent variable z drawn from qϕ(z|X). θ and ϕ represent the
parameter set of distribution. Our CVAE framework is composed of a encoder
network qϕ(z|X) and a generative encoder network pθ(Y |X, z). The Kullback-
Leibler (KL) Divergence DKL(qϕ(z|X)||pθ(z|X)) work as a regularization loss
to narrow the gap between the posterior pθ(z|X) and the proposal distribution
qϕ(z|X). To simplify the network and reduce computation, we assume that the
posterior follows the standard normal distribution N (0, I).
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Fig. 2. An overview of the proposed cloud removal network. (1) The encoder network
based on ViT learns the distribution of degradation factors W from cloud image X. (2)
The decoder samples in the latent space with the reparameterization trick. Then the
generative module utilizes the sampled signal to yield the image manifold of W . (3)
Then, the combination of X and W is fed into the decoder network, which consists of
five convolutional blocks of different scales. Each block contains convolution operation,
channel attention, and deconvolution operation.

3.2 Transformer-Based Encoder

The encoder works as the recognition model to infer the proposal distribution
qϕ(z|X). To allow the network can be trained using the gradient descent algo-
rithm, z is drawn with the reparameterization trick, which is written as (4):

z = µ+ σ · ε . (4)

where ε ∼ N (0, I). This trick allows error backpropagation through the Gaus-
sian latent variables, which is essential in the training process.

In designing the network architecture, we exploit the self-attention mecha-
nism to learn the mapping between degeneration factors and standard normal
distribution. Different from the original ViT [27], we design a more lightweight
model, reducing the number of stacked layers of the transformer encoder, the
embedding dimension, and the number of heads of the multi-head attention
mechanism. Let D = {Xi, Y

ref
i }Ni=1 be the training dataset, where Xi denotes

the cloud image, Y ref
i denotes the corresponding cloud-free image. The goal of

the encoder network is as follows:

ϕ∗ = argmin
ϕ

DKL(q(z|X;ϕ)||p(z|X; θ)) . (5)

The whole pipeline of the encoder network during training and testing is
illustrated in Figure 2.
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Cloud Image(PSNR/SSIM) RSC-Net(21.56/0.8204) MCRN(28.47/0.8907) Ours-1(28.87/0.9511) Ours-2(29.00/0.9518) Clear Image(+∞/1)

Fig. 3. Results of the proposed algorithm. Our method can achieve a one-to-many
mapping.

3.3 Multi-Scale Prediction Decoder

With the latent variables z obtained by the inference network and the original
input cloud image, we develop a decoder network to reconstruct the cloud-free
image. In the decoder, the variable z is first passed through a generative module
pθ(W |z) (See Figure 2), which contains a MLP with two hidden layers and
generates the image manifold of degeneration factors Wi. The latent variables
z allow for modeling multiple modes, making the decoder network suitable for
modeling one-to-many mapping. As shown in Figure 3, the clear images recovered
from different sampling results are different in PSNR and SSIM scores.

We downsample the input cloud image X to the same size as Wi. After
that, we concatenate these two variables and feed them to the first layer of
the decoder network. The decoder network consists of five convolutional layers.
Each layer focuses on extracting features and learning the underlying principles
of de-clouding at different scales. The input to each layer is composed of the
original cloud image as conditional variable and feature maps from the previous
layer. We utilize the channel attention mechanism [28] to invest more learning
attention on valuable matters.

The decoder network combines the latent variables zi obtained by a single
sampling and the original cloud image to produce a clear image. It can be written
with the formula as Yi = fD(X, zi), where fD(·) is the decoder network. We
sample multiple variables zi to produce multiple clear images corresponding to
the original cloud image. We take the expectation of these multiple clear images
as the final clear image. This procedure can be written as:

Y =
1

M

M∑
i=1

Yi . (6)

where we set M = 10 and the goal is to maximize the posterior probability:

θ∗ = argmax
θ

log pθ(Y |X, z) . (7)

3.4 Loss Function

The loss of the overall CVAE framework consists of two parts: the inference
network and the decoder network. Combining (5) and (7), it can be formulated
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as follow:

LCV AE = DKL(qϕ(z|X)||pθ(z|X)) +
1

M

M∑
m=1

− log pθ(Y |X, z(m)) . (8)

where M is the number of samples. The first term in the loss function is the KL
divergence. We assume that qϕ(z|X) obeys a normal distribution with parame-
ters µ, σ2I, and pθ(z|X) obeys the standard normal distribution, then this loss
can directly calculate the closed-form solution:

DKL(q(z|X;ϕ)||p(z|X; θ)) =
1

2
(tr(σ2I) + µTµ− d− log(

∣∣σ2I
∣∣)) . (9)

where the tr(·), | · | represent the trace and determinant of the matrix, respec-
tively, d is the dimensions of the distribution.

The second term is the reconstruction loss. In supervised training, the de-
clouding performance can be quantified by counting the differences between the
encoder network output Y with its corresponding reference clear image Y ref un-
der some proper loss L, e.g. the L1 norm and Mean Square Error (MSE). In our
method, we choose SmoothL1Loss as the criterion to optimize the parameters
and the reconstruction loss can be expressed as:

Lrec =
1

CP

C∑
c=1

P∑
p=1

Fs((Yc(p)− Y ref
c (p));β) . (10)

where

Fs(e;β) =

{
0.5e2/β if |e| < β,
|e| − β/2 otherwise.

(11)

C represents the channel number and P denotes the total number of pixels.
In addition, to guide the network to focus on details, we introduce an edge

loss function to preserve the edges of the output image. The edge loss is defined
as:

Ledge =
∥∥∇2Y −∇2Y ref

∥∥ . (12)

where ∇2 is the Laplace operator for image edge detection.
Based on the above consideration, the total loss function for the proposed

CVAE cloud removal network is as follows:

L = λ1DKL + λ2Lrec + λ3Ledge . (13)

where λ1, λ2, and λ3 represent the weight parameters.

4 Experiments

To demonstrate the superiority of the proposed algorithm, we compare it with
several state-of-the-art methods including the prior-based method (DCP [9]),
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the data-driven methods (RSC-Net [11], SPA-GAN [29], MSAR-DefogNet [12],
PCFAN [30], Pix2Pix [31]), and the methods combining deep learning with phys-
ical models (MCRN [32], Qin et al. [16], Zheng et al. [17]). For fair comparisons,
we train these networks on the same dataset with the same learning rate and
the number of training epochs. We use full-reference image quality evaluation
metrics PSNR and SSIM [33] and no-reference evaluation metrics NIQE [34] and
BRISQUE [35] for quantitative evaluation.

4.1 Dataset

To overcome the limitation of synthetic datasets for thin cloud removal, we
collect a real scene image dataset called T-CLOUD. Both training and test sets
are from Landsat 8 RGB images. Our dataset contains 2939 doublets of cloud
images and their clear counterpart separated by one satellite re-entry period (16
days). We select the image pairs which has similar lighting conditions and crop
them into 256 x 256 patches. We split the dataset with a ratio of 8:2, with 2351
images in the training set and 588 images in the test set.

There are three main characteristics in the proposed dataset: (1) T-CLOUD
is a large-scale natural benchmark for remote sensing image thin cloud removal
while the previous datasets are only composed of synthetic data; (2) T-CLOUD
includes many different ground scenarios such as cities, mountains, and coasts;
(3) The proposed dataset is much more challenging because the cloud is non-
homogeneous and the texture details of the image are more complex.

Note that these cloud and cloud-free image pairs are captured by the same
satellite sensor at different times, the illumination noises are unavoidable due
to the change of ambient light. Although we try to select images with the same
lighting conditions as possible, achieving outstanding results on this dataset is
still a challenging task.

4.2 Implementation Details

The proposed algorithm is implemented with the PyTorch framework. The hard-
ware facilities of the computing platform include an Intel Gold 6252 CPU and
an NVIDIA A100 GPU. To optimize the proposed network, we use the Adam
optimizer [36] with parameters β1 = 0.5, β2 = 0.999. The batch size and training
epochs are set to 1 and 300, respectively. The initial learning rate is set to 0.0001,
which decreases by 10 times after training for half the number of epochs. We set
the size of the interference factor image manifold to 16 x 16. The values of the
parameters λ1, λ2, and λ3 are empirically set to 0.01, 1.0 and 0.18, respectively.

4.3 Results on Real Dataset

Table 1 shows the quantitative results in terms of PSNR, SSIM, NIQE, and
BRISQUE on our dataset. It can be seen that our method achieves the best
performance on both the full-reference metrics PSNR and SSIM. Also in the
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Table 1. Quantitative Evaluations on the real-world dataset. Where red text and
blue text indicate the best and second-best performance, respectively. ↑: The larger
the better. ↓: The smaller the better.

Method PSNR↑ SSIM↑ NIQE↓ BRISQUE↓

DCP 19.94 0.6646 3.300 53.60
Qin et al. 26.35 0.8035 3.306 47.39
RSC-Net 23.98 0.7596 3.407 50.24
SPA-GAN 15.36 0.5280 2.860 56.90

Zheng et al. 23.71 0.7630 2.969 51.01
MSAR-DefogNet 28.84 0.8432 2.786 51.07

PCFAN 28.27 0.8342 2.800 50.69
MCRN 26.60 0.8091 2.888 50.73
Pix2Pix 28.77 0.8476 2.677 50.77

Ours 30.14 0.8600 2.762 49.61

(a)   Cloud Image (b)   DCP (c)   Qin et al. (d)   RSC-Net (e)   SPA-GAN (f)   Zheng et al.

(g)   MSAR-DefogNet (h)   PCFAN (i)   MCRN (j)   Pix2Pix (k)   Ours (l)   Clear Image

Fig. 4. Thin cloud removal results of the real-world cloud image. Zoom in for a better
view. More examples can be found in supplementary material.

no-reference metrics, excellent results have been achieved.
For evaluating the visual effect of each method, we compare the qualitative

results (see Figure 4). It can be observed that DCP tends to over-enhance the
cloud image and is unable to remove the dense cloud. The CNN-based methods
achieve competitive results, however, some of them are still poor in visual quality.
For example, restoration results of Qin et al. and RSC-Net miss a lot of detailed
information. SPA-GAN fails to remove the cloud. The method of Zheng et al.
has some obvious grid artifacts. The de-clouding results by MSAR-DefogNet,
PCFAN, MCRN, and Pix2Pix have different degrees of color distortion in the
sea area (Figure 4(g)∼4(j)). The reason for these low-quality results may be
their methods are mostly designed based on the principle of synthetic images
so that the underlying cloud removal laws cannot be well learned on real-world
cloud images. In contrast, the result of our method shown in Figure 4(k) has
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(a) Cloud Image
(PSNR/SSIM)

(d) RSC-Net
(21.56/0.6689)

(e) SPA-GAN
(18.88/0.4146)

(f) Zheng et al.
(22.65/0.7502)

(g) MSAR-DefogNet
(21.45/0.7759)

(h) PCFAN
(18.78/0.7051)

(i) MCRN
(22.25/0.7992)

(j) Pix2Pix
(22.69/0.8156)

(k) Ours
(28.04/0.8793)

(l) Clear Image
(+∞/1)

(b) DCP
(14.15/0.4595)

(c) Qin et al.
(19.99/0.6123)

Fig. 5. Thin cloud removal results of the hard examples. Zoom in for a better view.

high color fidelity and is more effective in texture detail preservation.

4.4 Results on Hard Examples

One of the most distinctive characteristics of clouds is that they are heteroge-
neous. We further select some images with thick clouds and evaluate our method
on this non-homogeneous dataset. The uneven cloud images are very common
in remote sensing images. Therefore, comparing the performance of different
methods on these challenging data can verify their effectiveness in practical ap-
plications.

The visual results are illustrated in Figure 6. The result produced by RSC-
Net suffers from severe color distortion. The GAN-based method SPA-GAN fails
to keep the semantic information consistent. Zheng et al., MSAR-DefogNet, PC-
FAN, MCRN, and Pix2Pix yield unnatural results with varying degrees of color
distortion. Recovering details under thick clouds is highly uncertain due to the
heavy loss of scenario information. Our method keeps the semantic informa-
tion as consistent as possible through probability estimation. It can be observed
that our algorithm can effectively mitigate color distortion compared to other
methods. The quantitative results also demonstrate that our method has over-
whelming advantages. It is much higher than other methods in terms of PSNR
and SSIM. Our PSNR is higher than the Pix2Pix with 5.35dB showing that the
CVAE framework is more robust in such scenarios.
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Table 2. Quantitative Evaluations on the clear images.

DCP Qin RSC- SPA- Zheng MSAR- PCFAN MCRN Pix2- Ourset al. Net GAN et al. DefogNet Pix

PSNR↑ 21.46 22.87 25.99 15.77 28.21 27.78 25.43 26.14 28.01 28.76
SSIM↑ 0.8585 0.7018 0.9079 0.6237 0.9268 0.9174 0.8948 0.8999 0.9224 0.9448

(a)   Clear Image

(c)   DCP (d)   Qin et al. (e)   RSC-Net (f)   SPA-GAN

(g)   Zheng et al. (h)   MSAR-DefogNet (i)   PCFAN (j)   MCRN (k)   Pix2Pix

(b)   Ours

Fig. 6. The visual comparison of image fidelity on the clear image. Zoom in for a
better view.

4.5 Results on Clear Dataset

To further verify the fidelity of our algorithm, we additionally compare the results
of various de-clouding methods on a clear image dataset. The visual comparisons
are shown in Figure 5. It can be observed that several methods (DCP, Qin et
al., MSAR-DefogNet, PCFAN) tend to over-darken or over-enhance the clear
image and are inconsistent in the color space. The checkerboard artifacts can
be observed in Zheng et al. and SPA-GAN changes the original scene radiance
information. Our result does not produce color distortion and is very close to
the original clear image, which is necessary for practical applications because
not all image patches obtained by satellite sensors are occluded by clouds. Table
2 shows the quantitative results. The PSNR and SSIM values also indicate that
our algorithm surpasses other methods in terms of image fidelity.

5 Ablation Study

To further demonstrate the effectiveness of the proposed algorithm, we conduct
ablation experiments to verify whether the network structure is effective. The
ablation experiments are divided into the following parts: 1) the structure of the
encoder network; and 2) the choice of the reconstruction loss function.
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Table 3. Ablation studies on the structure of encoder network.

Encoder-Network PSNR↑ SSIM↑ Size(Mb)

ResNet34 28.42 0.8512 111.95
VGG-19 28.37 0.8495 567.71
ViT-Base 28.44 0.8501 244.31
ViT-Large 28.56 0.8518 798.11

ViT-Small(Ours) 30.14 0.8600 58.86

5.1 Evaluations on The Encoder Network

In our method, the encoder network is used to infer the distribution of degenera-
tion factors. First, we conducted ablations on the structures of encoder architec-
ture. The configurations of variant models including: 1) VGG-19; 2) ResNet34; 3)
ViT-base; 4) ViT-Large; 5) a ViT variant model proposed by us: ViT-Small. The
original ViT stacks multiple layers of transformer encoders and embeds the input
image patches into a high-dimensional vector space, which makes its parameters
very large. To make the network more lightweight, we design the ViT-Small,
which simplifies the original transformer structure. We reduce the stacking lay-
ers of the encoder from 12 (ViT-Base) or 24 (ViT-Large) to 4, the embedding
dimension of the image patches from 768 (ViT-Base) or 1024 (ViT-Large) to
512, and set the number of heads of the multi-head attention mechanism to 8.

The quantitative results are shown in Table 3. The CNN-based architec-
tures achieve similar performance. However, they are worse than the three ViT
structures, which indicates that the self-attention mechanism of ViT can better
learn the distribution of degeneration factors in the latent space. Meanwhile, we
also noticed that the parameter amount of ViT-Small is much lower than the
other four structures. The lightweight ViT not only did not weaken the powerful
representation ability but also made the model better. This indicates that this
lightweight variant of vision transformer in the inference network is effective.

5.2 Evaluations on The Reconstruction Loss Function

We also explore the influence of different reconstruction loss functions in the op-
timization process. The reconstruction loss directly measures the quality of the
cloud removal effect. Therefore, choosing a good measurement criterion plays a
crucial role in the training process.

We compare the impact of MSE and SmoothL1 (beta=0.5) loss function
and verify the boosting effect of the edge loss. For a quick comparative exper-
iment, the models with different loss functions are trained for 150 epochs. The
experimental results are shown in Figure 7. It can be seen that the SmoothL1
loss function achieves better optimization results in PSNR and SSIM during the
training process. The SSIM shows that the optimization results are significantly
improved after adding the edge loss, which demonstrates the edge loss can pro-
mote the optimization of the network.
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Table 4. Ablation studies on the reconstruction loss function.

SmoothL1 MSE Edge Loss PSNR↑ SSIM↑

1 - ✓ - 27.14 0.8293
2 ✓ - - 27.57 0.8302
3 - ✓ ✓ 27.70 0.8417
4 ✓ - ✓ 27.83 0.8421
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Fig. 7. Graph of PSNR and SSIM with different objective function during training
process.

We also tested the generalization performance to verify that achieving su-
perior performance on the training set is not due to overfitting. It can be seen
from Table 4 that the model trained with SmoothL1 joint edge loss on the test
set also has better PSNR and SSIM scores. At the same time, the higher SSIM
shows that the edge loss can make the model pay more attention to the detailed
textures.

6 Conclusion

In this paper, we propose a thin cloud removal network based on CVAE and
tackle single image de-clouding from the perspective of uncertainty analysis. The
novelty of the proposed algorithm is that it can achieve one-to-many mapping,
and can generate multiple clear and reasonable images corresponding to a single
cloud image. Moreover, we construct a large-scale dataset from the real world
to overcome the shortcomings of synthetic datasets that cannot fully represent
real scenes. Both quantitative and qualitative experimental results show the su-
periority of our proposed method and demonstrate that considering uncertainty
has great potential to improve the thin cloud removal algorithm.
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