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Abstract. When modeling related tasks in computer vision, Multi-Task
Learning (MTL) can outperform Single-Task Learning (STL) due to its
ability to capture intrinsic relatedness among tasks. However, MTL may
encounter the insufficient training problem, i.e., some tasks in MTL may
encounter non-optimal situation compared with STL. A series of stud-
ies point out that too much gradient noise would lead to performance
degradation in STL, however, in the MTL scenario, Inter-Task Gradient
Noise (ITGN) is an additional source of gradient noise for each task,
which can also affect the optimization process. In this paper, we point
out ITGN as a key factor leading to the insufficient training problem. We
define the Gradient-to-Noise Ratio (GNR) to measure the relative magni-
tude of gradient noise and design the MaxGNR algorithm to alleviate the
ITGN interference of each task by maximizing the GNR of each task. We
carefully evaluate our MaxGNR algorithm on two standard image MTL
datasets: NYUv2 and Cityscapes. The results show that our algorithm
outperforms the baselines under identical experimental conditions.

Keywords: Multi-Task Learning · Gradient Noise · Weight Strategy.

1 Introduction

Deep learning [10] has achieved significant success in Multi-Task Learning (MTL)
in the field of computer vision. The multi-task model captures the intrinsic cor-
relation among tasks and also allows multiple inferences in one single forward
pass, so MTL could achieve the unity of high performance and efficiency in the
optimization process [24]. However, MTL may suffer from the insufficient train-
ing problem [16], which means some tasks in MTL are not optimal compared
with the single-task solution.

Most deep learning models are trained to be optimum by the Stochastic
Gradient Descent (SGD) technique [1]: models are optimized by the loss gradient
† These authors contributed equally.
? Corresponding author.
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2 Fan et al.

Table 1. Percentage change in performance? of MTL relative to STL. NYUv2 and
CityScapes are two one-to-many image datasets, where Seg., Dep., and SN. denote
Segmentation task, Depth task, and Surface Normal task, respectively.

Task NYUv2 CityScapes

Seg. Dep. SN. Seg. Dep.

performance 8.3% ↑ 6.9% ↑ 9.7% ↓ 1.1% ↑ 13.2% ↓
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Fig. 1. Gradient Norm distribution on NYUv2 and CityScapes.

based on a mini-batch randomly selected from all data. The gradient obtained
by the SGD algorithm has noise [2, 26], and many studies [14, 13] point out that
the gradient noise magnitude could affect the SGD generalization in Single-Task
Learning (STL). This viewpoint gives us a key insight: in the MTL scenario, due
to the joint learning of multiple tasks, the Inter-Task Gradient Noise (ITGN)
could also interfere with the optimization of specific tasks, which may be the
cause of the insufficient training problem.

Following this insight, we analyze the performance of each task (Tab. 1) as
well as gradient norm distribution (Fig. 1) on two image MTL datasets. We
find that the variance of the gradient norm varies widely across tasks, which
implies that different tasks typically have widely varying gradient noise. At the
same time, small gradient tasks tend to suffer from performance deterioration in
MTL, which shows the relative disadvantage of small gradient tasks in MTL. In
this paper, we demonstrate that Inter-Task Gradient Noise (ITGN) is one of the
key optimization challenges in MTL (Section 3). In fact, the gradient in MTL
optimization contains the noises of all tasks, so ITGN is an additional source of
gradient noise compared to STL. As a result, some tasks (especially those with
small gradients) may suffer from performance deterioration due to the effect of
ITGN because the model has difficulty converging to the optimal position based
on the gradient when the gradient noise is too high.

To alleviate the ITGN effect in MTL, we design a dynamic weight strategy
called MaxGNR. Specifically, we realize that the magnitude of gradients and
noise may vary greatly from task to task, and to quantitatively describe the ef-

? Compared STL and MTL at the same settings. Details in Section 5.
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A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio 3

fect of noise on SGD optimization, we define the Gradient-to-Noise Ratio (GNR)
to measure the relative magnitude of gradient noise. Further, we explain that
maximizing the GNR of each task in the MTL scenario is a reasonable method
to mitigate ITGN interference (Section 4.1). Then, we propose the momentum
method to approximate the theoretical GNR to a computable expression (Sec-
tion 4.2), therefore, we can dynamically select the weights that maximize GNR
at each iteration (Section 4.3). As a result, the ITGN interference is reduced
through the MaxGNR algorithm, and the insufficient training problem could be
mitigated.

Furthermore, we extensively examine our MaxGNR algorithm on two stan-
dard image MTL datasets: NYUv2 [22] and CityScapes [7], and the experimental
results reveal that the MaxGNR algorithm obtain superior performance than
other baselines under the same premise of other settings. Our contributions are:

– We analyze the effect of gradient noise on MTL and connect the insufficient
training problem with ITGN interference.

– We define the Gradient-to-Noise Ratio (GNR) to measure the relative mag-
nitude of gradient noise in MTL, and quantitatively describe the ITGN in-
terference by GNR.

– We propose the MaxGNR algorithm, a dynamic weight strategy to alleviate
ITGN interference and experiments demonstrate the algorithm’s validity.

2 Related Work

2.1 Multi-Task Learning

There are mainly two aspects in the field of MTL: network architecture im-
provement [31, 25] and optimization strategy development, aiming at feature
extraction and balance of performance in MTL, respectively. There have been
lots of studies on multi-task architecture improvements, some works focus on
the encoder structure [19, 20, 9, 17] and others focus on the decoder part [27,
31, 25]. In this paper, we focus on optimization strategy development. A major
challenge of MTL is how to balance the performance of tasks in joint learning
[24]. To solve this challenge, researchers have proposed many algorithms, here
we divide these algorithms into two categories: coarse-grained and fine-grained.
The coarse-grained algorithm is to design optimization strategy according to the
metrics of prediction, Uncertainty [6] utilizes homeostatic uncertainty to balance
each loss; Dynamic Weight Averaging [17] tries to balance the decline rate of dif-
ferent task losses; Dynamic Task Prioritization [11] focuses on the balance of key
performance indicators for multiple tasks; GLS [5] uses the geometric mean of
task-specific losses as the target loss. The fine-grained algorithm is based on the
gradient of model parameters, which can more accurately reflect the updating
direction in each iteration. In recent years, such algorithms have been developed
rapidly. GradNorm [4] stimulates the task-specific gradients to be of similar mag-
nitude; MGDA [21] regards MTL as multi-objective optimization; PCGrad [28]
cut the conflict gradient of different tasks. However, although gradient noise is
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an important problem in STL, the effect of gradient noise in MTL has never
been considered.

2.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is one of the standard methods [1] to op-
timize machine learning models. It is originally proposed to make up for the
computational bottleneck of gradient descent (GD). Some studies focus on the
generation capability of SGD. [32] reports SGD outperforms GD, [13, 14] deduce
theoretically that small-batch SGD generalizes better than large-batch SGD.
The gradient obtained by the SGD algorithm has un-biased gradient noise [18].
To suppress the optimization oscillation caused by gradient noise, [23] proposes
to introduce the momentum method in the optimization process, and many op-
timizers absorb the idea of momentum method, such as Adagrad [8], Adadelta
[29], Adam [15].

3 Effect of Gradient Noise

In this section, we analyze the source of gradient noise from the perspective of
SGD (Section 3.1), and analyze the effect of gradient noise on STL (Section 3.2)
and MTL (Section 3.3).

3.1 Preliminaries of SGD

Formally, the design of the machine learning algorithm is based on data D =
{(Xi, Yi)}, the hypothesis function F , and loss function l. Algorithms are de-
signed to search the optimal parameter {Fθ|θ ∈ Θ ⊂ Rd} to get the lowest
expected risk R(θ) under the loss function l, where θ is the parameter of the
hypothesis function and d is the dimension of the parameter. The expected risk
R(θ) cannot be obtained, so stochastic Gradient Descent algorithm (SGD) [1]
selects a mini-batch S = {(Xi, Yi)}|S| independent and identically distributed
(i.i.d.) from the data D, and the expected risk R(θ) can be estimated by the
empirical risk R̂(θ) calculated by mini-batch. In this paper, ∇θR(θ) and ∇θR̂(θ)
are denoted as g(θ) and ĝS(θ), and l(Fθ(Xi), Yi) is expressed as li(θ).

The gradient ĝS(θ) obtained by SGD is stochastic, so the gradient can be
decomposed into the expected gradient and gradient noise. Many works [18, 12]
assume that the gradient noise belongs to the Gaussian class due to the classical
central limit theorem [18]. In this paper, we follow this assumption in order to
describe the effect of gradient noise on MTL quantitatively.

Assumption 1 An individual data (Xi, Yi) is selected independent and identi-
cally distributed (i.i.d.) from data D, and its gradient ∇θli(θ) obeys the Gaussian
distribution:

∇θli(θ) ∼ N (g(θ), C) (1)

where g(θ) is the expected gradient, C is the covariance matrix, and is approxi-
mately constant for θ, which is determined by data D and loss function l.
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Fig. 2. The effect of gradient noise magnitude on the performance of STL. The noise
magnitude is controlled by the batch size. We conduct experiments on MNIST, Fash-
ionMNIST, and CIFAR10. As the batch size increases, performance first increases, then
stabilizes, and finally decreases on all three datasets.

3.2 Gradient Noise in STL

Many studies [14, 13] emphasize the magnitude of gradient noise could effect the
generalization of SGD. In practice, noise magnitude can be easily adjusted by
batch size |S| [12]. According to Assumption 1, ĝS(θ) can be simplified as:

ĝS(θ) =
1

|S|

|S|∑
i=1

∇θli(θ) = g(θ) + ng(θ)

where ng(θ) ∼ N (0,
C

|S|
)

(2)

where ng(θ) is the gradient noise. Because of the Positive Semi-definite of C, the
noise magnitude can be measured as:

E[‖ng(θ)‖2] = tr(C)/ |S| (3)

By adjusting the batch size |S|, we evaluated the impact of noise magnitude
on model performance. The result in Fig. 2(a) showed that the performance can
be maintained only in the appropriate noise magnitude range. In fact, large noise
would interfere with the convergence of the model, while the model is unable to
escape the local optimum with small noise, so the effect of gradient noise on
performance can be expressed as Fig. 2(b).

3.3 Inter-Task Gradient Noise

In the multi-task SGD process, multiple tasks have their own loss functions
{
lk
}
,

and Weighted Average Method (WAM) is a mainstream method to combine
multiple loss functions. Specifically, WAM can be expressed as:

L =

n∑
k=1

ωkl
k(θ) s.t.

n∑
k=1

ωk = 1 (4)
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Fig. 3. Illustration of MaxGNR algorithm. In the STL scenario, reasonable settings
(model, batch size, learning rate, etc.) can be selected to ensure that the gradient noise
is in the appropriate range, as in Fig. 3(a). In the MTL scenario, ITGN is also a source
of gradient noise that can affect the optimization of specific tasks. Therefore, ITGN
may cause task-specific performance deterioration due to the large differences in ITGN,
as is illustrated in Fig. 3(b). Our MaxGNR algorithm attempts to alleviate the ITGN
interference as Fig. 3(c). According to Eq. 12, We can design appropriate weights to
maximize GNR for the purpose of mitigating ITGN interference.

According to Assumption 1, the SGD gradient in MTL is expressed as follows:

ĝS(θ) =

n∑
k=1

ωkg
k(θ) +

n∑
k=1

ωkngk(θ) (5)

Based on Eq. 5, ITGN also contributes to task i’s optimization in the MTL
scenario, where ITGNi is as follows:

ITGNi =
∑
k 6=i

ωkngk(θ) ∼ N (0,

∑
k 6=i ω

2
kC

k

|S|
) (6)

From Eq. 3, we can infer that
{
Ck
}
and |S| control the magnitude of

{
ngk(θ)

}
,

although multiple tasks share |S|,
{
Ck
}
are task-specific and determined by the

intrinsic characteristics of tasks, so
{
ngk(θ)

}
usually exist huge discrepancies, as

shown in Fig. 1. Therefore, ITGN can cause performance deterioration in MTL
(similar to the performance deterioration due to large noise in STL).

4 Method

We describe the necessity of controlling the noise magnitude range to maintain
excellent model performance in Section 3.2 as Fig. 3(a) and explain that ITGN
could also interfere with the specific task’s optimization in MTL in Section 3.3.
In summary, the range of ITGN may vary greatly, so it can be inferred that
ITGN is likely to cause performance deterioration on some tasks as Fig. 3(b). In
this section, we propose the MaxGNR algorithm, a dynamic weight strategy to
minimize the ITGN interference in MTL as Fig. 3(c).

Gradient-to-Noise Ratio (GNR) is the core concept of this paper, which is
defined to measure the relative magnitude of gradient noise (Section 4.1), and it
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Algorithm 1: MaxGNR algorithm
Input: data {Xi, Y

1
i , . . . , Y

n
i }|D|, learning rate µ.

Output: optimal network parameters θ.

Initialize network parameters θ0 ;

for t = 0 to T do

select mini-batch data S = {Xi, Y
1
i , . . . , Y

n
i }|S|;

compute each empirical risk {R̂k(θt)};
compute the gradient of empirical risk {∇R̂k(θt)};
compute the momentum gradient {mk

t } and noise {nkt } ;
select {ωkt } by argmax{ωk}

{
min{GNRk(mk

t , {nkt })}
}
;

update network parameters θt+1 = θt − µ∇θt
∑n
k=1 ω

k
t R̂k(θt) ;

end

can be found that ITGN would reduce GNR compared to STL because ITGN is
an additional gradient noise source. So it is a viable method to mitigate ITGN
interference by maximizing GNR. To solve the dilemma that GNR is not com-
putable, we propose to estimate {gk(θ)} and

{
ngk(θ)

}
using the momentum

method, and thus estimate a computable GNR (Section 4.2). Eventually, we
can dynamically select the weights that maximize GNR in each iteration, thus
achieving the purpose of alleviating ITGN interference (Section 4.3). The whole
process of the MaxGNR algorithm is shown in Alg. 1.

4.1 Gradient-to-Noise Ratio

In order to measure the noise interference on stochastic gradient optimization, it
is necessary to define an appropriate metric to measure the relative magnitude
of gradient noise to the gradient.

Definition 1 In the process of SGD, for a specific task, the expected gradient is
g(θ), the random variable that could make ĝS(θ) deviate from g(θ) is the gradient
noise ng(θ), we define Gradient-to-Noise Ratio (GNR) as:

GNR =
‖g(θ)‖2

E[‖ng(θ)‖2]
(7)

GNR reflects the relative magnitude of gradient noise to the gradient. The
homogeneity ensures that GNR is independent of weight in STL, and according
to Eq. 3, E[‖ng(θ)‖2] is an approximate constant and easy to represent.
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There is only one source of gradient noise in STL. According to definition 1,
GNRS is represented as:

GNRS =
‖g(θ)‖2

E[‖ng(θ)‖2]
=
‖g(θ)‖2

tr(C)/ |S|
(8)

In the MTL scenario, due to the ITGN interference, task k’s GNR is repre-
sented as:

GNRkM =
‖ωkgk(θ)‖2

E[‖ωkngk(θ) + ITGNk‖2]
(9)

According to Eq. 3 and Eq. 5, E[‖ITGNk‖2] could be represented by {Ck}
and |S|, and due to the linear property of matrix’s trace:

tr(m ·A+ n ·B) = m · tr(A) + n · tr(B) (10)

GNRkM is eventually simplified as:

GNRkM =
‖ωkgk(θ)‖2∑n

k=1 ω
2
ktr(C

k)/ |S|
≤ GNRkS (11)

In general, hyperparameters with superior performance in STL would be
selected for MTL, so we assume that GNRkS can be controlled as an appro-
priate GNR. However, ITGN interference reduces the GNR of each task, if
ITGNk � ngk(θ), GNRkM could be much smaller than GNRkS , which is likely
to cause performance deterioration of task k. Therefore, selecting weights {ωk}
to maximize GNRkM is a feasible method to alleviate ITGN interference for task
k. In the MTL scenario, to ensure that all tasks could alleviate ITGN interference
as much as possible, we should maximize min{GNRkM} as:

{ωk} = argmax
{ωk}

{
min

{
‖ωkgk(θ)‖2

}∑n
k=1 ω

2
ktr(C

k)/ |S|

}
(12)

4.2 Estimation of Expected Gradient

However, GNR is a theoretical concept and it is not realistic to calculate
{
gk(θt)

}
and

{
Ck
}
, therefore, we should design a method to estimate them. During the

training process, we can only get the empirical gradient {ĝSk(θt)}. In this paper,
we propose that the momentum method can be used to estimate the expected
gradient and gradient noise.
Momentum Method The momentum method is widely applied in various
optimizers. AdaGrad, AdaDelta, Adam, and so on adopt the momentum method
as a technique to stabilize gradient. Momentum is expressed as m, and we set
m0 = ĝS(θ0). The basic process of the momentum method is as follows:

mt = γ ·mt−1 + (1− γ) · ĝS(θt)
θt = θt−1 − µ ·mt

(13)
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where γ is the decay rate, µ is the learning rate, both are hyperparameters. It
is an option to estimate the expected gradient by momentum gradient, because
the momentum gradient could reduce noise and stabilize gradient. According to
Eq. 2 and Eq. 13, the momentum gradient can be derived as:

mk
t ≈ (1− γ)

t∑
i=1

γt−i · gk(θi) + nmk
t

where nmk
t
∼
√

1− γ
1 + γ

N (0,
C

|S|
)

(14)

By comparing Eq. 2 and Eq. 14, it can be found that the momentum method
produces a contraction coefficient of

√
(1− γ)/(1 + γ) on noise magnitude, the

larger γ is, the smaller the estimated noise magnitude is. At the same time, the
cost is that the momentum gradient mk

t is no longer the un-biased estimation
of gk(θt), the larger γ is, the greater the estimation error is. So γ becomes a
trade-off factor of the expected gradient estimation, if the estimation error of
gk(θt) is too large, the momentum method is also invalid. Fortunately, parameter
optimization is a long process, and the change of parameters in each iteration is
small compared to the parameters themselves. Based on this fact, we make the
following assumption:

Assumption 2 the expected gradient changes slowly and the expected gradients
in adjacent iterations are similar:

gk(θn) ≈ gk(θn+∆n), when ∆n is small (15)

On the premise of Assumption 2, the estimation error of gk(θt) in Eq. 14 can
be reduced to a large extent, so it is reasonable to estimate gk(θt) with mk(θt).

4.3 Weight Selection

According to the estimation method proposed by Eq. 14, the empirical gradient
of each task can be decomposed into momentum gradient mk(θ) and gradient
noise ngk(θ). Therefore, we can estimate ngk(θ):

ngk(θ) = ĝS
k
(θ)−mk(θ) (16)

To calculate the GNR of each task, we can replace gk(θ) with mk(θ) accord-
ing to Eq. 14 and Assumption 2, and although E[‖ngk(θ)‖2] is approximately
determined, each gradient noise is a random variable, so it is reasonable to use
‖
∑n
k=1 ωkngk(θ)‖2 to replace

∑n
k=1 ω

2
ktr(C

k)/ |S|. Therefore, the MaxGNR al-
gorithm can ultimately expressed as:

{ωk} = argmax
{ωk}

{
min

{
‖ωkmk(θ)‖2

}
‖
∑n
k=1 ωkngk(θ)‖2

}
(17)
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Table 2. Experiment results of different algorithms for NYUv2, and we split the table
into coarse-grained and fine-grained algorithms. The bold represents the top2 scores.

Algorithm Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Mean ↓ Median ↓
single task 26.15 53.27 0.6655 27.89 30.57 25.12
equal weights 28.32 55.60 0.6196 27.61 31.80 26.82

coarse-grained
DWA 28.43 56.08 0.6075 25.08 31.98 26.89
Uncertainty 28.06 54.46 0.6059 25.69 31.49 26.32

fine-grained
GradNorm 28.92 56.26 0.6057 24.06 31.66 26.49
MGDA 22.38 49.59 0.7414 27.51 30.50 23.85
PCGrad 28.72 56.17 0.6131 27.33 32.19 27.00

MaxGNR (γ = 0.5) 29.76 57.64 0.5943 24.35 29.89 24.38
MaxGNR (γ = 0.9) 29.48 56.81 0.5904 24.91 30.43 24.85

Because of the non-linearity of Eq. 17, a general analytical solution cannot
be found. We use the steepest descent method [3] to obtain the optimal {ωk} at
each iteration. Compared with the number of parameters in the neural network,
the number of parameters in the steepest descent method is the number of tasks,
so the computation cost can be ignored. At the same time, the computation cost
of the steepest descent method is not sensitive to the number of tasks, which is
different from grid search.

5 Experiments

5.1 Experimental Settings

Datasets We focused on one-to-many predictions datasets {Xi, Y
1
i , . . . , Y

n
i }|D|

[30] in this paper. We evaluated the proposed MaxGNR algorithm on two image
datasets: NYUv2 [22] and CityScapes [7]. NYUv2 is a challenging indoor scene
dataset in various room types (bathrooms, living rooms, studies, etc.), and this
dataset has three tasks: 13-class semantic segmentation, depth estimation, and
surface normal prediction. Although NYUv2 is a relatively small dataset (795
training, 654 test images), it contains both regression and classification tasks,
making it a good candidate for testing the robustness of different types of loss
functions. CityScapes is a high-resolution street-view images dataset, we chose
two sub-tasks for our experiment: semantic segmentation and depth estimation.
Compared to NYUv2, the street-view image contained in CityScapes is relatively
simpler, because the viewpoints and lighting conditions are relatively fixed, and
the appearance of each object class changes little in shape.
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A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio 11

Table 3. Experiment results of different algorithms for CityScapes.

Algorithm Segmentation Depth

mIoU ↑ Pix Acc ↑ ↑ Abs Err ↓ Rel Err ↓
single task 66.91 90.03 0.0153 35.85
equal weights 67.63 90.09 0.0163 57.13

GradNorm 67.20 90.76 0.0169 57.21
MGDA 66.83 90.88 0.0170 47.14
PGGrad 67.75 91.01 0.0164 54.95

MaxGNR (γ = 0.5) 68.01 91.07 0.0162 44.11
MaxGNR (γ = 0.7) 67.33 90.76 0.0160 42.48

Implementation Details We implemented our experiments based on the net-
work architecture in [17]. The network architecture had an encoder-decoder
structure that was homogeneous across all tasks, where the encoder extracted
the representation and the decoder matched individual tasks. For the NYUv2
and CityScapes datasets, we set the batch size to 2 and 128, respectively, and
the learning rate of the Adam optimizer to 1e-4. After training each model for
100/200 epochs, we selected the best model on the training set for testing. In
our experiment, we set the learning rate of the steepest descent method to 1e-3,
and {ωk} updated 100 steps in each iteration.

Evaluation Metrics To compare the baselines and our method, we chose two
metrics for each task. Following the settings in [6, 17, 28], we chose mIoU and
Pixel Accuracy for Segmentation task, Absolute and Relative Error for Depth
task, and Mean and Median Angle Distance for Surface Normal task.

5.2 Baselines

In addition to equal weights and single-task models, the baselines can be divided
into two types: coarse-grained algorithms and fine-grained algorithms. Coarse-
grained algorithms included DWA [17] and Uncertainty [6], fine-grained algo-
rithms included GradNorm [4], MGDA [21] and PCGrad [28].

5.3 Main Results

Results on NYUv2 was shown in Tab. 2. Our MaxGNR algorithm outper-
formed the baselines in almost all metrics. When specific tasks were analyzed,
most approaches outperformed the single-task model in the Depth task, and
most baselines performed marginally better than the single-task model in the
Segmentation task, while, in the Surface Normal task, almost all baselines suf-
fered from performance deterioration. It was important to note that MGDA,
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Fig. 4. Dynamic change of weights and the training process.

which outperformed the single-task model in the Surface Normal task, cannot
balance the optimization performance on all tasks, resulting in MGDA’s bad per-
formance in the other two tasks. Our MaxGNR algorithm not only outperformed
the single-task model and baselines in the Segmentation and Depth tasks, but
it also performed well in the Surface Normal task and overcame the insufficient
training problem.
Results on CityScapes was shown in Tab. 3. In CityScapes, the performance
of the single-task model was similar to all MTL algorithms on the Segmentation
task (about 91%), while there was a serious performance deterioration in the
Depth task. We analyzed the performance of baselines and our algorithm in two
tasks. In the Segmentation task, our algorithm was not significantly better than
other baselines, but in the Depth task, our algorithm improved the performance
of the model and greatly narrowed the gap with the single-task model.

5.4 Dynamic Change of Weights

The dynamic weight strategy can assign appropriate weights to each task at dif-
ferent training stages. We compared the weights of the different stages obtained
by MaxGNR and MGDA in Fig. 4. We found that the weight trends obtained by
the two algorithms were similar, but MGDA’s weights were more extreme com-
pared to MaxGNR’s weights. Specifically, in NYUv2, the weight assignment of
MGDA led the model to focus only on the Surface Normal task, while MaxGNR’s
assignment was intuitively more balanced. The experimental results (MGDA in
Tab. 2) showed that extreme weight assignments may lead to insufficient training

1189



A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio 13

Seg. Dep. SN.
Task

0.0

0.5

1.0

1.5

2.0

2.5

Gr
ad

ie
nt

 &
 N

oi
se

x10 3

equal
MaxGNR

Seg. Dep. SN.
Task

0

1

2

3

4

5

6

7

GN
R

STL
equal
MaxGNR

(a) NYUv2

Seg. Dep.
Task

0.0

0.5

1.0

1.5

Gr
ad

ie
nt

 &
 N

oi
se

x10 3

equal
MaxGNR

Seg. Dep.
Task

2

4

6

8

10

GN
R

STL
equal
MaxGNR

(b) CityScapes

Fig. 5. Gradient Norm Distribution and GNR of each task in NYUv2 and CityScapes.

problems. The situation was similar in CityScapes. We believed that the weight
assignment difference came from the object being balanced: MGDA attempted
to balance each task’s gradient, while MaxGNR attempted to balance each task’s
GNR.

6 Discussion

6.1 Gradient Noise and Performance

We fixed the best models under equal weights and MaxGNR settings and counted
the distribution of the gradient norm for all data and calculated the current GNR
of the models based on the gradient norm distribution, as shown in Fig. 5.

We found that in the equal weights model, the gradients and noises of each
task differed significantly, and our algorithm clearly balanced the gradients and
noises of each task (Fig. 5 Left). Compared with GNRS , the GNRM of Surface
Normal task in NYUv2 and Depth task in CityScapes decreased most signif-
icantly in the equal weights model, and the performances of these tasks also
exhibited a huge decrease. Our MaxGNR algorithm balanced each GNRM (Fig.
5 Right), by slightly reducing the GNRM of some tasks (usually harmless), the
tasks suffering from performance deterioration would mitigate the interference
of ITGN, and gained performance improvements. The experimental results also
showed that the model in the MaxGNR setting had significant performance
improvements in the Surface Normal task in NYUv2 and the Depth task in
CityScapes. At the same time, the performance improvement of some tasks can
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help the model to get better representation, which can improve the performance
of the model in general.

6.2 The Paradox of Weight Design

In the field of weight design of MTL, researchers frequently constructed op-
timization algorithms depending on the difficulties of the tasks, however, the
starting points of the design sometimes conflicted with each other. For example,
Dynamic Task Prioritization (DTP) [11] allocated “difficult” tasks higher task-
specific weights, while Uncertainty [6] assigned “easy” tasks higher task-specific
weights. [24] gave a qualitative explanation for this conflict paradox: Uncertainty
seemed to be more suitable for noisy labeled data, while DTP was more suitable
for clean ground-truth annotations. The paradox can be described more clearly
when we viewed this phenomenon from the perspective of MaxGNR algorithm.
According to the Eq. 12, there are two factors that influence task’s difficulty:
small expected gradient g(θ) and large variance C

|S| .
If the model’s upper limit is restricted by the small expected gradients of

some tasks, the weights of these tasks should be adjusted to expand the expected
gradients, similar to DTP. The noise part of Eq. 12 can be ignored as:

{ωk} = argmax
{ωk}

{
min

{
‖ωkgk(θ)‖2

}}
(18)

On the contrary, if the model’s upper limit is restricted by the large vari-
ances of specific tasks, the weights of these tasks should be reduced, similar to
Uncertainty, to reduce the impact on other small gradient tasks. So the gradient
part of Eq. 12 can be ignored as:

{ωk} = argmax
{ωk}

{
1∑n

k=1 ω
2
ktr(C

k)/ |S|

}
(19)

In conclusion, the MaxGNR algorithm not only considers the magnitude of
the gradient but also considers the noise interference, which to some extent
unifies these two kinds of algorithms with distinct starting points.

7 Conclusion

In this work, we attributed the insufficient training problem in MTL to the ITGN
interference, and we proposed MaxGNR algorithm, a novel dynamic weight strat-
egy to alleviate this interference. Experiments verified the effectiveness of our
algorithm. Looking ahead, gradient noise in MTL is a new field, and we hope
to explore the influence of gradient noise on more complex tasks. Besides, how
to choose appropriate tasks for joint learning is an open question, and the GNR
framework may be a possible research direction.
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