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Abstract. Object detection in aerial images is a challenging task due to
the oriented and densely packed objects. However, densely packed objects
constitute a significant characteristic of aerial images: objects are not
randomly scattered around in images but in groups sharing similar ori-
entations. Such a recurring pattern of object arrangement could enhance
the rotated features and improve the detection performance. This paper
proposes a novel and flexible Affinity-Aware Relation Network based on
two-stage detectors. Specifically, an affinity-graph construction module
is adopted to measure the affinity among objects and to select bounding
boxes sharing high similarity with the reference box. Furthermore, we de-
sign a dynamic enhancement module, which uses the attention to learn
neighbourhood message and dynamically determines weights for feature
enhancement. Finally, we conduct experiments on several public bench-
marks and achieve notable AP improvements as well as state-of-the-art
performances on DOTA, HRSC2016 and UCAS-AOD datasets.

1 Introduction

Oriented object detection of aerial images is a significant yet challenging task in
computer vision. Unlike object detection in ordinary scenes, aerial images with
high resolution often contain a larger number of densely packed objects. In this
case, detection performance of horizontal object detection models [3, 26, 29, 54, 2]
deteriorates considerably due to the intersection of axis-aligned receptive fields
between objects. Existing methods mainly contribute to solving this challenge
from two aspects: One is to optimize the extraction of rotated features [5, 10, 42,
45, 43], such as using rotation-equivariant backbones or enhancing the feature
fusion. The other is to perform well-designed bounding box representations [38,
52, 7, 44, 46], such as using eight-parameter or convex-hull to represent boxes.

However, these densely packed objects form a pattern of object arrangements.
For each object in each category, we count the average number of its similar
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Fig. 1. (a) For each object in each category, we count the average number (grey pillar)
of its similar objects with an angle difference less than 5 degrees inside a 1024 ×
1024 image. (b) Objects inside each red box share high similarity in categories and
orientations.

The edge of the object is 

obscured by shadows.

(a) Test image (b) ReDet (c) Our method

Fig. 2. (a) The edge of a tennis court is obscured by shadows. (b) and (c) are visual-
izations of ReDet [10] and our method on DOTA. Here red and green boxes represent
predictions and ground truth. ReDet does not perform well on the obscured boundary,
while our Affinity-Aware Relation Network perceives correct boundary information of
the tennis court.

objects with an angle difference less than 5 degrees inside a 1024× 1024 image.
The result in Fig. 1(a) shows that each object can find 3-5 objects with similar
categories and orientations on average, and some categories can even find more
than 20 objects. Fig. 1(b) displays the recurring pattern of object arrangement.
Each object can be allocated to an imaginary red box, such that objects inside
the same box share high similarity in categories and orientations. Therefore, the
semantic information of one object can imply information of other objects in the
same box, which can be utilized as an enhancement for the detection task.

This paper proposes an Affinity-Aware Relation Network(AARN) based on
the two-stage detector, which aims to enhance the Rotated Region of Inter-
est(RRoI) Align feature for classification and regression in the second stage.
Specifically, the proposed AARN consists of two modules. One is a graph con-
struction module, which measures the affinity among objects and dynamically se-
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lects bounding boxes sharing high similarity with the reference box. The other is
a dynamic enhancement module, which use the attention module to learn neigh-
bourhood message and dynamically determines weights for feature enhancement.

The effectiveness of the method can be simply illustrated by Fig. 2. The
input image, detection results on ReDet [10] and results on our method are
respectively shown in Fig. 2(a), (b) and (c). The edge of the tennis court on
the right in Fig. 2(a) is obscured by the shadows. Fig. 2(b) shows that ReDet
cannot perceive the object shape correctly in this case. However, Fig. 2(c) shows
our method performs well in understanding the accurate boundary of the tennis
court, based on a semantic feature implying the height and width information
from the other two tennis courts. Therefore, it is meaningful to construct a
relation graph among objects and enhance the current object’s feature using
extra information aggregating from objects with high affinity. Our contributions
can be summarized as follows:

• We propose an Affinity-Aware Relation Network, using the affinity among
densely packed oriented objects to improve detection performance.

• A Graph Construction Module is proposed, designing KFIoU similarity to
measure the affinity among objects and selecting high-quality neighbours for
subsequent feature enhancement in a dynamic way.

• A Dynamic Enhancement Module is proposed, using the attention module
to learn neighbourhood message and dynamically determining the weight for
feature enhancement.

• Extensive experiments are conducted to show that the proposed two modules
can notably improve detection performance based on two-stage methods.

2 Related work

2.1 Oriented Object Detection

Existing oriented object detection methods mainly improve the detection accu-
racy from three aspects: enhancing rotated features, designing sampling assign-
ment strategy and exploring the representation of bounding box.

Feature enhancement mainly aims at densely packed objects with arbitrary
orientations. RoI Transformer [5] and ReDet [10] respectively design a detector
with rotation-invariance and rotation-equivariance. R3Det [42] proposes a Fea-
ture Refinement Module (FRM), improving the single-stage method performance
to a level comparable to two-stage ones. Mask OBB [32], CenterMap Net [33],
SCRDet [45], SCRDet++ [43] introduce pixel-level semantic information and
provides more granular feature fusion branch.

Well-designed assigner alleviates the inconsistency between classification and
regression task. Both DAL [22] and CFC-Net [20] incorporate the Intersection
of Union(IoU) [11] metric, which directly reflects the localization capability of
predicted boxes, into the assignment strategy of positive samples. SASM [13]
dynamically selects the IoU threshold for each object according to its shape.
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Oriented RepPoints[17] selects sample points not only from the classification and
localization but also from the orientation and point-wise feature correlation.

Studies on box representation and loss function mainly contribute to solving
the boundary problem in regression-based methods. BBAVector [49] and Po-
larDet [51] represent the bounding box in coordinate systems. CFA [7] proposes
a convex hull representation method. Gliding Vertex [38] predicts quadrilat-
eral by learning the offset of the four corners of the horizontal bounding boxes.
RIL [21] adopts the Hungarian loss. CSL [41] and DCL [40] transform the regres-
sion into a classification problem. GWD [44], KLD [46] and KFIoU [47] model
the oriented object as a Gaussian distribution to construct a new loss function.
P2PLoss [48] describes the spatial distance and morphological similarity of two
convex polygons. Unlike our approach, none of these methods consider learning
additional information from the affinity among objects for feature enhancement.

2.2 Graph Convolutional Neural Networks

The graph convolutional neural network extends the convolutional neural net-
work to the non-Euclidean space. The graph convolutions fall into two categories:
spectral [1, 4, 15, 16, 35] and spatial [23, 6, 8, 28] methods.

The spectral methods define the convolution in the spectral domain via the
convolution theorem. The first graph convolutional neural network SCNN [1]
defines its operator in the spectral domain. ChebNet [4] and GCN [15] param-
eterize the convolution kernel, significantly reducing the time and space com-
plexity. The spatial methods define the node correlation in the spatial domain.
GNN [12] selects a fixed number of neighbour nodes by a random walk algorithm.
GraphSAGE [8] divides the convolution process into sampling and aggregation.
GAT [31] uses the attention mechanism to differentiate the aggregation of neigh-
bour nodes. PGC [39] defines convolution as the sum of a specific sampling func-
tion multiplied by a particular weight function. Our approach uses the idea of
graph convolution for neighbour message learning and feature aggregation.

3 Methods

3.1 Overview

An overview of the proposed Affinity-Aware Relation Network is illustrated in
Fig. 3. The model consists of a basic two-stage detector, a Graph Construction
Module(GC-Module) and a Dynamic Enhancement Module(DE-Module).

An image is first fed into the pipeline of the basic detector. The GC-Module
uses the proposal quintuples from RPN as well as RRoI features from RRoI
Align to calculate the affinity matrix and dynamically determines the threshold
to filter out low-quality neighbours. For each proposal, GC-Module selects pro-
posals(neighbour) sharing high similarity with the current proposal(reference).

The DE-Module consists of neighbour message learning and feature enhance-
ment weight learning. Neighbour message learning performs an attention mech-
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Fig. 3. An overview of the proposed AARN. Our approach is based on the basic two-
stage detector ReDet.

anism over the high-quality neighbours to obtain messages and weights for ag-
gregation. Feature enhancement weight learning determines the feature enhance-
ment factor in consideration of the proposal aspect ratios. Then the neighbour
message is used for node aggregation to get the aggregation feature of each node,
and the feature enhancement weight is used to dynamically add the aggregation
feature to the original feature to obtain the final enhanced feature. Finally, the
detection result is achieved after classification and box regression branches of the
basic detector. Our proposed method is based on the two-stage model ReDet [10],
which in fact can be easily applied to various modern two-stage detectors.

3.2 Graph Construction Module

This module aims to construct a graph to represent the relationship between
proposal regions. Formally, given Nr proposal regions of the input image, the
relationship among regions can be modeled as an undirected graph G(V,E),
where vi in vertex set V = {vi}Nri=1 corresponds to the i -th proposal and eij in
E ∈ RNr×Nr quantifies the relationship between vi and vj . GC-Module calculates
the affinity between proposal regions to filter out neighbours with low-similarity
for each reference node, and then retains only the edges with high affinity in G.

Affinity Matrix Calculation Affinity matrix M ∈ RNr×Nr reflects the simi-
larity between proposals. We should consider two aspects when calculating the
affinity: the semantic similarity inside the proposal and the shape similarity of
the bounding box.

Feature Similarity. RRoI features characterize object semantics. Given a visual
feature F ∈ RNr×D extracted by RRoI Align, we first employ a nonlinear trans-
formation ψ(·) : RNr×D → RNr×L , projecting F into the latent semantic space
denoted by
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F′ = ψ(F) (1)

where F′ ∈ RNr×L. We adopt a simple form of ψ(·) which is implemented by
a stack of two fully-connected layers followed by layer normalization and ReLU
in order. Each row f ′i ∈ F′ corresponds to a proposal’s latent semantic feature.
Then we apply the cosine similarity to calculate the semantic affinity matrix M1

between f ′i(i = 1, 2, .., Nr), as shown in Eq. (2).

M1[i][j] =
f ′if
′
j∥∥f ′i∥∥∥∥f ′j∥∥ (2)

where ‖·‖ is a modulus operation.

KFIoU Similarity. The calculation of shape similarity should involve the height,
width and rotation angle of objects. As an evaluation metric, IoU well combines
these factors. To overcome the high computational complexity of Skew-IoU, we
approximate oriented boxes as Gaussian distributions and use the overlap of two
Gaussian distributions to measure the shape similarity, as shown in Fig. 4. The
conversion from a rotated box to a Gaussian distribution has been discussed in
some previous works [44, 47, 14], described as follows.

G𝟏(𝝁𝟏, 𝚺𝟏)

G𝟐(𝝁𝟐, 𝚺𝟐)

𝑙𝑒𝑡 𝜇1 = 𝜇2

G𝟏(𝝁, 𝚺𝟏)
G𝟐(𝝁, 𝚺𝟐)

𝑂𝑟𝑖𝑒𝑛𝑡𝑒𝑑 𝐵𝑜𝑥𝑒𝑠
to Gaussian 

Distributions

𝑩𝟐(c𝒙𝟐, c𝒚𝟐, 𝒉𝟐, 𝒘𝟐, 𝜽𝟐)

𝑩𝟏(c𝒙𝟏, c𝒚𝟏, 𝒉𝟏, 𝒘𝟏, 𝜽𝟏)

Fig. 4. First, we convert the oriented bounding boxes to Gaussian distributions. Then
we make two Gaussian distributions be concentric and introduce Kalman Filter to
simulate the distribution overlapping.

The oriented box can be represented by a quintuple B(cx, cy, h, w, θ), where
(cx, cy) are the center point coordinates. h,w and θ respectively refer to the
height, width and rotation angle. The transformation from the proposal quintu-
ple to the Gaussian distribution N(µ,Σ) is shown in Eq. (3).

Σ
1
2 =

(
cosθ −sinθ
sinθ cosθ

)(
w
2 0
0 h

2

)(
cosθ sinθ
−sinθ cosθ

)
, µ = (cx, cy) (3)

After obtaining a 2D Gaussian distribution, we can easily calculate the box area
from its covariance of the corresponding distribution.

SB(Σ) = 4
√∏

eig(Σ) = 4 · |Σ| 12 (4)
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Then the overlapping distribution can be intuitively derived by multiplication of
two Gaussian distributions. The probability density function of multiplying two
Gaussian distributions N1(µ1, Σ1) and N2(µ2, Σ2) can be expressed as

f1(X)f2(X) = Sg ·
1√

2πΣ
e−

1
2 (X−µ)

TΣ−1(X−µ) (5)

Sg =
1√

2π(Σ1 +Σ2)
e−

1
2 (µ1−µ2)

T (Σ1+Σ2)
−1(µ1−µ2) (6)

µ = (µ2Σ1 + µ1Σ2)(Σ1 +Σ2)−1, Σ = Σ1Σ2(Σ1 +Σ2)−1 (7)

That is, the multiplication of two Gaussian distributions is equal to a compressed
or enlarged Gaussian distribution. The constant Sg is a scaling factor.

Inspired by [47], we perform Kalman Filter to calculate the overlapping areas.
Unlike the loss design in [47], the similarity should not be affected by the center
distance. Therefore, we let µ1 = µ2 = µ to make two Gaussian distributions be
concentric. In this case, Sg is decoupled from center points and IoU similarity
can be calculated as Eq. (8).

IoU(N1,N2) =
SB(Σ)

SB1(Σ1) + SB2(Σ2)− SB(Σ)
=

Σ
1
2

Σ
1
2
1 +Σ

1
2
2 −Σ

1
2

(8)

The shape affinity matrix M2 ∈ RNr×Nr is obtained by

mij = IoU(ϕ(cxi, cyi, hi, wi, θi), ϕ(cxj , cyj , hj , wj , θj)) (9)

where mij ∈M2 and ϕ represents the box to Gaussian distribution function.
We use min-max normalization to scale the value of M1 and M2 ranging

from 0 to 1. The final affinity matrix M satisfies M = M1 �M2, where �
represents the point-wise multiplication.

High-Quality Neighbour Selection Similar to ATSS [50], High-Quality Neigh-
bour Selection is proposed to dynamically select high-quality neighbour nodes
according to their statistical characteristics. We first keep the top-k largest val-
ues of each row in affinity matrix M for each proposal, and then use the mean
and standard deviation of selected proposals’ affinity values to determine the
threshold Γi for i-th proposal.

Γi = ui + σi (10)

ui =
1

k

idxk∑
j=idx1

mij , σi =

√√√√1

k

idxk∑
j=idx1

(mij − ui)2 (11)

where mij ∈M and idxi indicates the index of selected k boxes.
For each proposal, absorbing neighbours with inaccurate positions and shapes

will degrade its detection performance due to the introduction of noise. There-
fore, we perform a non-maximum suppression(NMS) on the neighbour nodes
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according to the score from the RPN, so that the aggregation nodes tend to
be samples from different positions rather than overlapping proposals from the
adjacent center points.

3.3 Dynamic Enhancement Module

After determining the reference nodes and neighbour nodes, we design a dynamic
enhancement module consisting of neighbour message learning and feature en-
hancement weight learning. The former uses the attention to learn neighbour
message for node aggregation, and the latter dynamically determines the weight
for feature enhancement.

Neighbour Message Learning We use an attention mechanism drawing
global dependencies to learn the weighted messages between neighbour and ref-
erence nodes. As shown in Fig. 5, this module is implemented based on the
Multi-Head Attention in [30]. Embedding Feature F′ ∈ RNr×L is used as the
query (Q), key (K) and value (V) of the Multi-Head Attention in [30] .

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (12)

where the dk is the channel dimension. A = softmax(QKT

√
dk

) ∈ RNr×Nr rep-

resents the attention weight matrix used for neighbourhood aggregation sub-
sequently. It is worth noting that Eq. (12) only displays the structure of the
single head. In practice, multiple heads are concatenated to get the Multi-Head
Attention(Q,K,V) ∈ RNr×L.

The final enhanced node features are obtained by residual connections, as
shown in Eq. (13). Then the message mij delivered from the j-th neighbour to
the i-th reference node can be expressed as Eq. (14).

Enhanced Node Feature = Attention(Q,K,V) + Embedding Feature (13)

mij = Aij · Enhanced Node Featurei (14)

Feature Enhancement Weight Learning Fig. 6 displays two objects with
the same angle offset ω. However, the box1 with a lower aspect ratio outperforms
box2 on the IoU metric, indicating that objects with high aspect ratio are more
sensitive to the angular deviation. Therefore, it is necessary to treat objects with
high aspect ratios more cautiously in neighbourhood aggregation.

Intuitively, the message delivered to a reference node with high aspect ra-
tio should be assigned a smaller weight before enhancement. Furthermore, for
objects with drastic changes in aspect ratio, it tends to be difficult to learn a
universal feature generalizing characteristic of all neighbour nodes. We should
also tone down the enhancement of features from these objects.
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Fig. 5. Flowchart of the Multi-Head Attention Module. Enhanced Node Feature and
Attention Weight Matrix respectively represent the neighbour message and the weight
used for aggregation.
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Fig. 6. The red and green box represent prediction and ground truth. The box1 with
a lower aspect ratio outperforms box2 on the IoU metric, indicating that objects with
high aspect ratio are more sensitive to the angular deviation.

In response, we design the Feature Enhancement Weight Learning, which can
dynamically adjust enhancement weight wi according to the i -th object’s aspect
ratio, as shown in Eq. (15)-(16).

uratioi =
1

Nr

idxik∑
j=idxi1

rj , σratioi =

√√√√ 1

Nr

idxik∑
j=idxi1

(rj − ui)2 (15)

wi = (α− e
uratioi
β ) · e−σ

ratio
i (16)

where idxi = {idxij}kj=1 denotes indices of k boxes most relevant to the i-th
reference box, selected in High-Quality Neighbour Selection. And rj is the aspect
ratio of the j-th proposal. Eq. (15) computes the mean and standard deviation of
the aspect ratios of the top-k boxes. The mean value reflects the estimated aspect
ratio and the standard deviation implies the fluctuation of aspect ratio. Given
α > 0 and β > 0, wi decreases as the mean or standard deviation increases.
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Feature Enhancement and Final Prediction The enhanced feature of the
i-th proposal is obtained by combining the original feature with the aggregation
feature, described as

Enhanced featurei = featurei + ε · wi
Ni

Ni∑
j=1

mij (17)

where Ni is the number of selected neighbours of the i-th reference proposal.
The meaning of mij and wi are as same as mentioned above. ε is a learnable
parameter with an initial value of 1.0, in order to implement a dynamic residual
connection. Finally, the enhanced features are fed into the classification and
regression branches of the basic detector to get prediction results.

4 Experiments

4.1 Experimental Setup

Datasets DOTA-v1.0[36] is a large-scale dataset for oriented objects detection
in aerial images, which contains 2806 images ranging from 800× 800 to 4k×
4k pixels, 188,282 instances and 15 categories: Plane (PL), Baseball diamond
(BD), Bridge (BR), Ground track field (GTF), Small vehicle (SV), Large vehicle
(LV), Ship (SH), Tennis court (TC), Basketball court(BC), Storage tank (ST),
Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP),
and Helicopter (HC). The proportions of the training, validation and testing set
are 1/2, 1/6, and 1/3, respectively. All images of training and validation set are
split into 1024× 1024 with an overlap of 200 pixels during training.

HRSC2016[18] is a high-resolution optical remote sensing dataset for ship
recognition, which contains 1061 images (436 for training, 181 for validation
and 444 for testing) ranging from 300×300 to 1,500×512 pixels. All images of
training and validation set are resized to 800×512 pixels during training.

UCAS-AOD[53] contains 1,510 images with approximately 659×1280 pixels,
14,596 instances and two categories: plane and car. Like other works[43, 44, 47],
we randomly select 1100 images for training and 400 for testing.

Implementation Details We use a two-stage detector ReDet[10] as our base-
line and ReResNet-50 pretrained on ImageNet[27] following ReDet as our back-
bone. All modules before the RRoI Align follow the settings of ReDet.

As for the implementation of AARN, we first use two linear layers of size
512 (L = 512) to learn the latent feature F′ in Eq. (1). Then top k = 9 largest
values of each row in the affinity matrix are kept to determine the threshold
Γi for i-th proposal in Eq. (11). NMS with threshold = 0.1 is performed over
selected neighbour nodes before DE-M to avoid the introduction of noise. For the
neighbour message learning in DE-M, all linear layers of Q, K and V produce
outputs of dimension dmodel = L = 512. And we employ h = 8 parallel attention
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heads so dk = dmodel/h = 64 in Eq. (12). For the feature enhancement weight
learning, α and β in Eq. (16) are set to 2 and 3.5 respectively.

In the inference phase, RPN will generate 2000 proposals. If such a large
number of proposals are input into AAFN, great noise will be introduced. There-
fore, we set filter threshold as 0.9 in line with scores from RPN stage, so that
only boxes with high confidence can participate in graph construction and fea-
ture enhancement. The weights of modules before RRoI Align are frozen during
training. We adopt a stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.0001, the momentum of 0.9 and weight decay of 0.0001. We
train the model for 12, 40, 120 epochs on the DOTA, HRSC2016 and UCAS-
AOD datasets. We use 2 TITAN RTX GPUs with a total batch size of 4 for
training and one TITAN RTX GPU for inference.

4.2 Comparisons with the State-of-the-Art

Table 1 compares our method with the state-of-the-art detectors on DOTA-v1.0.
Without random rotation and multi-scale data augmentation, we improve by
1.07% AP over the baseline ReDet. Especially categories with low aspect ratios
or less semantic information achieve more notable AP improvements: 4.7% on
roundabout (RA), 3.77% on helicopter (HC), 2.21% on soccer-ball-field (SF),
and 2.04% on ground-track-field (GTF). For multi-scale training with random
rotation, our method achieves the state-of-the-art 80.79% AP and the best
performance on 6 categories. Fig. 7 displays results of ReDet, results of our
method, and visualization of Graph Construction Module results on DOTA. In
Fig. 7(a) and (b), we mark some instances which are accurate under our method
but inaccurate under ReDet with white circles. It shows a better performance of
our method. In Fig. 7(c), the reference box (green) is connected to its selected
neighbour boxes (red). It can be found that a reference box always share high
similarity in category and orientation with its neighbour boxes.

Table 2 lists the performances of our method and state-of-the-art detectors
on HRSC2016. Our method achieves the best performance of 90.57% under the
VOC2007 metric. Table 3 shows results on UCAS-AOD. Our method achieves
the state-of-the-art 89.94% and 97.45% mAP under VOC2007 and VOC2012
metrics respectively, and the mAP of VOC2012 improves by 1.22%.

4.3 Ablation Study

To prove the effectiveness of our proposed method, we choose ReDet as our
baseline and perform a detailed ablative analysis on DOTA-v1.0 test set. Fol-
lowing previous works, random horizontal flipping without any other tricks is
applied for data augmentation. Ablation study result is shown in Table 4, which
demonstrates the effectiveness of each module.

Affinity Matrix Calculation Affinity Matrix Calculation consists of feature
similarity and shape similarity. As shown in Table 5, the absence of either com-
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Table 1. AP for each class and AP50 on DOTA-v1.0. R-50, RX-101 and H-104 respec-
tively stand for ResNet-50, ResNeXt-101 and Hourglass-104. MS/RR denotes random
rotation and multi-scale used for augmentation during training.

Method Backbone MS/RR PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50

Single-stage/Anchor-free

Oriented RepPoints[17] R-101 89.53 84.07 59.86 71.76 79.95 80.03 87.33 90.84 87.54 85.23 59.15 66.37 75.23 73.75 57.23 76.52
CFA[7] R-152 89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96 76.67

O2-DNet[34] H-104 X 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DRN[24] H-104 X 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

BBAVectors[49] R-101 X 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36
CSL[41] R-152 X 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

PolarDet[51] R-101 X 89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64
SASM[13] R-101 X 89.54 85.94 57.73 78.41 79.78 84.19 89.25 90.87 85.80 87.27 63.82 67.81 78.67 79.35 69.37 79.17

RetinaNet-P2P[48] R-101 X 89.22 86.12 55.23 81.39 80.34 83.45 88.25 90.87 86.63 87.08 71.74 69.87 77.34 76.01 59.59 79.15

Two/Refined-stage

Gliding Vertex[38] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
SCRDet++[43] R-101 89.77 83.90 56.30 73.98 72.60 75.63 82.82 90.76 87.89 86.14 65.24 63.17 76.05 68.06 70.24 76.20

ReDet[10](baseline) ReR-50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
Oriented R-CNN[37] R-101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

KFIoU[47] R-101 89.04 84.04 52.98 73.00 78.69 83.60 87.61 90.79 85.97 85.47 64.77 63.29 69.18 76.38 65.63 76.70

Mask OBB[11] RX-101 X 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
S2A-Ne[9] R-50 X 89.07 82.22 53.63 69.88 80.94 82.12 88.72 90.73 83.77 86.92 63.78 67.86 76.51 73.03 56.60 76.38

RSDet-II[25] R-152 X 89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 79.74 63.31 76.34
R3Det[42] R-152 X 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
DAL[22] R-50 X 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95
DCL[40] R-152 X 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37

OSKDet[19] R-101 X 90.04 87.25 54.41 79.48 72.66 80.29 88.20 90.84 83.91 86.90 63.39 71.76 75.63 72.59 69.75 77.81
GWD[44] R-152 X 89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.47 67.77 76.92 79.22 74.92 80.23
KLD[46] R-152 X 89.92 85.13 59.19 81.33 78.82 84.38 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68 80.63

AARN(Ours) ReR-50 89.18 84.31 52.65 76.04 78.22 84.29 88.29 91.87 86.82 86.85 63.97 65.09 74.64 70.33 67.36 77.32
AARN-MS(Ours) ReR-50 X 89.60 85.72 62.11 81.18 78.98 86.01 88.68 90.90 89.13 88.23 69.90 68.68 79.12 78.72 74.89 80.79

Table 2. Performances of AARN and state-of-the-art detectors on HRSC2016.

Method RoI-Trans[5] Gliding Vertex[38] R3Det[42] CFC[20] DAL[22] GWD[44]
mAP(07) 86.20 88.20 89.26 89.70 89.77 89.85

Method KLD[46] S2A-Net Oriented RepPoints[17] ReDet[10] Oriented R-CNN[37] AARN(Ours)
mAP(07) 89.97 90.17 90.38 90.46 90.50 90.57

ponent results in a lower performance than baseline. We also discuss the effec-
tiveness of different ways to compute shape similarity. Theta similarity refers to
angle cosine similarity. SkewIoU refers to the regular IoU calculation between
skewed boxes. KFIoU refers to the Gaussian distribution overlapping method
in this paper, which achieves the highest 77.32% mAP. It shows that KFIoU
similarity can better describe the affinity of objects.

Table 3. Performances of AARN
and state-of-the-art detectors on
UCAS-AOD.

Method
VOC2007 VOC2012

Car Plane mAP Car Plane mAP
RIDet-O[21] 88.88 90.35 89.62 - - -

DAL[22] 89.25 90.49 89.87 - - -
R3Det[42] - - - 94.14 98.20 96.17

SCRDet++[43] - - - 94.97 98.93 96.95
OSKDet[19] - - - 95.29 99.09 97.18
ReDet[10] 88.00 90.30 89.15 94.10 98.30 96.23

AARN(Ours) 89.10 90.80 89.94 96.30 98.60 97.45

Table 4. Ablation study for High-Quality
Neighbour Selection (HQNS), Neighbour
Message Learning (NML) and Feature En-
hancement Weight Learning (FEWL) on
DOTA-v1.0 test set.

Method HQNS NML FEWL AP50
Individual

Improvement
Total

Improvement
ReDet × × × 76.25 - -

ReDet-AARN

X × × 76.63 +0.38 +0.38
X X × 77.04 +0.41 +0.79
X × X 76.98 +0.35 +0.73
X X X 77.32 - +1.07

High-Quality Neighbour Selection We discuss the effects of different selec-
tion strategies and NMS thresholds on the performance of objects with different
aspect ratios. We collect the aspect ratio distribution for each category in Fig. 1.
As shown in Table 6, the dynamic selection strategy contributes to reducing the
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Fig. 7. (a) ReDet (the basic detector) detection results. (b) ReDet with AARN detec-
tion results. (c) Visualization of Graph Construction Module results.

Table 5. Performance of Affinity Matrix Calculation Module and comparisons of dif-
ferent methods to compute shape similarity.

Method
Feature

Similarity
Shape Similarity

HQNS NML FEWL AP50Theta
Similarity

SkewIoU
Similarity

KFIoU
Similarity

ReDet × × × × × 76.25

ReDet-
AARN

X
X × ×

X X X

76.95
× X × 77.11
× × X 77.32

X × 76.13
× X 75.98

sensitivity of high aspect ratio objects, such as harbor (HA) and basketball-court
(BC), to noisy neighbours. Furthermore, a lower neighbour NMS value, which
corresponds to a more strict NMS strategy, aims to filter out more low-quality
neighbour boxes with high aspect ratios.

Neighbour Message Learning We compare the performance of three meth-
ods to learn message passing weight in Table 7. Gaussian refers to using a Gaus-
sian distribution on similarity to model the edge weight as [23]. Affinity refers
to aggregation with only affinity values. Attention refers to the aggregation with
a multi-head attention, which achieves the highest 77.32% mAP and 0.21%
mAP improvements than gaussian modeling. It shows that the attention module
can better perceive neighbour features and represent neighbour messages.

Feature Enhancement Weight Learning We compare the performance of
different values of the two hyperparameters in Eq. (16). As shown in Table 8,
the best performance is 77.32% mAP when α = 2.0 and β = 3.5. Especially for
objects with low values and variances of aspect ratio such as roundabout (RA)
and storage-tank (ST), the AP improvement is more obvious, with an increase of
1.12% and 0.62% AP compared to the situation without Feature Enhancement
Weight Learning. It shows this dynamic feature enhancement strategy is espe-
cially effective for objects with low aspect ratios and little semantic information.

3355



14 Tingting Fang et al.

Table 6. Comparisons of different selection strategies and effects of different NMS
thresholds on detection performance.

Method
HQNS

NML
FE
WL

width
height

�1 width
height

≈1
AP50Threshold Neighbour

NMSDynamic
Threshold

Fixed
Threshold

HA BC RA BD

ReDet × × ×

× ×

75.96 87.78 60.39 82.64 76.25

ReDet-
AARN

× 0.5 × 71.45 83.72 62.89 83.22 75.97
× 0.7 × 72.50 85.96 62.12 82.93 76.23
× 0.9 × 73.69 86.24 61.37 82.76 76.31
X × × 74.13 86.52 63.47 83.62 76.52
X × 0.5 74.40 86.60 63.63 83.78 76.56
X × 0.3 74.36 86.69 63.65 83.82 76.58
X × 0.1 74.51 86.73 63.70 83.81 76.63

Table 7. Comparisons of different methods learning neighbourhood message.

Method HQNS
NML

FEWL AP50Gaussian Affinity Attention

ReDet-AARN X

× X ×
X

76.98
X × × 77.11
× × X 77.32

Table 8. The performances on different value of two hyperparameters in Eq. (16) and
effects of Feature Enhancement Weight Learning (FEWL) on objects with low aspect
ratios.

Method HQNS NML
FEWL width

height
≈1 &

std( width
height

) is low AP50Dynamic Feature
Enhancement
α β RA BD ST

ReDet-AARN X X

× 63.97 83.87 86.23 77.04

2.0
4 64.93 84.35 86.73 77.27

3.5 65.09 84.31 86.85 77.32
3.0 65.00 84.04 86.94 77.23

1.5
3.5

65.11 83.99 86.51 77.13
2.5 65.07 84.29 86.32 77.09

5 Conclusions

In this paper, we propose an Affinity-Aware Relation Network, using the affinity
among densely packed oriented objects, which consists of two parts: an affinity-
graph construction module selecting bounding boxes sharing high similarity with
the reference box, and a dynamic enhancement module using the attention mod-
ule to learn neighbourhood message and dynamically determining the weight for
feature enhancement. We conduct experiments on several public benchmarks
and achieve the state-of-the-art performance.
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16. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: Graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)

17. Li, W., Chen, Y., Hu, K., Zhu, J.: Oriented reppoints for aerial object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 1829–1838 (2022)

18. Liu, Z., Yuan, L., Weng, L., Yang, Y.: A high resolution optical satellite image
dataset for ship recognition and some new baselines. In: International conference
on pattern recognition applications and methods. vol. 2, pp. 324–331. SciTePress
(2017)

3357



16 Tingting Fang et al.

19. Lu, D.: Oskdet: Towards orientation-sensitive keypoint localization for rotated ob-
ject detection. arXiv preprint arXiv:2104.08697 (2021)

20. Ming, Q., Miao, L., Zhou, Z., Dong, Y.: Cfc-net: A critical feature capturing net-
work for arbitrary-oriented object detection in remote-sensing images. IEEE Trans-
actions on Geoscience and Remote Sensing (2021)

21. Ming, Q., Miao, L., Zhou, Z., Yang, X., Dong, Y.: Optimization for arbitrary-
oriented object detection via representation invariance loss. IEEE Geoscience and
Remote Sensing Letters 19, 1–5 (2021)

22. Ming, Q., Zhou, Z., Miao, L., Zhang, H., Li, L.: Dynamic anchor learning for
arbitrary-oriented object detection. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 35, pp. 2355–2363 (2021)

23. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Ge-
ometric deep learning on graphs and manifolds using mixture model cnns. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 5115–5124 (2017)

24. Pan, X., Ren, Y., Sheng, K., Dong, W., Yuan, H., Guo, X., Ma, C., Xu, C.: Dynamic
refinement network for oriented and densely packed object detection. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 11207–11216 (2020)

25. Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated
object detection. In: Proceedings of the AAAI conference on artificial intelligence.
vol. 35, pp. 2458–2466 (2021)

26. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

27. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211–252 (2015)

28. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE transactions on neural networks 20(1), 61–80 (2008)

29. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 9627–9636 (2019)

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)
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