
Re-parameterization Making GC-Net-style
3DConvNets More Efficient

Takeshi Endo1, Seigo Kaji1, Haruki Matono1, Masayuki Takemura2, and
Takeshi Shima2

1 Hitachi, Ltd. Research & Development Group
{takeshi.endo.cw,seigo.kaji.vc,haruki.matono.dm}@hitachi.com

2 Hitachi Astemo, Ltd.
{masayuki.takemura.gx,takeshi.shima.rb}@hitachiastemo.com

Abstract. For depth estimation using a stereo pair, deep learning meth-
ods using 3D convolution have been proposed. While the estimation ac-
curacy is high, 3D convolutions on cost volumes are computationally
expensive. Hence, we propose a method to reduce the computational
cost of 3D convolution-based disparity networks. We apply kernel re-
parameterization, which is used for constructing efficient backbones, to
disparity estimation. We convert learned parameters, and these values
are used for inference to reduce the computational cost of filtering cost
volumes. Experimental results on the KITTI 2015 dataset show that
our method can reduce the computational cost by 31–61% from those
of trained models without any performance loss. Our method can be
used for any disparity network that uses 3D convolution for cost volume
filtering.

Keywords: Stereo matching · Re-parameterization · Efficient archi-
tecture.

1 Introduction

Depth estimation using a stereo pair is the core problem in computer vision and
is applicable to autonomous driving. The depth can be obtained by calculating
the disparity of a stereo pair, where disparity d is the horizontal displacement
between a pair of corresponding pixels in the left and right images of the pair. If
the position (x, y) in the left image corresponds to the position (x− d, y) in the
right image, then we can calculate the depth from fB

d , where f is the camera’s
focal length and B is the distance between the left and right cameras.

In recent years, deep learning has become the mainstream method for dis-
parity estimation. Since DispNetC [12] was proposed, many methods have di-
rectly estimated disparities from stereo pairs. Specifically, DispNetC computes
the correlation between left and right features to construct a cost volume which
represents the matching cost. Then, it filters the cost volume with 2D convolu-
tions to aggregate the cost. This method is efficient, but it loses rich information
for channels. On the other hand, GC-Net [7] forms a concatenated cost volume

2425

2 T. Endo et al.

to keep channel information and aggregates the cost with 3D convolutions. This
method offers improved accuracy by incorporating geometric and contextual in-
formation for disparity estimation. Subsequent 3D convolution-based methods
have been proposed, such as PSMNet [2] and GWCNet [5]. These methods can
easily be implemented on existing frameworks such as TensorFlow [1] because
they have few network-specific operations. They can also be implemented on
custom hardware, such as ASICs and FPGAs, with little additional module de-
velopment. However, these methods filter the cost for each disparity d, which
is computationally expensive. CRL [14] and HitNet [15] were thus proposed to
speed up disparity estimation. While these 2D convolution-based approaches en-
able fast disparity estimation, they involve network-specific operations such as
warping of feature maps to refine disparities. Accordingly, their implementation
on custom hardware requires the development of new additional modules, which
increases the implementation cost.

In this work, we aim to reduce the computational cost of 3D convolution-
based methods because they can easily be implemented in various environments.
For these methods, the most computationally expensive layer in the model is
the first 3D convolution for the cost volume. Hence, we propose a method to
re-parameterize the learned 3D convolution kernels for the cost volume and then
use them during inference. Fig. 1 gives an overview of the proposed method.
Our method reduces the computational cost without any performance loss, in
contrast to network compression methods such as pruning [9], which degrade
performance. Our method can easily be applied to any disparity network that
uses 3D convolutions for cost volume filtering.

Our contributions are summarized below.

– We propose a re-parameterization method that can reduce the computational
cost of any 3D convolution-based network for disparity estimation.

– We show experimentally that our method is effective for the networks of
various model sizes.

2 Related Work

2.1 Disparity Estimation

Disparity estimation methods based on deep learning can be divided into two
categories, depending on whether they are based on 2D or 3D convolution. 2D
convolution-based methods compute the correlation between left and right fea-
ture maps to generate a cost volume, which is aggregated using 2D convolutions.
In general, 2D methods are computationally inexpensive but have lower perfor-
mance than 3D methods. Accordingly, structures that refine disparity maps have
been proposed to achieve a favorable speed-accuracy tradeoff [14, 15]. In CRL [14]
and HitNet [15], feature maps are warped to calculate error information, and the
disparity map is updated by using that information. As these methods include
network-specific operations, running them on custom hardware requires support
for those unique operations.

2426

Re-parameterization Making GC-Net-style 3DConvNets More Efficient 3

Fig. 1. Overview of the proposed method. (top) The 2D encoder extracts features by
2D convolution. Left and right features are concatenated to form the cost volume,
which is then aggregated through the 3D encoder and decoder. Finally, a soft-argmin
regresses the disparity. (bottom) Training and inference have different structures for
computing the initial cost. During training, the initial cost is formed by 3D convolution
on the cost volume. On the other hand, during inference, two 2D convolutions are used
and these output values are added to form the initial cost.

In contrast, 3D convolution-based methods concatenate left and right feature
maps to form a cost volume, which is filtered by using 3D convolutions to aggre-
gate the cost. GC-Net [7] was the first such 3D method. It aggregates the cost
with 3D convolutions and regresses the disparity map with a soft-argmin process.
PSMNet [2] uses a spatial pyramid module for feature extraction, which enables
the cost volume to incorporate multi-scale information. The problem with GC-
Net and PSMNet is the increased computational cost due to the 3D convolutions.
As alternatives, a method forming a low-resolution cost volume [8] and a method
using group-wise correlation to construct a cost volume [5] were proposed. These
network architectures of 3D methods are simpler than those of 2D methods. In
addition, their architectures comprise generic operations that are used in other
networks. On the other hand, the 3D methods are more computationally expen-
sive than the 2D methods. Here, we aim to reduce the computational cost of 3D
convolution-based methods from the viewpoint of ease of implementation.

2.2 Kernel Re-parameterization

To reduce the computational cost, we convert the learned parameters and use the
values for inference. This idea is similar to research on kernel re-parameterization.
[16] parameterizes a kernel as Ŵ=diag(a)I+diag(b)Wnorm, where Wnorm is the
normalized weight, and a and b are learnable vectors. The model uses implicit
skip-connections, and it has the same structures during learning and inference,
whereas we use different model structures during training and inference. Our ap-
proach is closely related to ExpandNet [4] and RepVGG [3]. ExpandNet converts

2427

4 T. Endo et al.

a block consisting of multiple convolutions with a single convolution layer. This is
based on the idea that multiple linear layers can be fused when there is no nonlin-
ear function. RepVGG is trained with a multi-branch model and uses its param-
eters in a single-path model during inference. The difference between our method
and RepVGG is in the model structures before and after re-parameterization:
we train a single-path model and use its parameters in a two-branch inference
model. The type of convolution is also different, as RepVGG re-parameterizes
2D convolution kernels, as opposed to 3D convolution kernels in our approach.
To the best of our knowledge, this is the first work to apply re-parameterization
to disparity networks.

2.3 Network Comprerssion

Network compression methods such as pruning also reduce the computational
cost. [9] proposes a structured pruning method. They remove filters that are
identified as having a small effect on the output accuracy, and then finetune the
network. Another pruning method [11] forces channel-level sparsity and leverages
learnable batch normalization parameters for pruning. [10] explores the rank of
feature maps and measures the information richness of feature maps by using
the rank. All of these network compression methods change the network out-
puts before and after compression. In contrast, our method matches the outputs
before and after re-parameterization, which places it along a different research
direction from network compression.

3 Re-parameterization for 3DConvNets

In this section, we first describe the architecture of 3D convolution-based net-
works such as GC-Net. Then, we describe our re-parameterization approach in
detail, followed by the implementation tricks required for re-parameterization.

3.1 GC-Net-style 3DConvNet

We first describe a general 3DConvNet (3D Convolution-based Network) as rep-
resented by GC-Net [7]. The model shown in the upper part of Fig. 1 represents
the basic structure of a 3DConvNet. A stereo pair of left and right images is
input, and shared 2D convolutions are used to extract the left feature map f l
and the right feature map fr. Given f l and fr, the cost volume is computed, as

Cconcat(d, x, y) = Concat{f l(x, y), fr(x− d, y)}, (1)

where d denotes the disparity level. We omit the channel dimension here for
simplicity.

The cost volume Cconcat is formed from f l and fr shifted relative to f l. The 3D
encoder aggregates the cost with 3×3×3 3D convolutions, while the 3D decoder
uses 3×3×3 3D deconvolutions to upsample the aggregated cost. The disparity
map is regressed by a soft-argmin process [7].

2428

Re-parameterization Making GC-Net-style 3DConvNets More Efficient 5

Table 1 lists the details of the model structures to which our method applies.
H and W denote the height and width of an input image, respectively. F denotes
the number of channels for the feature map, and D indicates the maximum dis-
parity to be estimated. The structures described in Table 1 are almost the same
as those in GC-Net: the only difference is that we add a Stem2 layer to the 2D
encoder to adjust the model’s computational cost. In our experiments, we varied
the stride values of the layers to build models having different computational
costs.

The layers of the 3D encoder are denoted as follows. The output of the
first convolution on the cost volume Cconcat is denoted as Cinitial, because it
represents the initial matching cost. The layers that correspond to Cinitial in
Table 1 are the InitialCost1 and InitialCost2 layers of the 3D encoder. Next, we
denote the output of the 3D encoder’s subsequent convolutions as Caggregated,
because it represents the aggregated cost.

The computational cost of 3D convolution is proportional to the output size,
which is similar to the property of 2D convolution. In the 3D encoder described in
Table 1, the bottom layers such as InitialCost1 are computationally expensive.
Hence, in this work, we propose a re-parameterization method to reduce the
computational cost of constructing the initial cost Cinitial.

3.2 Re-parameterization for Efficient Inference

In our approach, we re-parameterize the 3×3×3 3D convolution kernels used to
construct the initial cost Cinitial. Specifically, the 3D kernels are converted to 2D
convolution kernels.

The initial cost Cinitial is computed as follows,

Cinitial(d, x, y) =
∑

−1≤l,m,n≤1

W3d(l,m, n) ·Cconcat(d+ l, x+m, y + n), (2)

where W3d is the 3D convolution kernel. From (1), (2) is equivalent to the
following:

Cinitial(d, x, y) =
∑

−1≤l,m,n≤1

W3d,l(l,m, n) · f l(x+m, y + n)

+
∑

−1≤l,m,n≤1

W3d,r(l,m, n) · fr(x− d+m− l, y + n), (3)

where W3d,l and W3d,r are 3D convolution kernels and parts of W3d. W3d,l and
W3d,r are used for filtering f l and fr, respectively. If the number of channels in
f l and fr is F, then W3d has 2F channels. The kernel corresponding to channels
0 · · · (F − 1) is W3d,l, and the one corresponding to channels F · · · (2F − 1) is
W3d,r. The first term in (3) is the operation on the left feature map f l and the
second term is the operation on the right feature map fr.

In the first term of (3), the distributive law holds. Therefore, W3d,l can be
fused in the disparity direction l. This yields the following equation for the first

2429

6 T. Endo et al.

Table 1. Summary of our 3DConvNet architecture, which has a 2D encoder, cost
volume layer, 3D encoder, and 3D decoder. Each convolutional layer comprises convo-
lution, batch normalization, and ReLU activation. The layer properties consist of the
kernel size, convolution type, number of kernels, and stride, in this order.

(a) 2D encoder
Name Layer Property Output Size

Stem1 5×5, conv2d, 32, 2
H

2
×
W

2
×F

Stem2 3×3, conv2d, 32, 1
H

2
×
W

2
×F

Resblocks (3×3, conv2d, 32, 1)×2
skip connect

}
×8

H

2
×
W

2
×F

Conv1 3×3, conv2d, 32, 1
(no ReLU and BN)

H

2
×
W

2
×F

(c) 3D decoder
Name Layer Property Output Size

AggCost6 3×3×3, deconv3d, 64, 2
skip connect (from AggCost4-2)

D

16
×

H

16
×
W

16
×2F

AggCost7 3×3×3, deconv3d, 64, 2
skip connect (from AggCost3-2)

D

8
×
H

8
×
W

8
×2F

AggCost8 3×3×3, deconv3d, 64, 2
skip connect (from AggCost2-1)

D

4
×
H

4
×
W

4
×2F

AggCost9 3×3×3, deconv3d, 32, 2
skip connect (from AggCost1)

D

2
×
H

2
×
W

2
×F

AggCost10 3×3×3, deconv3d, 1, 2
(no ReLU and BN) D×H×W×1

(b) Cost volume layer and 3D encoder
Name Layer Property Output Size

Cost Volume

ConcatCost Concat left & right features
D

2
×
H

2
×
W

2
×2F

3D Encoder

InitialCost1 From ConcatCost:
3×3×3, conv3d, 32, 1

D

2
×
H

2
×
W

2
×F

AggCost1 3×3×3, conv3d, 32, 1
D

2
×
H

2
×
W

2
×F

InitialCost2 From ConcatCost:
3×3×3, conv3d, 64, 2

D

4
×
H

4
×
W

4
×2F

AggCost2-1 (3×3×3, conv3d, 64, 1)×2
D

4
×
H

4
×
W

4
×2F

AggCost3-1 From InitialCost2:
3×3×3, conv3d, 64, 2

D

8
×
H

8
×
W

8
×2F

AggCost3-2 (3×3×3, conv3d, 64, 1)×2
D

8
×
H

8
×
W

8
×2F

AggCost4-1 From AggCost3-1:
3×3×3, conv3d, 64, 2

D

16
×

H

16
×
W

16
×2F

AggCost4-2 (3×3×3, conv3d, 64, 1)×2
D

16
×

H

16
×
W

16
×2F

AggCost5-1 From AggCost4-1:
3×3×3, conv3d, 128, 2

D

32
×

H

32
×
W

32
×4F

AggCost5-2 (3×3×3, conv3d, 128, 1)×2
D

32
×

H

32
×
W

32
×4F

term of (3):

∑
−1≤l,m,n≤1

W3d,l(l,m, n) · f l(x+m, y + n) =

∑
−1≤m,n≤1

W′
2d,l(m,n) · f l(x+m, y + n), (4)

where W′
2d,l(m,n) is defined as

W′
2d,l(m,n) =

∑
−1≤l≤1

W3d,l(l,m, n). (5)

Next, for the second term in (3), we let the 3×5 2D kernel W′
2d,r be given

by,

W′
2d,r(m,n) =

∑
−1≤l≤1

W′
3d,r(l,m+ l, n), (6)

where

W′
3d,r(l,m, n) =

{
W3d,r(l,m, n), −1 ≤ m ≤ 1

0, otherwise.
(7)

2430

Re-parameterization Making GC-Net-style 3DConvNets More Efficient 7

Substituting (6) into the second term in (3), we obtain the following equation:∑
−1≤l,m,n≤1

W3d,r(l,m, n) · fr(x− d+m− l, y + n) =

∑
−2≤m≤2
−1≤n≤1

W′
2d,r(m,n) · fr(x− d+m, y + n). (8)

From (4) and (8), Cinitial(d, x, y) is given by,

Cinitial(d, x, y) =
∑

−1≤m,n≤1

W′
2d,l(m,n) · f l(x+m, y + n)

+
∑

−2≤m≤2
−1≤n≤1

W′
2d,r(m,n) · fr(x− d+m, y + n). (9)

Convolution is not affected by translation. As the order of shift and convo-
lution operations can be interchanged, we have

W ∗ Shift(f , d) = Shift(W ∗ f , d), (10)

where Shift(X, d) denotes shifting a tensor X by d pixels. Hence, we derive the
following:

Cinitial(d) = W′
2d,l ∗ f l + Shift(W′

2d,r ∗ fr, d), (11)

where ∗ is the convolution operator.
(11) indicates that the initial cost Cinitial can be computed only from 2D

convolutions, without 3D convolutions. It is obvious that we only need to calcu-
late W′

2d,l ∗ f l and W′
2d,r ∗ fr once to form Cinitial. Hence, we compute Cinitial

as shown in Fig. 1. We first filter the left feature map f l and the right feature
map fr by using the respective 2D convolution kernels W′

2d,l and W′
2d,r. The

filtered right feature map is then shifted and added to the filtered left feature
map, which allows us to construct the initial cost Cinitial.

Here, we re-parameterize the trained model’s 3D convolution kernels into 2D
convolution kernels, as shown in Fig. 2. The 3D kernels are decomposed to filter
the left and right feature maps. As seen in (5), the kernels for left feature maps
are re-parameterized by element addition, while those for right feature maps are
re-parameterized according to (6) and (7). The re-parameterized 2D convolution
kernels are then used for inference.

The re-parameterized 2D convolutions reduce the computational cost. We
measure the computational cost in terms of FLOPs, the number of multiply-adds
required for convolutions. For the model described in Table 1, the computation
of the InitialCost1 layer requires 33 · 12D· 12W· 12H·2F2 FLOPs. On the other hand,
the re-parameterized model requires 32 · 12W · 12H ·F2+3 ·5 · 12W · 12H ·F2 FLOPs.
Thus, the computational cost is reduced to 8

9·D . As D is 192 in general, the layer
can be computed with 0.5% of the original computational cost in FLOPs.

2431

8 T. Endo et al.

Fig. 2. Kernel re-parameterization, in which 3D convolution kernels are converted into
2D kernels. Each 3D kernel is decomposed into left and right kernels. The left kernels
corresponding to each disparity are fused by elementwise addition, while the right
kernels corresponding to each disparity are fused by a shift operation and elementwise
addition. The re-parameterized 2D kernels are then used for inference.

3.3 Implementation Tricks

Because of the effect of padding, the outputs before and after re-parameterization
do not match. Hence, we describe implementation tricks to avoid this issue,
namely, left image cropping and initial cost cropping. Because these tricks reduce
the output size of the disparity map, our approach cannot estimate disparities
at left and right sides of an image. However, in the case of a real application,
disparity estimation is performed on a partial region of interest. Accordingly, we
assume that disparity calculations at the left and right sides are not necessarily
required.

Left Image Cropping. To construct the cost volume Cconcat, the left and
(shifted) right feature maps are concatenated in the channel direction, as seen
in (1). The left side of the right feature map is padded with zeros when the
feature map is shifted to the right. The number of padded columns is equal to
the number of shifts. In the left feature map, the same number of columns is
also padded. Thus, the left feature map f l is padded differently at each disparity
level d. This is also true for the right feature map fr.

In our method, however, f l must not be padded differently at different dis-
parity levels d. This is because W′

2d,l ∗ f l is repeatedly used for constructing the
initial cost Cinitial(d) at any disparity level. This is also true for fr. To satisfy
these conditions, we use stereo pairs with different widths. Given the shift of
the right feature map, the width of the right image is set to be D pixels larger
than that of the left image. Thus, we crop the left image so that its width is
Wl = Wr − D, where Wr is that of the right image. This gives the difference
between the widths of the left and right feature maps. Hence, we crop the right
feature fr to the same width as the left feature map f l. Then, we concatenate
them in the channel direction.

2432

Re-parameterization Making GC-Net-style 3DConvNets More Efficient 9

Initial Cost Cropping. In general, a cost volume is padded with zeros in
the spatial and disparity directions when a 3D convolution is performed on it.
Accordingly, we must handle the effect of padding in the x and d directions so
that the outputs before and after re-parameterization match. During training,
we use the 3D convolution to filter the cost volume. The convolution outputs at
position x = 0, W and d = 0, D are affected by padding. During inference, we
use the shift operation and elementwise addition to construct the initial cost, as
seen in (11). Because these operations lead to a different padding effect, we crop
the cost volume to eliminate pixels that do not match in training and inference,
as shown in Fig. 3.

During training, we first crop the left and right sides of the left feature map
f l. This operation is necessary to keep the original disparity range (d = 0 · · ·D).
Then, the left and right feature maps are concatenated, and the 3D convolution
is performed to construct the initial cost. Finally, we crop the initial cost in the
x and d directions to remove the pixels that are affected by padding.

During inference, we use a similar procedure. First, the left feature map is
cropped. Then, the re-parameterized 2D convolutions are performed on the left
and right feature maps, and the shift operation and elementwise addition are
used to construct the initial cost. Finally, we crop the initial cost in the x and d
directions.

3.4 Disparity Regression

We use the disparity regression method proposed in [7] to estimate disparities.
The soft-argmin operation enables us to estimate disparities with sub-pixel accu-
racy. The probability of each disparity level d is used for estimation. The negative
of the predicted cost cd is converted to the probability via the softmax operation.
The predicted disparity d̂ is then calculated as the sum of each disparity level d
weighted by its probability:

d̂ =

D∑
d=0

d× σ(−cd), (12)

where σ denotes the softmax operation.

3.5 Loss Function

We use the loss function proposed in [7], which is defined as follows:

Loss =
1

N

N∑
n=0

∥d− d̂∥1, (13)

where N is the number of labeled pixels, d̂ is the predicted disparity, and d is
the ground-truth disparity.

2433

10 T. Endo et al.

(a) Cost volume cropping during training.

(b) Cost volume cropping during inference.

Fig. 3. Cost volume cropping. (a) During training, the left and right sides of the left
feature map are cropped. Then, the initial cost is constructed by a 3D convolution,
and it is finally cropped in the x and d directions. (b) During inference, the cropping
is almost the same as during training; the difference is the way to construct the initial
cost.

4 Experiments

In this section, we describe our experimental conditions and our results on the
KITTI 2015 dataset [13]. In these experiments, we compared several models hav-
ing different computational costs. We also performed ablation studies to further
evaluate our method.

4.1 Experimental Conditions

During training, we used the Monkaa dataset [12] for pre-training and the KITTI
2015 dataset [13] for finetuning. For evaluation, we used the KITTI 2015 dataset.
As we evaluated several models, we did not use the KITTI 2015 official evalua-
tion dataset. Instead, we split the original 200 training images into 160 training
images and 40 evaluation images.

For training on these datasets, we cropped the left and right images to input
sizes of 256 × 512 and 256 × 704, respectively. We set D = 192 and F = 32.
RMSprop [6] was used as the optimizer, with a learning rate of 1× 10−3. These
settings are the same as in [7]. For evaluation, we padded zeros at the top and
on the right side of an image. The input sizes were 384 × 1056 for left images
and 384× 1248 for right images.

2434

Re-parameterization Making GC-Net-style 3DConvNets More Efficient 11

Table 2. Model structures of the (a) 3DConvNet-B1, (b) 3DConvNet-B0, and (c)
Rep3DConvNet-B0 models.

(a) 3DConvNet-B1
Name Layer Property Output Size

3D Encoder

InitialCost1 From ConcatCost:
3×3×3, conv3d, 64, 1

D

4
×
H

4
×
W

4
×2F

AggCost1 3×3×3, conv3d, 64, 1
D

4
×
H

4
×
W

4
×2F

InitialCost2 From ConcatCost:
3×3×3, conv3d, 64, 2

D

8
×
H

8
×
W

8
×2F

AggCost2-1 (3×3×3, conv3d, 64, 1)×2
D

8
×
H

8
×
W

8
×2F

AggCost3-1 From InitialCost2:
3×3×3, conv3d, 64, 2

D

16
×

H

16
×
W

16
×2F

AggCost3-2 (3×3×3, conv3d, 64, 1)×2
D

16
×

H

16
×
W

16
×2F

AggCost4-1 From AggCost3-1:
3×3×3, conv3d, 128, 2

D

32
×

H

32
×
W

32
×4F

AggCost4-2 (3×3×3, conv3d, 128, 1)×2
D

32
×

H

32
×
W

32
×4F

3D Decoder

AggCost5 3×3×3, deconv3d, 64, 2
skip connect (from AggCost3-2)

D

16
×

H

16
×
W

16
×2F

AggCost6 3×3×3, deconv3d, 64, 2
skip connect (from AggCost2-1)

D

8
×
H

8
×
W

8
×2F

AggCost7 3×3×3, deconv3d, 64, 2
skip connect (from AggCost1)

D

4
×
H

4
×
W

4
×2F

AggCost8 3×3×3, deconv3d, 1, 2
(no ReLU and BN)

D

2
×
H

2
×
W

2
×1

(b) 3DConvNet-B0
Name Layer Property Output Size

3D Encoder

InitialCost1 From ConcatCost:
3×3×3, conv3d, 64, 1

D

4
×
H

4
×
W

4
×2F

AggCost2-1 From InitialCost1:
3×3×3, conv3d, 64, 2

D

8
×
H

8
×
W

8
×2F

AggCost2-2 (3×3×3, conv3d, 64, 1)×2
D

8
×
H

8
×
W

8
×2F

AggCost3-1 From AggCost2-1:
3×3×3, conv3d, 64, 2

D

16
×

H

16
×
W

16
×2F

AggCost3-2 (3×3×3, conv3d, 64, 1)×2
D

16
×

H

16
×
W

16
×2F

3D Decoder

AggCost4 3×3×3, deconv3d, 64, 2
skip connect (from AggCost2-2)

D

8
×
H

8
×
W

8
×2F

AggCost5 3×3×3, deconv3d, 1, 2
(no ReLU and BN)

D

4
×
H

4
×
W

4
×1

(c) Rep3DConvNet-B0
Name Layer Property Output Size

Conv2D-L From 2D encoder’s left feature:
3×3, conv2d, 64, 1

H

4
×
W

4
×2F

Conv2D-R From 2D encoder’s right feature:
3×5, conv2d, 64, 1

H

4
×
W+D

4
×2F

InitialCost1 For each disparity d:
Conv2D-L+Shift(Conv2D-R,d)

D

4
×
H

4
×
W

4
×2F

3D Encoder
AggCost∗ layers in 3D Encoder of 3DConvNet-B0

3D Decoder
AggCost∗ layers in 3D Decoder of 3DConvNet-B0

4.2 Experimental Results

We trained four models with different computational costs. We refer to the model
described in section 3.1 as 3DConvNet-B3. We created three other models with
reduced computational costs: 3DConvNet-B2, 3DConvNet-B1, and 3DConvNet-
B0. First, 3DConvNet-B2 limited the number of convolutions of the 3D encoder,
as listed in Table 1. Specifically, the AggCost1 is removed, and the number of con-
volution layers was reduced to one in the AggCost2-1, AggCost3-2, AggCost4-2,
and AggCost5-2 layers. Next, 3DConvNet-B1 and 3DConvNet-B0 used a stride
of two for the 2D encoder’s Stem2 layer to reduce the spatial resolution. The
resulting structures of 3DConvNet-B1 and 3DConvNet-B0 are given in Table 2.
The structure of 3DConvNet-B1 was similar to that of 3DConvNet-B3, but
the 3D encoder’s input size and the 3D decoder’s output size were different.
3DConvNet-B0 was the lightest model: its 3D encoder and 3D decoder were
shallow, and the output disparity size was one-fourth of the input size.

As described in section 3, the proposed method uses 3D convolutions to com-
pute the initial cost during training. The 3D convolutions are re-parameterized,
and the re-parameterized kernels are then used for inference. We refer to the
re-parameterized model that uses 2D convolutions to compute the initial cost
as Rep3DConvNet. In Table 2(c), we show the structure of Rep3DConvNet-
B0. The difference between the model and 3DConvNet-B0 is in the initial cost
construction process. As described in section 3.3, our methods cannot estimate

2435

12 T. Endo et al.

Table 3. Experimental results on 40 evaluation images from the KITTI 2015 dataset.
The abbreviations ‘bg’ and ‘fg’ refer to the results on background and dynamic object
pixels, respectively. Each model was evaluated before and after re-parameterization.
The column ‘FLOPs’ gives the computational cost of the entire network, while the
column ‘FLOPs†’ shows the cost for the initial cost construction. The runtime and
memory consumption were measured on an NVIDIA Tesla V100 GPU (16 GB).

Model Inference Structure D1 error(%) FLOPs
(B)

FLOPs†

(G)
Runtime

(sec)
Memory
(GiB)3DConv 2DConv D1-bg D1-fg D1-all

3DConvNet-B0 ✓ 3.19 9.15 4.01 0.23 141.9 0.059 3.1
Rep3DConvNet-B0 ✓ 0.09 1.4 0.041 2.8
3DConvNet-B1 ✓ 2.58 7.76 3.30 0.52 160.8 0.102 4.9
Rep3DConvNet-B1 ✓ 0.36 1.7 0.077 3.1
3DConvNet-B2 ✓ 2.48 4.69 2.79 1.68 695.8 0.378 15.3
Rep3DConvNet-B2 ✓ 0.98 4.2 0.225 9.9
3DConvNet-B3 ✓ 2.20 5.18 2.62 2.10 695.8 0.462 15.3
Rep3DConvNet-B3 ✓ 1.41 4.2 0.311 10.4

(a) Input image

(b) Rep3DConvNet-B3 (c) Rep3DConvNet-B0

Fig. 4. Example of qualitative results on KITTI 2015, showing (a) the input image,
and the output results from (b) Rep3DConvNet-B3 and (c) Rep3DConvNet-B0. In (b)
and (c), the top and bottom images are the disparity and error maps, respectively.

disparities at the left and right sides of an image. Thus, in our evaluation, the
accuracy was measured for pixels excluding those at the left and right sides.
For evaluation, we used the D1 error metric, which counts the number of pixels
that satisfy |d− d̂| > 3pix, or |d−d̂|

d > 5%, for the ground-truth d and estimated
disparity d̂. Better models have lower scores for the D1 error. Note that our
models estimate disparity maps at different scales. If the estimated disparity
maps are smaller than the input images, we upsample the outputs by bilinear
interpolation.

The evaluation results on the KITTI dataset are summarized in Table 3.
Specifically, we give the results for 3DConvNet and Rep3DConvNet. The results
show that our method could reduce the computational cost without any per-
formance loss. In particular, the re-parameterization reduced the computational
cost of the lightest model, 3DConvNet-B0, by 61%, and that of 3DConvNet-B3,
the largest model, by 33%. The reduction rate depends on the computational
cost for the initial cost construction. Overall, our experiment showed that the
proposed method was effective for various models with different computational
costs. We also measured the actual run time and memory consumption. As seen

2436

Re-parameterization Making GC-Net-style 3DConvNets More Efficient 13

Table 4. Ablation study results. (a) D1 error for 3DConvNet-B3 in various training
settings, where ‘Trick1’ and ‘Trick2’ denote left image cropping and initial cost crop-
ping, respectively. (b) Accuracy comparison between 2DConvNet-B1, which is trained
with the same structure as the re-parameterized model, and Rep3DConvNet-B1.

(a) Ablation 1
D1 error(%)

Trick1 Trick2 D1-bg D1-fg D1-all
2.59 7.43 3.26

✓ 2.33 5.31 2.74
✓ ✓ 2.20 5.18 2.62

(b) Ablation 2
D1 error(%)

Model D1-bg D1-fg D1-all
2DConvNet-B1 2.77 8.19 3.52
Rep3DConvNet-B1 2.58 7.76 3.30

in the table, the re-parameterization accelerated the inference and reduced the
memory footprint.

Fig. 4 shows an example of the output results for Rep3DConvNet-B0 and
Rep3DConvNet-B3. Rep3DConvNet-B3 had more layers and a higher resolution
for disparity maps. Thus, it could suppress depth mixing, which means the er-
rors between foreground and background pixels, better than Rep3DConvNet-
B0 could. On the other hand, the overall disparity was similar to that for
Rep3DConvNet-B3, even though Rep3DConvNet-B0 had 6% of the convolu-
tion operations in Rep3DConvNet-B3. The required accuracy depends on the
application for disparity estimation. The results demonstrate that our method
can reduce the computational cost from computationally expensive models to
much smaller models.

4.3 Ablation Study

Table 4(a) lists the results of this ablation study, where ‘trick1’ and ‘trick2’
denote left image cropping and initial cost cropping, respectively. It can be seen
that the performance was improved by using trick1. This was because trick1
eliminates occlusion pixels, enabling the model to find better correspondences.
We can also see that trick2 did not degrade the performance. Thus, these tricks
are unlikely to have negative impacts on the accuracy.

Next, although we use different model structures during training and in-
ference, it is also possible to train a network with the same structure as the
re-parameterized model. We refer to the resulting 2D convolution-based model,
which is not re-parameterized, as 2DConvNet. Table 4(b) lists the results of a
comparison between 2DConvNet-B1 and Rep3DConvNet-B1, which shows that
the re-parameterized model had better accuracy. In our re-parameterization
process, the number of parameters during training is larger than the number
during inference. This can be viewed as learning an over-parameterized model
and then using a compact model during inference. In ExpandNet [4], over-
parameterization stabilizes the gradients during training. It is also known that
the loss landscape becomes flat, which gives better generalization performance.

2437

14 T. Endo et al.

Accordingly, it is important to train models by using 3D convolution and then
re-parameterize them during inference, as in our proposed method.

5 Conclusion

We have proposed a kernel re-parameterization method to reduce the com-
putational cost of 3D convolution-based disparity networks. Our method re-
parameterizes learned 3D convolution kernels and uses them as 2D convolution
kernels. Our experimental results show that the proposed method can reduce the
computational cost without degrading the trained model’s performance. Specifi-
cally, the computational cost could be reduced by 31–61% for models with differ-
ent sizes. In addition, the proposed method dramatically reduces the computa-
tional cost for constructing the initial cost, which makes it feasible to construct
many initial costs. Hence, a future work will be to develop a network structure
in which our method is effective.

Acknowledgements We want to thank Atsushi Yokoyama and Kumud Shishir
for their helpful comments on this paper.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.:
Tensorflow: Large-scale machine learning on heterogeneous systems. In: Software
available from tensorflow.org (2015)

2. Chang, J., Chen, Y.: Pyramid stereo matching network. In: The IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5410–5418
(2018)

3. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: Making vgg-style
convnets great again. In: The IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 13733–13742 (2021)

4. Guo, S., Alvarez, J., Salzmann, M.: Expandnets: Linear over-parameterization to
train compact convolutional networks. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) 33. pp. 1298–1310 (2020)

5. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo
network. In: The IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3273–3282 (2019)

6. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on 14(8), 2 (2012)

7. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A.,
Bry, A.: End-to-end learning of geometry and context for deep stereo regression.
In: The IEEE International Conference on Computer Vision (ICCV). pp. 66–75
(2017)

2438

Re-parameterization Making GC-Net-style 3DConvNets More Efficient 15

8. Khamis, S., Fanello, S., Rhemann, C., Kowdle, A., Valentin, J., Izadi, S.: Stere-
onet: Guided hierarchical refinement for real-time edge-aware depth prediction. In:
European Conference on Computer Vision (ECCV). pp. 573–590 (2018)

9. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: arXiv pre-print arXiv: 1608.08710 (2016)

10. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. In: The IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 1529–1538 (2020)

11. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tonal networks through network slimming. In: The IEEE International Conference
on Computer Vision (ICCV). pp. 2736–2744 (2017)

12. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: The IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 4040–4048 (2016)

13. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: The IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 3061–3070 (2015)

14. Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.: Cascade residual learning: A two-
stage convolutional neural network for stereo matching. In: The IEEE International
Conference on Computer Vision (ICCV). pp. 887–895 (2017)

15. Tankovich, V., Hane, C., Zhang, Y., Kowdle, A., Fanello, S., Bouaziz, S.: Hitnet:
Hierarchical iterative tile refinement network for real-time stereo matching. In:
The IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 14362–14372 (2021)

16. Zagoruyko, S., Komodakis, N.: Diracnets: Training very deep neural networks with-
out skip-connections. In: arXiv pre-print arXiv: 1706.00388 (2018)

2439

