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Abstract. Channel pruning is widely used to reduce the complexity of
deep network models. Recent pruning methods usually identify which
parts of the network to discard by proposing a channel importance crite-
rion. However, recent studies have shown that these criteria do not work
well in all conditions. In this paper, we propose a novel Feature Shift
Minimization (FSM) method to compress CNN models, which evalu-
ates the feature shift by converging the information of both features and
filters. Specifically, we first investigate the compression efficiency with
some prevalent methods in different layer-depths and then propose the
feature shift concept. Then, we introduce an approximation method to
estimate the magnitude of the feature shift, since it is difficult to compute
it directly. Besides, we present a distribution-optimization algorithm to
compensate for the accuracy loss and improve the network compression
efficiency. The proposed method yields state-of-the-art performance on
various benchmark networks and datasets, verified by extensive experi-
ments. Our codes are available at: https://github.com/lscgx/FSM.

1 Introduction

The rapid development of convolutional neural networks (CNN) has obtained
remarkable success in a wide range of computer vision applications, such as
image classification [11,18,24], video analysis [5,21, 30], object detection [6,8,
39], semantic segmentation [1,2,41], etc. The combination of CNN models and
IoT devices yields significant economic and social benefits in the real world.
However, better performance for a CNN model usually means higher computa-
tional complexity and a greater number of parameters, limiting its application
in resource-constrained devices. Therefore, model compression techniques are
required.

To this end, compressing the existing network is a popular strategy, includ-
ing tensor decomposition [38], parameter quantification [32], weight pruning [9,
25], structural pruning [28], etc. Moreover, another strategy is to create a new
small network directly, including knowledge distillation [16] and compact net-
work design [17]. Among these compression techniques, structural pruning has
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Fig. 1: Diagram of the proposed Feature Shift Minimization method (FSM).

significant performance and is usable for various network architectures. In this
paper, we present a channel pruning method, belonging to structural pruning,
for model compression.

In the process of channel pruning, some channels that are considered unim-
portant or redundant are discarded and get a sub-network of the original net-
work. The core of channel pruning lies in the design of filter or feature selection
criteria. One idea is to directly use the inherent properties of filters or features,
such as statistical properties, matrix properties, etc. For example, Li et al. [14,
25] sorting the filters by /; norm of filters, and Lin et al. [28] prune channels
by calculating the rank of features. Another idea is to evaluate the impact of
removing a channel on the next layer or the accuracy loss [34]. These criteria,
which are based on different properties, succeeded in model compression, but the
performance faded in some conditions. Because it is difficult for a single criterion
to take into account all factors such as feature size or feature dimension at the
same time. So, many pruning criteria are suboptimal because they only work
well locally, not globally. As shown in Fig. 2, in some cases, random pruning can
even outperform well-designed methods.

To compensate for the limitations of a single criterion, some multi-criteria
approaches have been proposed recently. For example, in [27], a collaborative
compression method was proposed for channel pruning, which uses the informa-
tion of compression sensitivity for each layer. Similarly, in [46], the structural
redundancy information of each layer is used to guide pruning. Although these
methods take into account the influence of other factors on pruning efficiency,
they make no improvements to the criteria and require additional computational
consumption.

In this paper, we propose a new channel pruning method by minimizing fea-
ture shift. We define feature shift as the changes in the distribution of features
in a layer due to pruning. As shown in Fig. 1, the feature details changed or
disappeared due to pruning, but when the distribution of the features is prop-
erly adjusted, the disappeared feature details emerge again. This experiment
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was done on ImageNet, using the ResNet-50 model. This suggests that the loss
of feature detail, caused by pruning some channels, may not have really disap-
peared, which is related to the feature activation state. Even those channels that
are considered unimportant may cause changes in the distribution of features,
which in turn lead to under-activation or over-activation of features. Therefore, it
is reasonable to minimize the feature shift for model compression. Moreover, we
mathematically demonstrate that feature shift is an important factor for channel
pruning and analyze the effect of the activation functions, in Section 3.1.
Computing feature shift directly is not an easy task, as it requires travers-
ing the entire training dataset. To address this issue, we propose an evaluation
method to measure the feature shift, which combines information from both fil-
ters and features. Based on this, we compress models by evaluating the feature
shift when each channel is removed, which performs well in different feature di-
mensions. In particular, the proposed pruning method does not require sampling
the features and uses only the parameters of the pre-trained models. In addi-
tion, to prove that the feature shift occurs in the pruning process, we design
a distribution-optimization algorithm to adjust the pruned feature distribution,
which significantly recovers the accuracy loss, as will be discussed in Section 3.4.
To summarize, our main contributions are as follows:

1) We investigate the relationship between compression rate, layer depth, and
model accuracy with different pruning methods. It reveals that the feature
shift is an important factor affecting pruning efficiency.

2) We propose a novel channel pruning method, Feature Shift Minimization
(FSM), which combines information from both features and filters. More-
over, a distribution-optimization algorithm is designed to accelerate network
compression.

3) Extensive experiments on CIFAR-10 and ImageNet, using VGGNet, Mo-
bileNet, GoogLeNet, and ResNet, demonstrate the effectiveness of the pro-
posed FSM.

2 Related Work

Channel pruning. Channel pruning has been successfully applied to the com-
pression of various network architectures, which lies in the selection of filters or
features. Some previous methods use the intrinsic properties of filters to com-
press models. For example, [14, 25| prune filters according to their I; norms. In
[28], the rank of the features is used to measure the information richness of
the features and retain the features with high information content. Some other
approaches go beyond the limits of a single layer. For example, Chin et al. [3]
removes filters by calculating the global ranking. Liu et al.[33] analyzes the rela-
tionship between the filters and BN layers and designs a scale factor to represent
the importance. In addition, computing the statistical information of the next
layer and minimizing the feature reconstruction error is also a popular idea [15,
34]. Different from methods that are based on only a single filter or feature, [43,
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Fig. 2: Analysis of the relationship between compression rate, layer depth, accu-
racy, and methods. Names such as "ResNet-50-1" mean experiment on the 1st
layer of ResNet-50. For each subfigure, the horizontal axis is the compression
rate, and the vertical axis is the accuracy.

46, 48] remove redundant parts of a model by measuring the difference between
the filters or features.

Effect of Layer-Depth. For different layers, the feature size, dimensions, and
redundancy are different. Recent works have found that different layers of a
model have different sensitivities to the compression rate. Wang et al. [46] pro-
poses that the structural redundancy of each layer are different, which plays a
key role in the pruning process. In layers with high structural redundancy, more
filters can be safely discarded with little loss of accuracy. Li et al. [27] repre-
sents that the compression sensitivity of each layer is distinct, and it is used
to guide pruning. In addition, He et al. [12] propose that a pruning criterion
does not always work well in all layers, and they achieve better performance by
using different pruning criteria on different layer-depths. Earlier methods [13,
19, 51] required iterative tuning of the compression ratio to achieve better model
accuracy. It is tedious and time-consuming. Considering the difference between
different layers can greatly improve the pruning efficiency.

We investigate the trend of accuracy when adopting different compression
rates in different layer-depths. Two methods (L1 and HRank) are investigated,
which sort filters and features, respectively. Based on this, we propose a new
perspective to explore the redundancy of neural networks.

3 Methodology

In this section, we analyze the process of filter pruning and point out that the
distribution of features is changed after pruning. Then we propose a novel prun-
ing criterion that minimizes the feature shift. Unlike some heuristic pruning
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criteria, there is much theoretical analysis to support the proposed pruning al-
gorithm. Moreover, a distribution optimization algorithm is presented to restore
the model accuracy.

3.1 Filter Pruning Analysis

Filter pruning aims to remove those relatively unimportant filters, which eval-
uate the importance of the filter or feature by a specific importance criterion.
However, we found that these criteria do not work well in all layers. We conduct
experiments on CIFAR-10 with /1-norm and HRank, which sort filters and fea-
tures, respectively. In addition, we also test the performance of random pruning
in different layers. As shown in Fig. 2, two phenomena are obvious: a)As the
compression rate increases, the drop in accuracy becomes more obvious. When
the compression rate exceeds a critical value, the accuracy declines dramatically.
b) For high-dimensional features, sorting filters or feature maps by these criteria
isn’t substantially better than random pruning.

The phenomena reveal that: a) Exist other factors damage the accuracy, and
their impact grows with the compression rate. b) For low-dimensional features,
pruning criteria are effective. However, for high-dimensional features, random
pruning also performs well. This indicates that the gap between the importance
scores of filters/features becomes smaller as the dimensionality increases.

To clarify why these phenomena occur, we mathematically analyze the changes
that occur in one feature map before and after pruning. A typical inference pro-
cess in one layer is Input-Conv-BN[20]-ReLU[7]-Output.

Many benchmark network architectures, such as ResNet, DenseNet, and
GoogleNet, are based on it. In particular, we let X; = (xz(-l) . ~x§d")) repre-
sent the input for i-th layer of one CNN model, where d; stand for the number
of the dimensions. Firstly, we normalize each dimension on BN layer

(k) (k)
N z;, — Elz; ~
xﬁk) = [ ]7 yz(k) = ’Yz'(k)xz(k) + 57@7 (1)

Var[xz(-k)]

where F is the expectation, Var is the variance, and k stand for the k-th dimen-
sion. We let Y; = (ygl) e yz(di)) denotes the output of the BN layer. The output

of the k-th dimension has a mean of ﬁi(k) and a standard deviation of 'yi(k)7 which
can be directly obtained by the pre-trained models. Then, Y; is passed on to the
ReLU layer. For each of the values in Y;, the ReLLU activation function is applied
to it to get thresholded values. The output can be formulated as:

5" = ReLU(y(")) = maw(0,4")). (2)
Obviously, the distribution of g/jl(k)
The output expectation

changes after passing through the ReLU layer.

E[G") = Elmaz(0,5")), (3)
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and the input of the (i 4+ 1)-th layer
k ~(d; ~ ~(d; n
33£+)1 = (A(l) yz( )) Wil F (?Jz(l) : yf )) “wig1, 8.t dy < dy, (4)

where w represents the weights and (Z stands for the i-th dimension after prun-
ing. As can be seen, the distribution of input x of one channel will shift when
pruning some channels in the previous layer. We assume that the shifted ex-
pectation of a:l(k) as E [zg )] and the shifted variance as Var[ } More, we let

Ap = E[xik)] - E[:cgk)] So we can reformulate the Eq. (1) as:

(k) (k)
z;’ — FElz
Y8 — 050 L g0 _ (k)li[k] e %)
Var|x, ( )]
wa — (B +Ap) | w
=% . + B; (6)
Varlx; ( )]
VM) 2 ® - B A
EWOL: i ] FICING) B (7)
\/Var Ek \/Var (k) Var|z (k)]
The mean of ygk) is ﬂgk) — *yi(k)Ai and the standard deviation shifted to

\/Var[x(k)]
/ Var[z*] ’V(k)
\/ Var[w(k)] i

As a result, the expectation E[A( )] is shifted after pruning, which directly
affects the input to the next layer. At the same time, due to the ReLLU activation
function, some values that were not activated before being activated, or the
activated values are deactivated. We refer to the change in the distributions
after the ReLLU layer in the process of pruning as feature shift.

Predictably, at high compression Taple 1: Experiments on ResNet-50-23.

rates, the magnitude of the feature FSM-R means pruning in reverse order.
shift may be greater compared to low

rates, and the drop in accuracy may Rate 20% | 30% | 40%
also be greater. To prove it, we con- FSM(%) |70.42|56.50 | 32.20
sider the feature shift of each channel FSM-R(%) | 32.89 | 8.128 | 1.62

as the selection criterion in pruning.
We prune channels by their expectation of the feature shift. The channels with
the least shift are discarded first. As shown in Fig. 2, many experiments show
that the decreasing trend of the accuracy of the proposed method is less pro-
nounced than other prevalent methods. Our method can maintain higher ac-
curacy compared to others at the same compression rate (e.g., 11.3%/L1 vs.
8.79%/HRank vs. 66.52%/FSM with a ratio 40% on ResNet-50-11). It reveals
that the feature shift is one of the critical factors for performance degradation.
In particular, when we prune the model in reverse order, the accuracy catas-
trophically decreases, as shown in Table 1. It demonstrates that the greater the
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Network Pruning via Feature Shift Minimization 7

magnitude of the feature shift, the greater the loss of accuracy. The decrease in
accuracy has a positive correlation with the feature shift. So, it is reasonable to
use the feature shift to guide pruning. Features that exhibit less feature shift are
relatively unimportant.

3.2 Evaluating the Feature Shift

As demonstrated in Eq. (7), we need to calculate £ [xgk)], which stands for the
expectation of the k-th dimension in the i-th layer. It is difficult and time-
consuming to calculate it directly over the entire training dataset. We present
an approximation method to estimate the expectation of features and prove the

feasibility in Section 5.2. Specifically, we first expand the E [xgk)] as
=0 (K Se~(1 ~(di— k
B = E[@Y - 3%) - wf?] 8)
= B0 s w4+ Bl ) w0 (9)

7

m

where c?,»_l stands for the (¢ — 1)-th dimension after pruning, and C/l\i—l < dj_1.
Moreover, according to Eq. (1), we get

(— B(k) )2

. ° 1 #
E[yfk)l] E[mal‘(O yz( )1)] N/O xi(k) © )e V2 . (10)
7. m

Without computing the expectation over the entire train dataset, the approx-
imation of E[xik)] can be obtained by combining Eq. (8) and Eq. (10). Then,
according to Eq. (7), we get the shifted expectation and the standard deviation
of the features.

3.3 Filter Selection Strategy

The pruning strategy of a layer can be regarded as minimizing the sum of the
feature shift of all channels of the pruned model. For a CNN model with N layers,
the optimal pruning strategy can be expressed as an optimization problem:

N d R
Elz®] - B2, (11)

E<k>

N d
= argmin g E
i=1 k=1

i=1 k=1

where CZ is the dimension of each layer after pruning. During the pruning of a
layer, we evaluate the effect of each feature for the feature shift of the next layer,
as follows:

dit1
3y =3l « Bl (12)
j=1
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where wz(i]f) denotes the k-th vector of the (i 4+ 1)-th layer’s j-th dimension.

0 (xgk)) represents the sum of feature shift of one output feature to all channels
in the (¢ + 1)-th layer. Then, we sort all features according to the values §(-).
Features with low values are considered unimportant and will be discarded in

preference.

3.4 Distribution Optimization

For a pruned model, we present a simple distribution optimization method to
recover accuracy. As presented in Eq. (7), the distribution of ygk) was changed
due to the shift of E[xik)] and Var[zgk)] after pruning. Hence, we can adjust
them to E[xgk)] and I7a\r[x§k)] reduce the impact of the shift.

In Eq. (8), we present a evaluation method for E [xgk)] Let A represent the

evaluation error, A = E[xfk)] / E[acz(-k)]7 where the A is computed on unpruned
model. After pruning, we set

Ele") = Elz] /A (13)
For @"[mz(-k)], it is difficult to evaluate, or the error is large. We experimentally
show that set

Var[xz(-k)] = % X Var[asz(-k)], (14)
(]
performs well in most layers, especially in the deeper layers.

One possible explanation is that the differences between high-dimensional
features are not obvious, and the statistical properties are approximate. Ran-
dom pruning in deep layers produces great results, as shown in Fig. 2, supporting
this explanation. Furthermore, as shown in Fig. 3, extensive experiments on dif-
ferent architectures reveal that the proposed distribution optimization strategy
is effective and proves that feature shift occurs during network pruning. Ob-
viously, the algorithm is plug-and-play and may also be combined with other
pruning methods.

3.5 Pruning Procedure

The pruning procedure is summarized as follows:

1) For each channel x§k) of one layer, we first calculate its output expectation
ElyM).

2) Then, we calculate the feature shift ¢ (zgk)) caused by channel =
to Eq. (12).

3) Sort all channels through J§(-) and discard those channels with small values.

4) After pruning, using Eq. (13) and Eq. (14) to recover accuracy.

5) Fine-tuning the model one epoch, and back to the first step to prune the
next layer.

(k)

%

, according

After all layers have been pruned, we train the pruned model for some epochs.
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Fig. 3: Comparison of the accuracy before and after using distribution optimiza-
tion on VGGNet. Similarly, the horizontal axis represents the compression rate,
and the vertical axis is the accuracy. Names such as "HRank-1" mean to adopt
the HRank method on the 1st layer of VGGNet. The results suggest that the
feature shift is a critical factor that damages model accuracy.

4 Experiments

In this section, in order to verify the effectiveness of the proposed FSM, we con-
duct extensive experiments on CIFAR-10 [23] and ImageNet [24]. Prevalent mod-
els, such as ResNet[11], GoogLeNet[44], MobileNet-V2[40], and VGGNet[42], are
adopted to test the performance. All experiments are running on Pytorch 1.8
[36] under Intel i7-8700K CPU @3.70GHz and NVIDIA GTX 1080Ti GPU.

4.1 Implementation Details

For all models, the pruning process is performed in two steps:1) pruning the
filters layer by layer and fine-tune 1 epoch for each layer. 2) After pruning, we
train the model for some epochs using the stochastic gradient descent algorithm
(SGD) with momentum 0.9. For VGGNet and GoogLeNet on CIFAR-10, we
train the model for 200 epochs, in which the initial learning rate, batch size,
and weight decay are set to 0.01, 128, and 0, respectively. The learning rate is
divided by 10 at epochs 100 and 150. For ResNet-56 on CIFAR-10, we train 300
epochs and set the weight decay to 0.0005. The learning rate is divided by 10
at epochs 150 and 225. For ResNet-50, we train the model for 120 epochs with
an initial learning rate of 0.01, and the learning rate is divided by 10 at epochs
30, 60, and 90. The batch size is set to 64. For MobileNet-V2, we fine-tune the
pruned model for 150 epochs, and the learning rate is decayed by the cosine
annealing scheduler with an initial learning rate of 0.01. The weight decay is set
to 4 x 1072, following the original MobileNet-V2 paper setup. We train all the
models three times and report the mean.

4052



10 Y. Duan et al.

Table 2: Comparison with other prevalent pruning methods on CIFAR-10

Model Method | Baseline Acc. | Top-1 Acc. | FLOPs | | Param. |

SFP[13] 93.59% 93.35% 52.6% -
CCP|[37] 93.50% 93.42% 52.6% -

HRank|[28] 93.26% 92.17% 50.0% 42.4%
ResNet-56 | NPPM[4] 93.04% 93.40% 50.0% -

DHP|[26] - 93.58% 49.0% 41.6%
SCP[22] 93.69 93.23% | 51.5% -

FSM(ours) 93.26% 93.63% 51.2% 43.6%

FSM(ours) 93.26% 92.76% 68.2% 68.5%

L1[25] 93.25% 93.40% 34.2% 63.3%

GALJ29] 93.96% 92.03% 39.6% 77.2%

VGGNet HRank|[28] 93.96% 93.42% 53.7% 82.9%
EEMC[50] 93.36% 93.63% 56.6% -

FSM(ours) 93.96% 93.73% 66.0% 86.3%

FSM(ours) 93.96% 92.86% 81.0% 90.6%

L1[25] - 94.54% 32.9% 42.9%

GALJ29] 95.05% 93.93% 38.2% 49.3%

GoogLeNet | HRank[28] 95.05% 94.53% 54.6% 55.4%

FSM(ours) 95.05% 94.72% 62.9% 55.5%

FSM(ours) |  95.05% 94.29% | 75.4% | 64.6%

We set the compression rate of each layer according to its accuracy drop
curve, which maintains the model accuracy to the greatest extent possible. The
details are provided in the supplementary.

4.2 Results and Analysis

CIFAR-10. In Table 2, we compare the proposed FSM method with other preva-
lent algorithms on VGGNet, GooglLeNet, and ResNet-56. Our method achieves a
significantly compression efficiency on reductions of FLOPs and parameters, but
with higher accuracy. For example, compared with HRank, FSM yields a bet-
ter accuracy (93.73% vs. 93.42%) under a greater FLOPs reduction (66.0% vs.
53.7%) and parameters reduction (86.3% vs. 82.9%). For ResNet-56 on CIFAR-
10, FSM prunes 51.2% of FLOPs and 43.6% of parameters, but the accuracy
improved by 0.37%. NPPM and DHP have been proposed recently and they
have a great performance in network compression. Compared with NPPM, our
method shows a better performance, and with a higher FLOPs reduction. Com-
pared with DHP, under similar accuracy, FSM performs better at the reduction
of FLOPs (51.2% vs. 49.0%) and parameters (43.6% vs. 41.6%). For GoogLeNet,
FSM outperforms HRank and GAL in all aspects. With over 62% FLOPs reduc-
tion, FSM still maintains 94.72% accuracy.

Furthermore, we verified the performance of FSM at high compression rates.
For instance, with more than 90% of the parameters discarded, FSM reduces
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Table 3: Comparison with other prevalent pruning methods on ImageNet

Model Method Top-1 Acc. | Top-5 Acc. | A Top-1 | A Top-5 | FLOPs |

DCP[51] 74.95% 92.32% | -1.06% | -0.61% | 55.6%

CCP[37] 75.21% 92.42% -0.94% | -0.45% 54.1%

Meta[31] 75.40% - -1.20% - 51.2%

GBN|49] 75.18% 92.41% | -0.67% | -0.26% | 55.1%

ResNet-50 BNFI[35] 75.02% - -1.29% - 52.8%
HRank|[28] 74.98% 92.44% -1.17% | -0.54% 43.8%

SCP[22] 75.27% 92.30% | -0.62% | -0.68% | 54.3%

SRR-GR[46] | 75.11% 92.35% | -1.02% | -0.51% | 55.1%
GReg[45] 75.16% - -0.97% - 56.7%
FSM(ours) | 75.43% | 92.45% | -0.66% | -0.53% | 57.2%

CC47] 70.91% - -0.89% - 30.7%
MobileNet-V2 | BNFI[35] 70.97% - -1.22% - 30.0%
FSM(ours) | 71.18% | 89.81% | -0.70% | -0.48% | 30.6%

the accuracy by only 1.1% on VGGNet. The same results can be observed on
ResNet-56 and GoogLeNet.

ImageNet 2012. ImageNet 2012 has over 1.28 million training images and
50,000 validation images divided into 1,000 categories. ResNet-50, compared to
VGGNet and ResNet-56, has a larger feature size. To verify the applicability
of the proposed FSM, on ResNet-50, we test the performance at different com-
pression rates and different layer-depth, by comparing it with L1 and HRank,
as shown in Fig. 2. The results show that FSM successfully picks out the more
important channels, even for large-size features. In contrast, L1 and HRank
performed poorly, even less well than the random method. In most cases, the
proposed FSM shows the best performance.

In Table 3, we compare the proposed FSM method with other prevalent
methods on ResNet-50. Our method achieves significant performance, reducing
the FLOPs by more than 57% with only 0.66% loss in Top-1 accuracy. Compared
with HRank, our method shows a better performance (75.43% vs. 74.98%), and
with a higher FLOPs reduction (57.2% vs. 43.8%). Compared with GBN and
DCP, under similar FLOPs reduction of about 55%, FSM obtains better accu-
racy. Our method reduces FLOPs by 6% more than MetaPruning under similar
Top-1 accuracy. More comparison details can be found in Table 3.

MobileNet-V2 is a memory-efficient model that is suitable for mobile devices.
However, to further compress it is challenging while maintaining the model ac-
curacy. When pruning around 30% of FLOPs, FSM achieves better performance
(71.18%) than CC (70.91%) and BNFI (70.97%) on Top-1 accuracy. The results
demonstrate that FSM has excellent performance on the large-scale ImageNet
dataset and shows higher applicability.

The Speedup on GPU. To show the practical speedup of our method in
real scenarios, we measure the inference time by time/images on the NVIDIA

4054



12 Y. Duan et al.

Table 4: The practical speedup for the pruned model over the unpruned model.
"T": inference time. "S": practical speedup on GPU (NVIDIA 1080Ti).

Model FLOPs(%) | Param.(%) | T(ms) S(x)
62.9 55.5 5.03(£0.01) 1.47x

GooglLeNet 75.4 64.7 4.58(4+0.02) 1.62x
ResNet-50 57.2 1238 13.81(+£0.04) 1.30x

100% 100%

Accuracy

Sigmoid| Sigmoid|
ReLU RelU
PReLU PReLU

0% 20%  40%  60%  80%  100% 0% 20%  40%  60%  80%  100% 0% 20%  40%  60%  80%  100%

(a) layer-1 (b) layer-6 (c) layer-11

Fig. 4: The effect of different activation functions on channel pruning for VGG.
For each subfigure, the horizontal axis is the compression rate, and the vertical
axis is the accuracy.

1080Ti GPU. As shown in Table 4, the proposed FSM achieves 1.62x and 1.30x
speedup with batch size 64 on GoogleNet and ResNet-50, respectively.

5 Ablation Study

5.1 Effect of the Activation Function

In Section 3.1, we illustrate that the activation function affects the distribution of
the features. In channel pruning, the threshold property of the ReLU activation
function results in changes in the feature activation state. In this section, we
experiment with the performance of three popular activation functions (Sigmoid,
ReLU, and PReLU [10]) on different layers in VGGNet. As shown in Fig. 4,
the trend of accuracy with Sigmoid and PReLU changes smoother than ReLU.
Although they do not have the problem of gradient plunges, there is a large
loss of accuracy at small compression rates. In contrast, ReLU achieves better
performance at most rates. In particular, PReLU (x) = maxz(0, z)+axmin(0, x)
, and Sigmoid(z) = o(x) = 1-&-% Different from the ReLU, their gradient is
greater than 0 when z < 0. Some values should reach 0 under ReLU, but return
a negative value under PReLU, which leads to more changes in features. This
explains why PReLU loses more accuracy when the feature shift occurs compared
to Sigmoid and ReLU. In general, models with ReLU activation functions are
more tolerable for channel pruning than Sigmoid and PReLU.
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Fig.5: Comparison of the original and estimated distributions. For each sub-
figure, the horizontal axis is the expectation, and the vertical axis represents
different features. The red indicates the distribution estimation, and the blue is
the original distribution. More comparisons are provided in the supplementary.
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Fig. 6: The effect of evaluation error A for channel pruning on VGGNet. For each
subfigure, the FSM-L means that the expectation evaluation values are amended
with A.

5.2 Error of the Feature Shift Evaluation

The error of the feature distribution evaluation is shown in Fig. 5. The differences
between the proposed evaluation method and the true distribution are compared
at different layer depths. It can be seen that the evaluation error is in an ac-
ceptable range. In addition, our experiments show that expectation and layer
depth are negatively correlated. For very small expectation values, our method
can still estimate them accurately.

5.3 Effect of the Evaluation Error A\

In Section 3.4, we present the estimation error A to rectify the evaluated distri-
bution. As shown in Fig. 6, the method using A generates a better performance
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Fig. 7: Comparisons of the variance estimation with different magnitude coef-
ficients on VGGNet, Names such as "Var-1.5" stand for reduce the variance
Var[xl(-k)] by (1.5 x %)%. Similarly, the horizontal axis represents the compres-
sion rate, and the vertical axis is the accuracy.

at low compression rates. Also, no additional accuracy loss is caused at high
compression rates.

5.4 Effect of the Variance Adjustment Coefficients

In Section 3.4, we empirically reduce the variance Var [a?l(»k)] by %% because it is
difficult to calculate it directly. As shown in Fig. 7, we adopt different magnitude
coeflicients to adjust the variances of pruned models. The results show that the
VAR-1.0, adopted in our work, achieves the best performance in almost all cases.

6 Conclusions

In this paper, we propose a novel channel pruning method by minimizing feature
shift. We first prove the existence of feature shift mathematically, inspired by the
investigation of accuracy curves in channel pruning. The feature shift is used to
explain why the accuracy plummets when the compression rate exceeds a critical
value. Based on this, an efficient channel pruning method (FSM) is proposed,
which performs well, especially at high compression rates. Then, we present a
feature shift evaluation method that does not traverse the training data set. In
addition, a distribution optimization method is designed to improve the efficiency
of model compression and is plug-and-play. Extensive experiments and rigorous
ablation studies demonstrate the effectiveness of the proposed FSM for channel
pruning. In the future, we will further research the impact of multi-branch ar-
chitecture on the FSM. Also, the combination with other pruning methods is
worth trying.

Acknowledgements The work was supported by National Natural Science
Foundation of China (Grant Nos. 61976246 and U20A20227), Natural Science
Foundation of Chongqing (Grant No. cstc2020jcyj-msxm X0385)

4057



Network Pruning via Feature Shift Minimization 15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K.P.; Yuille, A.L.: Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine
Intelligence 40, 834-848 (2018)

. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder

with atrous separable convolution for semantic image segmentation. ArXiv
abs,/1802.02611 (2018)

Chin, T.W., Ding, R., Zhang, C., Marculescu, D.: Towards efficient model compres-
sion via learned global ranking. 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) pp. 1515-1525 (2020)

Gao, S., Huang, F., Cai, W.T., Huang, H.: Network pruning via performance max-
imization. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) pp. 9266-9276 (2021)

Girdhar, R., Tran, D., Torresani, L., Ramanan, D.: Distinit: Learning video repre-
sentations without a single labeled video. 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV) pp. 852-861 (2019)

Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. 2014 IEEE Conference on
Computer Vision and Pattern Recognition pp. 580-587 (2014)

Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AIS-
TATS (2011)

Guo, J., Han, K., Wang, Y., Zhang, C., Yang, Z., Wu, H., Chen, X., Xu, C.:
Hit-detector: Hierarchical trinity architecture search for object detection. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
pp. 11402-11411 (2020)

Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural network. ArXiv abs/1506.02626 (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. 2015 IEEE International Conference
on Computer Vision (ICCV) pp. 1026-1034 (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp.
770-778 (2016)

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., Yang, Y.: Learning filter prun-
ing criteria for deep convolutional neural networks acceleration. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2006-2015
(2020)

He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. ArXiv abs/1808.06866 (2018)

He, Y., Liu, P., Wang, Z., Yang, Y.: Pruning filter via geometric median for deep
convolutional neural networks acceleration. ArXiv abs/1811.00250 (2018)

He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. 2017 IEEE International Conference on Computer Vision (ICCV) pp.
1398-1406 (2017)

Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
ArXiv abs,/1503.02531 (2015)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. ArXiv abs/1704.04861 (2017)

4058



16

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Y. Duan et al.

Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp.
2261-2269 (2017)

Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural net-
works. ArXiv abs/1707.01213 (2018)

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ArXiv abs/1502.03167 (2015)

Jiang, L., Xu, M., Liu, T., Qiao, M., Wang, Z.: Deepvs: A deep learning based
video saliency prediction approach. In: ECCV (2018)

Kang, M., Han, B.: Operation-aware soft channel pruning using differentiable
masks. In: ICML (2020)

Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Communications of the ACM 60, 84 — 90 (2012)

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. ArXiv abs/1608.08710 (2017)

Li, Y., Gu, S., Zhang, K., Gool, L..V., Timofte, R.: Dhp: Differentiable meta pruning
via hypernetworks. ArXiv abs/2003.13683 (2020)

Li, Y., Lin, S., Liu, J., Ye, Q., Wang, M., Chao, F., Yang, F., Ma, J., Tian, Q., Ji, R.:
Towards compact cnns via collaborative compression. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) pp. 6434-6443 (2021)

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) pp. 1526-1535 (2020)

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., Doermann, D.S.:
Towards optimal structured cnn pruning via generative adversarial learning. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp.
2785-2794 (2019)

Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: Bmn: Boundary-matching network for
temporal action proposal generation. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV) pp. 3888-3897 (2019)

Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K., Sun, J.: Metapruning:
Meta learning for automatic neural network channel pruning. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) pp. 3295-3304 (2019)

Liu, Z., Shen, Z., Savvides, M., Cheng, K.T.: Reactnet: Towards precise binary neu-
ral network with generalized activation functions. ArXiv abs/2003.03488 (2020)
Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convo-
lutional networks through network slimming. 2017 IEEE International Conference
on Computer Vision (ICCV) pp. 2755-2763 (2017)

Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural
network compression. 2017 IEEE International Conference on Computer Vision
(ICCV) pp. 5068-5076 (2017)

Oh, J., Kim, H., Baik, S., Hong, C., Lee, K.M.: Batch normalization tells you
which filter is important. 2022 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) pp. 3351-3360 (2022)

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)
Peng, H., Wu, J., Chen, S., Huang, J.: Collaborative channel pruning for deep
networks. In: ICML (2019)

4059



38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Network Pruning via Feature Shift Minimization 17

Raja, K.B., Raghavendra, R., Busch, C.: Obtaining stable iris codes exploiting low-
rank tensor space and spatial structure aware refinement for better iris recognition.
2019 International Conference on Biometrics (ICB) pp. 1-8 (2019)

Ren, S., He, K., Girshick, R.B., Sun, J.: Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39, 1137-1149 (2015)

Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition pp. 45104520 (2018)

Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
39, 640-651 (2017)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2015)

Singh, P., Verma, V.K., Rai, P., Namboodiri, V.P.: Leveraging filter correlations
for deep model compression. 2020 IEEE Winter Conference on Applications of
Computer Vision (WACV) pp. 824-833 (2020)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1-9 (2015)
Wang, H., Qin, C., Zhang, Y., Fu, Y.: Neural pruning via growing regularization.
In: International Conference on Learning Representations (2020)

Wang, Z., Li, C., Wang, X.: Convolutional neural network pruning with structural
redundancy reduction. 2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) pp. 14908-14917 (2021)

Wang, Z., Li, C., Wang, X.: Convolutional neural network pruning with structural
redundancy reduction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14913-14922 (2021)

Wang, Z., jun Liu, X., Huang, L., Chen, Y., Zhang, Y., Lin, Z., Wang, R.: Model
pruning based on quantified similarity of feature maps. ArXiv abs/2105.06052
(2021)

You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks. ArXiv
abs/1909.08174 (2019)

Zhang, Y., Gao, S., Huang, H.: Exploration and estimation for model compression.
2021 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 477—
486 (2021)

Zhuang, 7., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu,
J.H.: Discrimination-aware channel pruning for deep neural networks. In: NeurIPS
(2018)

4060



