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Abstract. Hashing methods often face critical efficiency challenges, such
as generalization with limited labeled data, and robustness issues (such
as changes in the data distribution and missing information in the input
data) in real-world retrieval applications. However, it is non-trivial to
learn a hash function in existing supervised hashing methods with both
acceptable efficiency and robustness. In this paper, we explore a uni-
fied generative hashing model based on an explicit energy-based model
(EBM) that exhibits a better generalization with limited labeled data,
and better robustness against distributional changes and missing data.
Unlike the previous implicit generative adversarial network (GAN) based
hashing approaches, which suffer from several practical difficulties since
they simultaneously train two networks (the generator and the discrim-
inator), our approach only trains one single generative network with
multiple objectives. Specifically, the proposed generative hashing model
is a bottom-up multipurpose network that simultaneously represents the
images from multiple perspectives, including explicit probability density,
binary hash code, and category. Our model is easier to train than GAN-
based approaches as it is based on finding the maximum likelihood of the
density function. The proposed model also exhibits significant robustness
toward out-of-distribution query data and is able to overcome missing
data in both the training and testing phase with minimal retrieval perfor-
mance degradation. Extensive experiments on several real-world datasets
demonstrate superior results in which the proposed model achieves up
to 5% improvement over the current state-of-the-art supervised hashing
methods and exhibits a significant performance boost and robustness in
both out-of-distribution retrieval and missing data scenarios.

Keywords: image hashing, generative energy-based models, retrieval

1 Introduction

Searching for similar items (such as images) is an important yet challenging
problem in this digital world. Accurate retrieval within a constrained response
time is crucial, especially in large databases with several millions of images. This
motivates the need for approximate nearest-neighbor (ANN) methods instead of
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using an intractable linear scan of all the images for such massive datasets.
Hashing is a widely used ANN method with a principled retrieval approach for
web-scale databases. In hashing, high-dimensional data points are projected onto
a much smaller locality-preserving binary space. Searching for similar images
is reduced to searching for similar discrete vectors in this binary space using
computationally-efficient Hamming distance [1]. Searching for an item in the
binary space is extremely fast because each Hamming distance calculation (e.g.,
for 64-bit vectors) only needs 2 CPU instructions in most modern hardware.
Furthermore, the compact binary codes are storage-efficient, thus the entire index
of items can be kept in fast-access memory; for example, a million 64-bit vectors
only occupy approximately 8 megabytes. This paper focuses on the learning-to-
hash methods that “learn” hash functions for efficient image retrieval.

The mapping between the original image x and the k-bit discrete vectors
is expressed through a hash function f : x → {−1, 1}k. Learning and deploy-
ing such a hash function in real-world applications face many challenges. First,
the hash function should capture the similarity relationship between images in
the binary space, for example, represented in the annotated similarity between
items. However, with a massive amount of data, the annotated similarity is
scarce. This leads to a poor generalization in methods that exclusively rely on
such annotated information. Furthermore, real-world data contains amendable
missing information (e.g., a part of an image is corrupted during lossy compres-
sion or transmission between systems) and gradually changes over time (i.e., the
underlying data distribution changes). A hash function that is not robust to such
scenarios is not suitable for real-world applications because its expected retrieval
performance will quickly degrade.

Several learning-to-hash methods, especially the supervised ones, have been
proposed for efficient ANN search [2,3,4,5,6,7,8,9,10,11]. However, subject to
the scarcity of similarity information, these methods run into problems such as
overfitting and train/test distribution mismatch, resulting in a significant loss in
retrieval performance. Recently, some methods employ generative models, specif-
ically generative adversarial networks (GAN), to synthesize additional training
data for improving the generalization of the learned hash functions. Neverthe-
less, these GAN-based methods do not take full advantage of generative models
beyond synthetically generating the data. The main reason is that GAN is an
implicit generative model that does not directly estimate the density function of
the data. On the other hand, explicit generative models, specifically energy-based
models (EBMs), can synthesize images and recover the missing information in
those images through the inference of the EBMs. For example, when the EBM
explicitly models the density of the data p(x), we can recover the missing in-
formation in a data point x by revising x through the MCMC inference of the
EBM to find the most probable version of x in the data distribution, thus effec-
tively recovering x. Such ability of explicit generative models is extremely useful
for real-world retrieval applications, especially when data loss or corruption can
happen at any stage during the data collection or transmission process in these
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applications. By recovering the corrupted data, we hope to preserve much of the
retrieval performance of the model.

In this paper, we propose a unified energy-based generative hashing frame-
work (GenHash) that simultaneously learns the representation of the images
and the hash function. Our hashing network consists of a shared representation
network. This network learns shared representation of the images that are useful
to solve multiple objectives. Each objective is modeled as a lightweight head (a
multi-layer perceptron) on top of the shared network and solves a specific task.
The tasks include: 1) an explicit joint probability density estimation of an im-
age and its semantic labels (energy head), 2) a contrastive hash-function learning
(hash head) and 3) semantic label prediction (classification head). Consequently,
this multipurpose network simultaneously learns to represent the images from
multiple perspectives and allows the training process to develop a shared set of
features as opposed to developing them redundantly in separate networks such as
the GAN-based methods. Finally, since our model only trains the EBM for data
synthesis, it requires fewer model parameters than approaches that use multiple
networks (e.g., a generator and discriminator in GAN-based approaches). The
main contributions of our paper are summarized below:

– We propose a unified generative, supervised learning-to-hash framework that
takes complete advantage of generative energy-based models and enjoys better
generalization and robustness towards missing data and-out-of distribution
retrieval. The core component of this unified framework is the multi-headed
or multipurpose hashing network, which combines density estimation (i.e.,
MCMC teaching process) and hash coding (i.e., contrastive loss).

– We propose a simple yet efficient training procedure to train the multipurpose
hashing network. Specifically, we propagate the MCMC chains during training
with two persistent contrastive divergence (PCD) buffers. One PCD buffer
“explores” different modes of the model during training while the other PCD
buffer is responsible for “exploiting” the learned modes to assist the contrastive
hash function learning. The two PCD buffers jointly improve the efficiency of
the MCMC teaching, thus allowing the training process to converge faster in
practice.

– We demonstrate the advantages of our model over several state-of-the-art
hashing techniques through an extensive set of experiments on various bench-
mark retrieval datasets.

The rest of the paper is organized as follows. We discuss the related work
in Section 2. In Section 3, we describe the details of the proposed generative
hashing network. We present quantitative and qualitative experimental results
in Section 4 and conclude our discussion in Section 5.

2 Related Works

In this section, we review the previous research works related to two topics,
namely, image hashing and energy-based generative models.
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2.1 Image Hashing

Learning to hash, and especially image hashing, has been heavily investigated
in both theory and practice. The existing image hashing methods can be or-
ganized into two categories: shallow hashing and deep hashing. Shallow hash-
ing methods learn linear hash functions and rely on carefully-constructed dis-
criminative features that are extracted from any hand-crafted feature extrac-
tion techniques or any representation-learning algorithms. On the other hand,
the deep hashing methods combine the feature representation learning phase
and the hashing phase into an end-to-end model and have demonstrated sig-
nificant performance improvements over the hand-crafted feature-based hashing
approaches [8,7,6,5,12,13,14,15,16].

Hashing methods can also be divided into unsupervised [2,17,18,8,19] and
supervised hashing [20,21,22,23,4,24,25,26,27]. The works in [2,28] regress from
the hash code of an image to its semantic label. Li et al. [14,15] predict the class
label of an image given its hash code. On the other hand, the works in [3,8]
preserve the consistency between the hash codes approximated from the sim-
ilarity matrix and the hash codes approximated from the deep networks. A
pairwise similarity objective or triplet ranking objective can also be formulated
by randomly drawing the similar and dissimilar examples of an image from the
dataset [7,6]. Our work, GenHash, also models the relationship between the
hash code of an image and its semantic label. However, GenHash ensures that
the hash codes of the synthetic samples are also consistent with their sampled
labels. Furthermore, different from the previous triplet-ranking-based hashing
methods, the contrastive samples (similar and dissimilar images) in our triplet-
ranking objective (in Section 3) are synthetic (i.e., generated from a generative
model) instead of being drawn from the same empirical datasets. The primary
reason is to improve the generalization of the learned hash function. GenHash
is also orthogonal to OrthoHash [29] and the works in [30,9,10], all of which focus
on improving the quantization aspect of learning the hash function.

Generative Supervised Hashing: Supervised methods can easily overfit with
limited labeled data. Some methods overcome such a limitation by synthesiz-
ing additional training data to improve the generalization of the hash func-
tions [31,32]. These methods employ the popular Generative Adversarial Net-
work (GAN) to synthesize the contrastive images. The use of generative models
in hashing is currently limited to only data synthesis. Yet, generative models
can benefit other downstream problems such as data imputation and out-of-
distribution robustness. Our work belongs to the deep, supervised hashing cate-
gory and we aim to jointly learn an energy-based generative model and the hash
function in an end-to-end manner. Borrowing the strengths of EBM, we improve
the retrieval performance over the GAN-based approaches and significantly im-
prove the robustness of the hash function in terms of handling missing data and
out-of-distribution retrieval.

3963



Unified Energy-based Generative Hashing Network 5

2.2 Energy-based Generative Models

The works in [33,34] propose a powerful generative model, called generative co-
operative network (CoopNets), which can generate realistic image and video
patterns. The CoopNets framework jointly trains an energy-based model (i.e.,
descriptor network) and a latent variable model (i.e., generator network) via a
cooperative learning scheme, where the bottom-up descriptor network is trained
by MCMC-based maximum likelihood estimation [35], while the top-down gen-
erator learns from the descriptor and serves as a fast initializer for the MCMC
of the descriptor. While the CoopNets framework avoids mode collapse and the
bottom-up descriptor is a valid model for both representation and generation,
it still employs two separate networks that must be carefully designed together
to ensure the model converges to a good local minima [33]. This problem also
exists in GANs.

Du et al. [36] propose a scalable single-network EBM for the image generation
task. The EBM can generate a realistic image and exhibits attractive properties
of EBM such as out-of-distribution and adversarial robustness. Grathwohl et
al. [37] reinterpreted the discriminative classification task, which estimate the
conditional probability p(x|y), with an energy-based model for the joint prob-
ability p(x, y). To estimate the intractable partition function, the authors use
MCMC sampling through the Langevin dynamics. Specifically, they build upon
the persistent contrastive divergence (PCD) [38] and maintain a replay buffer
to propagate the MCMC chains during training. This allows shorter mixing
times than initialization of the chains from random noise, while occasionally re-
initializing samples from random noise in the buffer allows the training process
to explore different modes of the model. Our paper studies generative hashing
based on the framework of a single EBM with multipurpose objectives. However,
as we shall see later, the current PCD training procedure of existing EBM works
does not work well for contrastive hash function learning where the loss function
involves data synthesis of similar and dissimilar examples. Instead, we propose
to train the EBMs by mixing between an exploration buffer and an exploitation
buffer.

3 Multipurpose Generative Hashing Network

The proposed Multipurpose Generative Hashing Network consists of a shared
representation network and multiple lightweight heads. They are jointly trained
by an MCMC-based learning algorithm, as described in Figure 1.

3.1 Problem Statement

Given a dataset X = {x1, x2, ..., xn} of n images, the goal of a hashing method
is to learn a discrete-output, nonlinear mapping function H : x −→ {−1, 1}K ,
which encodes each image x into a K-bit binary vector such that the similarity
structure between the images is preserved in the discrete space. In the supervised
hashing setting, each example xi ∈ X is associated with a label ci. Note that
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Fig. 1: GenHash is a multipurpose hashing network (light blue block) that
describes the images in multiple ways, including an explicit density model
p(x|c), a discriminative model p(c|x), and a hashing model, all of which share
a base bottom-up representational network. The multipurpose hashing network
is trained by a loss including negative maximum likelihood, triplet-ranking loss,
and classification loss. To compute the triplet-ranking loss, GenHash relies on
the Contrastive Pair Generation process (light yellow block) that takes a label
c+ as input and synthesizes (i.e., samples from the replay buffer B2) a contrastive
image pair {x̂+, x̂−} from the same class c+ and a different class c−.

this is a point-wise label of an image. Another common supervised scenario has
the pairwise similarity label for each pair of images. However, for most image
applications, pair-wise labeling is significantly labor-intensive because a dataset
of n images requires n2 pairwise labelings.

3.2 Multipurpose Energy-based Model

The multipurpose EBM aims at representing the images from different perspec-
tives. We propose to parameterize this network by a multi-headed bottom-up
neural network, where each branch accounts for one different representation of
the image. The proposed network assembles three types of representational mod-
els of data in a single network in the sense that all models share a base network
but have separate lightweight heads built on top of the base network for dif-
ferent representational purposes. Let f0(x; θ0) be the shared base network with
parameters θ0. Next, we will describe the purpose of each head in more detail.

Conditional Energy head: The energy head hE along with the base network
f0 specifies an energy function fE(x, c;ΘE), where observed image-label pairs
(which come from the real data distribution) are assigned lower energy values
than unobserved ones. For notational simplicity, let the parameters be ΘE =
(θ0, θE) and the energy function be fE(x, c;ΘE) = hE(c, f0(x, θ0); θE). With the
energy function fE , the energy head explicitly defines a probability distribution
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of x given its label c in the form of an energy-based model as follows:

p(x|c;ΘE) =
p(x, c;ΘE)∫
p(x, c;ΘE)dx

=
exp[−fE(x, c;ΘE)]

Z(c;ΘE)
, (1)

where Z(c;ΘE) =
∫
exp[−fE(x, c;ΘE)]dx is the intractable normalizing con-

stant. Eq. (1) is also called generative modeling of neural network fE [35]. Specif-
ically, fixing the label c, fE(x, c;ΘE) defines the value of the compatible solution
x and −fE(x, c;ΘE) defines the conditional energy function. Note that, for each
value c, there are many compatible solutions x, i.e., there are several x’s with
similar, low conditional energies.

The training of θE in this context can be achieved by maximum likelihood
estimation, which will lead to the “analysis by synthesis” algorithm [39]. Given
a set of training images with labels {(ci, xi)}ni=1, we train ΘE by minimizing the
negative log-likelihood (NLL):

LE(ΘE) = − 1

n

n∑
i=1

log p(xi|ci;ΘE), (2)

The gradient of the above loss function is given by

1

n

n∑
i=1

{
Ep(x|ci;ΘE)

[
∂fE(x, ci;ΘE)

∂ΘE

]
− ∂fE(xi, ci;ΘE)

∂ΘE

}
, (3)

where the Ep(x|ci;ΘE) denotes the intractable expectation with respect to p(x|ci;ΘE).
Following the works in [36,37], we use persistent contrastive divergence (PCD) [38]

to estimate the intractable expectation since it only requires short-run MCMC
chains. This gives an order of magnitude savings in computation compared to
initializing new chains with a long mixing time at each iteration. Intuitively,
the PCD supplies the learning process with initial solutions from a replay buffer
of past generated samples. The learning process then refines these solutions at
high-value region around a mode of the objective function. The model’s param-
eters are then updated so that the objective function shifts its high-value region
around the mode towards the observed solution. In the next iteration, the refined
solution will (hopefully) get closer to the observed solution.

The MCMC sampling strategy with the replay buffer can be summarized
in two steps: (i) the algorithm first samples x̂ from a replay buffer B1 with a
probability pB1

and from uniform noise with a probability 1 − pB1
, and then

(ii) it refines x̂ by finite steps of Langevin updates [40], which is an example of
MCMC, to obtain final x̃, as follows:

x̃t+1 = x̃t −
δ2

2

∂f(x̃t, c;ΘE)

∂x̃
+ δN (0, ID), x̃0 = x̂, (4)

where t indexes the Langevin time steps, and δ is the step size. The Langevin
dynamics in Eq. (4) is a gradient-based MCMC, which is equivalent to a stochas-
tic gradient descent algorithm that seeks to find the minimum of the objective
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function defined by fE(x, c;ΘE). The replay buffer B1 stores past generated
samples. Occasionally re-sampling from random uniform noise is crucial to the
learning process since different modes of the model can be explored in train-
ing. On the other hand, between the parameters’ update steps, the model only
slightly changes, thus sampling from past samples, which should be reasonably
close to the model distribution, allows the algorithm to simulate longer MCMC
chains on the samples. However, we call B1 an explore buffer because of its
primary function, which is to seek and cover possible modes of the model.

With the MCMC examples, we can compute the gradient of the negative
log-likelihood objective by

∇(ΘE) ≈
1

n

n∑
i=1

[
∂fE(x̃i, ci;ΘE)

∂ΘE
− ∂fE(xi, ci;ΘE)

∂ΘE

]
. (5)

Contrastive Hashing head: The head hH learns to represent the input images
as binary codes. The hash head hH and the base network f0 form a hash function
fH(x;ΘH) = hH(f0(x; θ0); θH), where ΘH = (θ0, θH). The hash function aims
at mapping images with similar high-level concepts to similar hash codes and
those of unrelated concepts to dissimilar codes. With a generative model, one
effective way to learn such hash function is: for each image x, we “draw” a positive
sample x+ that is conceptually similar to x and a negative sample x− that is
conceptually dissimilar to x, and train the hash function to produce similar hash
codes for x and x+, and dissimilar hash codes for x and x−.

Such contrastive learning can be achieved by recruiting labeled generated
samples from the inference of the conditional EBM. These synthetic samples
from each class can be similarly generated using MCMC sampling. To avoid a
long mixing time where the MCMC chains are initialized from random noise, we
can reuse past generated samples from the replay buffer B1. However, B1 may
contain several past samples that have been less rigorously refined through the
Langevin dynamics (i.e., only refined a few times). These “young" samples can
still be closer to random noise. Therefore, when being selected for contrastive
hash learning, there is not a useful difference between samples from a different
class. That is, the current sample x and their similar and dissimilar synthetic
samples x+ and x−, respectively, do not form an informative contrastive triplet.
Empirically, we observe that only relying on B1 for contrastive samples learn a
hash function whose performance is significantly worse than desired.

This problem is further illustrated in Figure 2, where some samples from each
class are similar to random noise. There are more of these samples in CIFAR10
than in MNIST because the generation of natural images in CIFAR10 requires
a significantly more complex model than the generative model of MNIST. Even
further into training, we observe that there are still similar MCMC samples due
to the occasional sampling from random noise that requires longer MCMC chains
when the data distribution is complex (as in the case of CIFAR10). One naive
solution is to increase the number of Langevin steps; however, larger chains make
the EBM significantly more computationally expensive to train.
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(a) MNIST (b) CIFAR10
Fig. 2: Samples from the explore buffer B1. Images on each row are from the
same semantic class. Some CIFAR10 images in this buffer are far from real
images because B1 is a mixture of (i) newly-initialized or younger samples from
the MCMC chain and (ii) those samples that have been revised several times.

We propose a simple, yet effective sampling strategy to solve this problem.
First, we introduce a second replay buffer B2, where a sample x ∈ B2 is required
to be initialized from supposedly longer MCMC chains. To avoid explicitly in-
creasing the number of Langevin steps to achieve such longer MCMC chains,
we leverage the existing replay buffer B1 by “copying” samples that have been
revised several times in B1. Intuitively, while sampling from B1 allows the train-
ing process to explore different modes of the models, sampling from B2 exploits
the learned modes. However, since we regularly copy the samples from B1 to B2

when they are “matured”, sampling from B2 also explores all previously learned
modes in for the contrastive hash learning.

Under this sampling strategy, to learn the contrastive hash function, for each
observed image x and its label c, we sample a synthetic image x+, conditioned
on the label c, and a synthetic image x−, conditioned on a different label c− ̸= c
using the replay buffer B2. The three examples form a real-synthetic triplet
(x, x+, x−). The hash function fH can be trained to minimize the Hamming
distance (a discrete distance function that is typically approximated by the con-
tinuous L2 distance) between fH(x) and fH(x+) and maximize the distance
between fH(x) and fH(x−). This triplet-ranking loss is defined as follows:

LH(ΘH) = ||fH(x)− fH(x+)||H +max(m− ||fH(x)− h(x−)||H , 0) (6)

s.t. fH(x) ∈ {−1, 1}, fH(x+) ∈ {−1, 1}, fH(x−) ∈ {−1, 1}

where ||.||H denotes the Hamming distance. The first term preserves the sim-
ilarity between images with similar semantic concepts, while the second term
penalizes the mapping of semantically dissimilar images to similar hash codes
if their distance is within a margin m. Essentially, this is a contrastive objec-
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tive that avoids collapsed solutions because it only considers the dissimilar pairs
having distances within a certain margin to contribute to the loss.

The objective of Lh is a discrete optimization problem, hence it is computa-
tionally intractable to solve and is not suitable for a gradient-based backpropa-
gation algorithm. A natural solution is to approximate the discrete constraints
with real-valued output and replace the Hamming distance with Euclidean dis-
tance. For the thresholding procedure, a commonly-used trick is to employ the
tanh or sigmoid function. However, we find that tanh or sigmoid makes the
learning process more difficult to converge to good local optima. To overcome
this, we propose to directly regularize the real-valued output of the hash function
to the desired discrete values. The final triplet-ranking loss is as follows:

LH(ΘH) = ||fH(x)− fH(x+)||2 +max(m− ||fH(x)− fH(x−)||2, 0)
+ λ(|||fH(x)| − 1||2 + |||fH(x+)| − 1||2 + |||fH(x−)| − 1||2)

(7)

where fH(.) is now the relaxed function with real-valued vector outputs and |.|
is element-wise absolute operation. The first and second terms in the objective
function approximate the Hamming distances in Eq. (7). The last term min-
imizes the quantization error of approximating the discrete solution with the
real-value relaxation. Intuitively, it centers the relaxed, continuous output of the
hash function around the desired binary value of -1 or 1. Note that the max
operation is non-differentiable; however, we can define the subgradient of the
max function to be 1 at the non-differential points.

Discriminative head: Image labels provide not only knowledge for training a
classification model but also a supervised signal for extracting high-level infor-
mation of the images. On the other hand, the learned hash codes should also
capture high-level abstractions of the images, therefore should be predictive of
the image labels. This relationship can be modeled through a multi-class classi-
fication problem. Specifically, we propose a classification head hC that predicts
the class label of an image given its hash code. For each image xi, let ĉi be the
predicted label. The multi-class classification loss can be defined as follows:

LC(ΘC) = − 1

n

n∑
i=1

ci log
eθ

T
ci,:

h(x)∑
j e

θT
j,:h(xi)

(8)

where θC ∈ RK×L is the parameter of the linear layer that maps each hash
code into the class labels. We additionally denote ΘC = (θ0, θC) as the param-
eters of this classification network. This objective function is optimal when the
discrete space is approximately linear separable with respect to the class labels.
In other words, the hash codes of the images from the same semantic class have
small Hamming distances between them, while the hash codes of the images
from different classes have larger Hamming distances.

3.3 Optimization

At each iteration, the energy-based model p(x|c;ΘE) samples synthetic con-
trastive image pairs by following the strategy described in the previous section.
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With synthetic images, we train the multipurpose hashing network to simultane-
ously describe the images from multiple representational perspectives. The over-
all training objective of the network, which combines the negative log-likelihood
LE(ΘE), the triplet-ranking loss LH(ΘH), and the classification loss LC(ΘC), is
given by:

L(ΘE , ΘH , ΘC) = LE(ΘE) + βHLH(ΘH) + βCLC(ΘC) (9)

where βH and βC are parameters to balance the weight between different losses.
In general, EBMs are less computationally efficient than GAN-based mod-

els [36]. However, the increased computational cost (compared to GAN-based
methods) is only in the training phase, which can be mitigated with larger hard-
ware and distributed training. With short-run MCMCs (typically only 15-20
Langevin steps in our experiments), we can already significantly reduce the train-
ing time of the EBM component. During the testing phase, since we only use
the hash function and discard the remaining components (Figure 1b), the com-
putation is similar to the computation of the models in other hashing methods.

4 Experiments

In this section, we present the evaluation results on several real-world datasets
to demonstrate the effectiveness of the proposed method.

4.1 Experimental Setup

Datasets: We evaluate our method on three widely-used datasets in the image
hashing domain: NUS-WIDE, COCO and CIFAR-10.
Evaluation Metrics: We evaluate the retrieval performance of the methods
using the standard retrieval metrics in image hashing: Mean Average Precision
at K (mAP@K) and Precision at K (P@K).
Baselines: We compare our method against several representative approaches
from image hashing. ITQ [4], BRE [3], and KSH [41]) are shallow supervised
hashing approaches. CNNH [8], SDH [2], DNNH [7], FastHash [28], DHN [6],
DSDH [14], DVStH [42], HashNet [5], CSQ [43], and the state-of-the-art gen-
erative method, HashGAN [19] are deep supervised hashing approaches. Addi-
tionally, we include the results of HashGAN-1, which is the HashGAN method
where the GAN model and the hash function are jointly learned in one stage.

The complete experimental setup, including the dataset details, evaluation
metric calculations, and implementation details, are provided in the Supplement.

4.2 Retrieval Results

In this section, we present the results of querying for similar images. Table 1
shows the mAP results for all the methods. Compared to the shallow hashing
methods, GenHash improves at least 14% on NUS-WIDE, 13% on CIFAR-10,
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Table 1: Mean Average Precision (mAP) for different number of bits.

Method
NUS-WIDE CIFAR-10 COCO

16 bits 32 bits 48 bits 16 bits 32 bits 48 bits 16 bits 32 bits 48 bits
ITQ [4] 0.460 0.405 0.373 0.354 0.414 0.449 0.566 0.562 0.530
BRE [3] 0.503 0.529 0.548 0.370 0.438 0.468 0.592 0.622 0.630
KSH [41] 0.551 0.582 0.612 0.524 0.558 0.567 0.521 0.534 0.534
SDH [2] 0.588 0.611 0.638 0.461 0.520 0.553 0.555 0.564 0.572
CNNH [8] 0.570 0.583 0.593 0.476 0.472 0.489 0.564 0.574 0.571
DNNH [7] 0.598 0.616 0.635 0.559 0.558 0.581 0.593 0.603 0.605
FastHash [28] 0.502 0.515 0.516 0.524 0.566 0.597 0.601 0.609 0.612
DHN [6] 0.637 0.664 0.669 0.568 0.603 0.621 0.677 0.701 0.695
DSDH [14] 0.650 0.701 0.705 0.655 0.660 0.682 0.659 0.688 0.710
DVStH [42] 0.661 0.680 0.698 0.667 0.695 0.708 0.689 0.709 0.713
HashNet [5] 0.662 0.699 0.711 0.643 0.667 0.675 0.687 0.718 0.730
CSQ [43] 0.701 0.713 0.720 0.646 0.699 0.709 0.679 0.699 0.714
HashGAN [19] 0.715 0.737 0.744 0.668 0.731 0.735 0.697 0.725 0.741
GenHash 0.742 0.754 0.773 0.711 0.739 0.778 0.747 0.768 0.775

Table 2: Precision@1000 for different number of bits.

Method
NUS-WIDE CIFAR-10 COCO

16 bits 32 bits 48 bits 16 bits 32 bits 48 bits 16 bits 32 bits 48 bits
ITQ [4] 0.489 0.572 0.590 0.289 0.271 0.305 0.489 0.518 0.545
BRE [3] 0.521 0.603 0.627 0.398 0.445 0.471 0.520 0.535 0.559
KSH [41] 0.598 0.656 0.667 0.580 0.612 0.641 0.519 0.540 0.558
SDH [2] 0.640 0.702 0.712 0.655 0.671 0.651 0.696 0.695 0.710
CNNH [8] 0.601 0.651 0.672 0.533 0.545 0.578 0.671 0.690 0.718
DNNH [7] 0.620 0.689 0.707 0.651 0.678 0.691 0.713 0.701 0.728
DHN [6] 0.655 0.713 0.726 0.659 0.701 0.725 0.703 0.731 0.750
DSDH [14] 0.658 0.728 0.752 0.678 0.710 0.729 0.721 0.735 0.754
HashNet [5] 0.680 0.729 0.741 0.720 0.721 0.741 0.745 0.746 0.753
CSQ [43] 0.701 0.741 0.750 0.725 0.735 0.741 0.749 0.742 0.749
HashGAN [19] 0.720 0.759 0.772 0.735 0.751 0.762 0.755 0.768 0.783
GenHash 0.749 0.780 0.808 0.780 0.799 0.823 0.789 0.795 0.811

and 20% on COCO. Compared to the state-of-the-art deep hashing method that
does not have data synthesis (i.e., HashNet), GenHash improves at least 9%,
9%, and 5% on NUS-WIDE, CIFAR-10, and COCO, respectively. GenHash
outperforms HashGAN, the state-of-the-art supervised, data-synthesis method
by statistically significant margins in all the datasets.

The mAP results provide empirical evidence to support our discussion in Sec-
tions 1 and 2. First, generating synthetic data improves the performance of a
supervised hashing method. This could be explained by the fact that generative
models improve the amount of “labeled” training data and increase its diversity,
both of which improve the method’s generalization capacity. Second, we can
observe that the performance of HashGAN significantly decreases without the
fine-tuning step (HashGAN-1’s results). Training GAN-based models is difficult
with problems such as mode collapse; thus in GAN-based models such as Hash-
GAN, a second fine-tuning step, where only the hash function is trained with the
synthetic data while the other components are fixed, is needed to avoid difficul-
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ties in simultaneously training the generator and discriminator. This increases
the computational requirement of the GAN-based methods. Finally, GenHash,
which simultaneously trains the generative model and the hash function, has
better retrieval performance than the state-of-the-art, two-stage HashGAN. This
supports our claim that the one-stage scheme learns better similarity-preserving
hash codes of the images.

In addition, we present the Precision@1000 results in Table 2. The Preci-
sion@1000 is calculated at the common retrieval threshold (1000) in image ap-
plications. Similarly, the proposed GenHash significantly outperforms all the
compared methods.

4.3 Out-of-distribution Retrieval

In this section, we show that GenHash, which is a multipurpose EBM, exhibits
better out-of-distribution (OOD) robustness in retrieval than other methods. In
real-world retrieval applications, the arrival of new data instances or new data
format are common. This results in conceptual drift or change in the underlying
data distribution where the hashing methods are trained on. A hashing method
that is robust (i.e., its performance is not significantly worse) to slight changes
in such underlying distributional change in the data is preferred because it takes
a longer time for the trained model to become obsolete.

Table 3: OOD Retrieval.
Train/Test HashNet CSQ HashGAN GenHash
SVHN/MNIST 0.181 0.517 0.354 0.609
SVHN/SVHN 0.837 0.854 0.889 0.895
MNIST/SVHN 0.193 0.273 0.280 0.498
MNIST/MNIST 0.957 0.991 0.990 0.991

Table 4: Data-corruption Retrieval.
Type HashNet HashGAN GenHash

SnP
Clean 0.513 0.608 0.680

Corrupted 0.223 0.281 0.652

RRM
Clean 0.471 0.615 0.654

Corrupted 0.243 0.298 0.607

We propose to simulate a minor but realistic distributional change in the
data as follows. In the learning phase, each hashing method is trained on a
source dataset. In the testing or evaluation phase, we use a different test dataset
that is conceptually similar to the source dataset but comes from a (slightly)
different data distribution. We choose MNIST and SVHN as conceptually-related
datasets. One dataset is selected as both the train and retrieval sets, while the
test queries are sampled from the other dataset.

Table 3 shows the retrieval results of GenHash, HashNet (a deep hashing
method), HashNet and HashGAN (a GAN-based hashing method). As can be
observed, GenHash significantly outperforms both HashNet and HashGAN in
OOD retrieval, with more than 25% when using MNIST for querying, and 20%
when using SVHN for querying. GenHash’s mAP performance is still roughly
more than 50% when the test data distribution changes. This makes GenHash
still useful in practice, while in other methods, the retrieval performance signif-
icantly drops closer to the performance of a random retrieval.

While the OOD retrieval performance falls significantly, compared to the re-
trieval performance using data from the same distribution as that of the training
data, data-synthesis methods (HashGAN and GenHash) are more robust to-
ward distributional changes, compared to the conventional deep hashing methods
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HashNet and CSQ. In addition, when being trained on a more complex dataset
(SVHN), the retrieval performance of GenHash significantly improves in our
OOD tests, while the OOD retrieval performances of the other methods only
slightly improve.

4.4 Missing-data Robustness in Retrieval

GenHash is a multipurpose EBM. Similar to other explicit generative EBMs [37,36],
we can additionally model the energy function of x. This provides us with an im-
portant advantage over other generative models: we can revise (or reconstruct) a
sample with corruption by initializing the input chain into the Langevin dynam-
ics with the corrupted samples. Through the Langevin revision, the corrupted
samples can be re-constructed. Note that, this feature of the EBM is not imme-
diately available in other generative hashing methods, such as HashGAN.

We perform the missing data experiments as follows. First, we assume that
both training data and test data may contain corrupted input images. During
training of GenHash, we train on the clean input as mentioned previously. For
corrupted input we initialize the MCMC chains with the corrupted samples and
revise these samples through the Langevin dynamics. We corrupt the images in
both the training and test sets of the CIFAR10 dataset. We corrupt 20% of the
data using salt-and-pepper noise (denoted by SnP) or random rectangular mask
(denoted by RRM, where the rectangles randomly cover approximately 10-20%
of the images at random locations) on the images for both training and query
sets. Then, the model in each hashing method is trained with the corrupted
training set and the evaluation is performed on the corrupted test set.

In Table 4, we show the results for the missing-data robustness experiments.
As can be observed, the performances of the baseline methods, including the
generative hashing HashGAN method, are significantly degraded when there are
corruptions in the data. On the other hand, GenHash’s retrieval performance
only slightly drops when the data is corrupted. This shows the advantages of the
proposed EBM-based multipurpose generative hashing network.

5 Conclusion
This paper proposes a unified generative framework, called GenHash to solve
the image hashing problem. The framework learns a multipurpose hashing net-
work to represent images from multiple perspectives, including classification,
hashing, and probability density estimation. This approach learns high-quality
binary hash codes and achieves state-of-the-art retrieval performance on sev-
eral benchmark datasets. Furthermore, GenHash is significantly more robust
to out-of-distribution retrieval compared to the existing methods and can handle
significant corruption in the data with trivial drops in the retrieval performance.
In GenHash, we also train a single EBM-based network, which makes it easier
for the practitioner to design better architectures. This is preferred compared to
other GAN-based approaches because designing the discriminator and generator
networks is not a trivial task with various problems when one network has more
capacity than the other.
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